Table 1: Experimental results for the automatic construction of decision-trees for preclassification of 100 typefaces
of the full printable ASCII symbol set. ‘Fraction’ is the fraction of training data used to “grow” the tree; the
remainder is used to “populate” it. ‘Space’ is the maximum main memory process size in Mbytes. ‘Time’ is the
CPU time to build the tree (hours minutes). ‘Depth’ is the depth of the tree, averaged over all training samples.
‘Speed— up is the average pruning factor measured during test. The remaining entries are preclassification errors
(in %): ‘%error’ is averaged over the five types sizes 6, 8, 10, 12, and 14 point.

fraction || training (1,079,413 samples) testing (393,030 samples)

space time depth speed—up | %error | 6p 8p | 10p | 12p | 14p
1/8 5.16 9:23 6.7 4.7 1.0 2.1 1.4 0.8 0.4 0.4
1/7 5.66 10:24 7.2 4.8 1.1 2.2 1.5 0.8 0.5 0.5
1/6 6.30 13:23 7.6 5.2 1.2 2.4 1.7 0.9 0.6 0.5
1/5 7.32 16:53 8.3 5.5 1.5 2.8 2.0 1.1 0.7 0.6
1/4 8.55 21:23 9.1 6.0 1.7 3.3 2.3 1.3 0.8 0.7
1/3 10.46 29:49 10.4 6.8 2.0 3.9 2.6 1.5 1.0 0.8
1/2 excessive
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Figure 3: Twenty images each of the ten Times Ro-
man digits 0-9 (top to bottom), generated pseudo—
randomly at a type size of 5 point and a spatial sam-
pling rate of 100 pixels/inch. We have shown that, in

spite of the extreme distortions, this problem has an
intrinsic error rate of only 35%.




observed only 7499 distinct images, so that each dis-
tinct image occurred more than six times on average.

We specify further that the classes are a prior:
equally likely, and that the position of images with
respect to the origin of the image plane is immate-
rial. Then no classifier can improve on one which (a)
matches an unknown image to a prototype only if,
under some translation, they are pixel-for—pixel iden-
tical, and then (b) assigns to the image the class that,
in the limit, occurs most frequently for that prototype
(breaking ties at random). Since such a classifier is
optimal for the problem, we call its error the intrinsic
error of the problem. This can be measured in a brute
force fashion as follows: for each distinct image (un-
der translation), make a prototype and label it with
the class whose image instances match it most often:
then count as errors all image instances whose true
class differs from their prototype’s label.

On one sample of 1000 images per class
(“1000x 10”), the observed intrinsic error was 35.1%.
On another, distinct, 1000 x 10 set,, we observed 33.8%.
On a 5000x 10 set, a superset of these, we observed
35.7%. The consistency of these results suggests that
the data sets are large enough to be representative.

We compared to this the performance of a nearest-
neighbor classifier using FEuclidean distance with
1000x 10 prototypes (breaking ties at random): on a
distinct 1000x 10 set, its error was 52.3%.

We have not carried out a controlled psychophysical
trial to measure the accuracy of human readers on this
problem. Nevertheless, we do not expect that any
human subject could achieve close to either of these
results.

Although this is a small trial run at an extremely
coarse spatial sampling rate, we feel that the results
are surprising enough to be potentially controversial.
If one grants merely that the image defect model that
we used 1s fairly realistic — it doesn’t have to be per-
fect to make the point — then we have exhibited a nat-
ural text recognition problem on which machine classi-
fiers can significantly outperform humans in accuracy.
We speculate that this gap in capability will hold at
larger, more ordinary, spatial sampling rates.

This experiment was feasible, within the time and
space constraints of our computing environment, be-
cause the number of distinct images that occurred was
manageable. Scaling up to larger images will be dif-
ficult, but it may be feasible: the number of distinct
images that occur, though large, is much smaller than
we initially expected, and may not grow exponentially
with image size, so that hashing may suffice; and, the
generation of images is easily parallelized.

7 Open Problems

I envision a day when researchers and engineers
can choose from among several realistic, carefully vali-
dated mathematical models of image defects, together
with software implementations in the form of pseudo—
random defect generators. These will, I believe, prove
to be critical to progress on a broad array of problems
arising in theoretical studies and engineering practice.

However, many obstacles, both theoretical and
practical, remain. I offer a list of open problems.

e There is an urgent need for further discussion of
protocols for validating models of this kind.

e There appear to be serious methodological prob-
lems in establishing the completeness of models
of realistic complexity.
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context is an effort to construct a classifier for 100
typefaces of the full ASCII alphabet (details of the
protocol are given in [BF91]). In the present trial,
1,472,443 images altogether were generated, and split
into two distinct sets: 1,079,413 samples were used for
training, and 393,030 for testing.

The decision trees were intended for use as preclas-
sifiers: that is, their purpose was to prune the set of
classes to a small fraction of their default number, so
that more accurate classifiers, executed downstream,
would have less to do (their runtime being approxi-
mately linear in the number of classes to be distin-
guished). At each node of a tree, a single binary—
valued feature was tested. Each leaf owns a (sub)set
of the classes. An input vector of binary features is
said to be correctly preclassified if the leaf it deter-
mines contains its true class.

The tree-growing heuristic was to pick “splits” (a
leaf and feature pair) until the tree acheived a prun-
ing factor of 16. The split chosen was the one which,
among all possible next splits, maximally increased
the entropy of the tree as a whole. This pruning factor
and entropy were estimated on the assumption that
the distribution of the training data was representa-
tive. By construction, all the trees perfectly preclas-
sify the training data.

Testing reveals, in general, non—zero preclassifica-
tion error and a pruning factor different (but in the
event very close to) the one estimated during train-
ing.

Even with the heuristic’s short—cuts, problems of
this large size push the limits of modern comput-
ing technology. We ran on a Silicon Graphics Com-
puter Systems Power Series Model 4D/480S, with 8
40MHZ IPT processors, running time-shared UNIX.
In order for the program to terminate in less than a
CPU month, it was necessary hold all training data in
main memory during the tree-growing phase. Swap-
ping contention effectively limited the size of a CPU-
bound process to 15 Mbytes.

For these reasons, we partitioned the training data
into two subsets (at random). The first subset was
used to grow the tree, and so was held in main mem-
ory. The second was reserved on disk, and, after the
tree was constructed, read in one by one merely to
update the leaves. Table 2 summarizes the results. In
the table, ‘fraction’ is the fraction of the training data
used grow the tree.

Using 1/8 to grow the tree (and 7/8 to populate),
we constructed a tree with a speed—up (pruning factor)
of x4.7 and a preclassification error of 1.0% averaged
over five type sizes. The errors were concentrated, un-
surprisingly, in the smaller type sizes: at 10 and 12
point, the error was less than 0.5%. As we varied the
fraction used to grow the tree, we measured a range of
trade—offs between speed—up and error, finally observ-
ing a speed-up of x6.8 with an added error of 2.0%.

A speed—up in classification time of nearly a factor
of five, achieved without special hardware, is signif-
icant and practically important; and in some appli-
cations an extra error of at most 0.5% is acceptable.
Encouraged by this, we plan to experiment with even
larger pseudo-randomly generated training sets.

6 Estimating Intrinsic Error

The ability precisely to describe classes of realis-
tic imaging defects permits progress to be made to-
wards answering fundamental theorectical questions
that have been long neglected. I will describe one of
these here: for reasons of space, I will suppress the
mathematical formalities.

Consider a given defect model, applied to a given
ideal prototype image, as a stochastic source of an
indefinitely long sequence of defective images. Associ-
ated with it, therefore, is a probability distribution on
the space of all discrete bi—level images. It should be
clear that most questions of practical interest about
the performance of classifiers can be stated as quanti-
tative properties of these distributions.

Unfortunately, in most cases of practical impor-
tance it is not feasible, with our present analytical
methods and computer algorithms, to describe these
distributions explicitly. The difficulties do not all
arise from the complexities of defect models: many
are grounded in the arbitrary nature of the prototype
images, essentially non—analytical artifacts of human
history and culture.

Still, given pseudo-random image generators, as
computable approximations to the ideal stochastic
sources, we can conceive of experiments to attack cer-
tain problems. For example, it is natural to ask, of a
recognition problem, what is its intrinsic error: that
is, what is the lowest probability of error that the best
possible classifier could achieve? Consider the prob-
lem of distinguishing ¢ from e, under a given defect
model (say [Bai92]), with fixed size and variable spa-
tial sampling rate. Where the sampling rate is very
high, the images are large and only slightly affected by
the defect model, and then the question is answerable:
the intrinsic error is effectively zero. As the sampling
rate decreases, experience tells us, the intrinsic error
will become significantly greater than zero: this occurs
because the class distributions now overlap. Above a
certain threshold, all the generated images vanish, and
intrinsic error becomes 1.

These are all gendanken experiments; we can go a
step further, and carry out an experiment. We have
found a problem for which it is computationally fea-
sible to estimate the intrinsic error. In this problem,
there are ten classes, whose ideal prototype images are
the ten numeric digits from the Adobe Times Roman
typeface. The image defect model is as described in
[Bai92], with the spatial sampling rate set to 100 pix-
els/inch and type size set to 5 point. Note that the
problem is not unusual, save for one feature: the spa-
tial sampling rate is extremely coarse. The resulting
images are small and, by ordinary standards, highly
distorted (Figure 3).

During generation, any image whose bounding box
was wider or higher than 5 pixels was discarded (an in-
significant fraction); ‘null’ (vanishing) images were not
discarded; finally, five thousand images were kept for
each class. Each image was encoded in a translation-
invariant manner (as a string), and the occurrences of
each distinct image counted.

Note that 255 ~ 33.6 M distinct images could po-
tentially have been generated and kept. However, we



o Completeness. For any given defective image for
which an ideal prototype is known, what is the
probability that there exists some values of the
model parameters that, applied to the ideal pro-
totype, will duplicate the defective image? Since
realistic models are likely to be probabilistic, the
answer to this question must be probabilistic also.

e Calibration. For any given population of defec-
tive images with known ideal prototypes, can a
distribution on the model parameters be inferred
that closely fits the real distribution?

Of course, these questions, as stated, are still vague
about crucial details. For example, how does one esti-
mate the probability that a particular defective image
will be duplicated, when the model itself is partially
randomized? There is an urgent need for further dis-
cussion of methods for validating models of this kind.

4 A Public-Domain Image Database

Image defect models and their associated genera-
tors permit a new kind of standard image database
which is explicitly parameterized, alleviating some
drawbacks of existing databases. This section gives
a brief description of the first publicly-available
database of this kind, the “Bell Labs image defect
model database, version 0.” This was designed for
publication in the “English Document Database CD—
ROM” funded by ARPA and designed by The Intelli-
gent Systems Laboratory of the Department of Elec-
trical Engineering, University of Washington, Seattle,
WA[PCHH93]. At the time of writing, this CD-ROM
is scheduled for publication in the Fall of 1993.

The database contains 8,565,750 bi-level images,

each labeled with ground truth. The images are of
isolated machine—printed characters distorted pseudo—
randomly using the image defect model of [Bai92]. It
is designed to assist research into a variety of topics,
including: (a) measurement of classifier performance;
b) characterization of document image quality; and
¢) construction of high—performance classifiers. The
ground truth of each image specifies which symbol
it is and its typeface, type size, image defect model
parameters, and true baseline location. Each model
parameter ranges over a small set of values, and the
cross—product of these ranges has been exhaustively
generated, to permit the design of systematically fair
experiments operating on a wide variety of subsets of
the database.

No more than a third of the images are “easy”: that
is, only slightly or moderately distorted, and so read-
ily recognizable by most commercial OCR machines.
A large number — perhaps a fifth — are “impossi-
ble”: that is, distorted so extremely that they can
not be recognized by even the best modern experi-
mental OCR algorithms. The rest of the images are
distributed, by small steps in parameter space, across
the interesting boundary separating easy from impos-
sible.

The alphabet is the full printable ASCII set of
94 symbols. One typeface is represented: Computer
Modern Roman, of the Metafont family[Knu96], the
artwork for which is in the public domain and is free

and widely available in computer—legible form. The
spatial sampling rate is fixed at 300 pixels/inch. Five
type sizes are represented: 12, 10, 8, 6, and 4 point.
Figure 2 illustrates some of the realistic distortions
produced by the interaction between the size of the
blurring kernel and the binarization threshold.
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Figure 2: Twenty—five images of the Computer Mod-
ern Roman ‘R’; showing the cross—product of five val-
ues each of two parameters: the digitization threshold
(increasing left to right), and the size of the blurring
kernel (increasing top to bottom).

5 Constructing Decision Trees

Non-backtracking decision trees are an attractive
technology for classification, since they promise a
dramatic trade—off of time for space. A theoret-
ical drawback is that inferring optimal trees, un-
der various criteria, appears to be computation-
ally infeasible[Bun87]; however, suboptimal heuris-
tics often build roughly balanced, strongly pruning
trees|CN84, WS87]. Most such heuristics are greedy:
given an incomplete tree, they choose the next split (of
a leaf) that is locally most promising: for example, 1t
may, among all possible single next splits, maximize
the increase in entropy of the tree as a whole. A serious
practical drawback of this strategy is a rapid accumu-
lation of error as the tree deepens, for a training set
of fixed size.

It is nevertheless often possible to construct shal-
low trees with acceptably low error; it is the deeper,
strongly pruning — and thus faster — trees that ex-
hibit unacceptable error. This experience suggests
that the essential problem is not that the heuristic is
sub-optimal: it is that the training data is too sparse.
This observation motivated a series of experiments in
using image defect generators in a brute force way to
reduce the error rate of fast decision—trees.

One such experiment was designed as follows. The



affected by noise. Thus there are defects that occur
per—page, per-symbol, and per—pixel, and at other lev-
els of the document hierarchy.
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Figure 1: Thirty-six images of the Japanese word
‘kekkan’ (defect), from the JTeX Mincho typeface,
illustrating the range of image defects generated
pseudo—randomly by a model discussed in the text.
There are twelve samples for each of three point sizes
(10, 8, and 6), at a spatial sampling rate of 300 pix-
els/inch. The images are magnified in order to make
the spatial sampling rate visible.

2 The Recent Literature

The measurement of image defects has long been of
interest to the optics, imaging, and scanning commu-
nities, and has been addressed by standards organi-
zations including ANSI, ASTM, AIIM, and TAPPI: a
survey is given in [Bai93]; additional useful references
include [Mal83], [Edi87], and [MS88].

[Bai92] discusses motivations for developing defect
models that are specific to document images, pro-
poses a research agenda for this purpose, and gives
particulars of a ten-parameter model that approxi-
mates some aspects of machine-printing and imaging
of text, including symbol size, spatial sampling rate
(digitizing resolution), affine spatial deformations, jit-
ter, speckle, blurring, and thresholding. Figure 2 illus-
trates the range of effects generated pseudo-randomly
by this model. The discussion is confined to local (per-
character and per-pixel) effects. It reports several ap-
plications of the model in the construction of custom
classifiers with a minimum of manual effort.

[Bai93] reviews the state of the art, including
the research literature, standards, professional activ-

ities, and commercially available tools such as hard-
ware/software calibration devices and test targets. A
refinement of the model of [Bai92] is described, to-
gether with experiments in Monte Carlo calibration,
with the goal of estimating the model parameters that
best fit a given population of images of known type-
face. The results suggest that most of its model pa-
rameters can be estimated independently of one an-
other, using averages of trials weighted by translation-
invariant Hamming distance. Also, a conceptual de-
sign of an advanced calibration test target is discussed.

[Jen93] describes experiments with synthesized im-
ages of complete pages of text, using a model of near-
ideal printing and imaging, in support of an effort
to measure baseline performance of commercial OCR
page readers.

In this proceedings, [KHP93] discusses a model of
document imaging that includes both global (perspec-
tive and non-linear illumination) and local (speckle,
blur, jitter, and threshold) effects. The optical distor-
tion process is modeled morphologically, and a method
for inferring the model parameters is discussed.

Also in this proceedings, [HB93] discusses an ap-
plication of image defect generators in the automatic
construction of “perfect metrics” (distance functions
from an image to a class of images), for use in classi-
fiers exhibiting both high accuracy and excellent reject
behavior.

At the time of writing, at least five U.S. research
teams are investigating image defect models.

3 Models and Their Validation

We can distinguish two generic approaches to spec-
ifying models: ezplanatory and descriptive. An ex-
planatory model is based on details of the physics.
Such models can be validated in part by pointing to
the physics. This can lead to accurate models, in
the limit, but they may be unnecessarily specific and
complicated. A descriptive model is more empirical,
merely “saving the appearances” by closely fitting the
data. Such models are validated principally by sta-
tistical measures, for example, of the probability of
generating duplicates of real defective images. A re-
view of the recent history of modern standards in this
area (cf. [Bai93]) suggests that proposals for explana-
tory models dominate the early stages of debate, but
descriptive models eventually gain the consensus nec-
essary for adoption.

The essential technical questions to ask about a pro-
posed descriptive model of document image defects
are, I believe:

e Parameterization. Is the model expressible as
an explicit computable function of a small, fixed
number of numerical parameters? If not, then it
is hard to see how it can be used effectively to
solve engineering problems.

o Randomization. Which of the model’s effects
must be randomized? Can their distributions be
parameterized (as above)? If so, we include the
parameters of their distributions among the pa-
rameters of the model.
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Abstract

The accuracy of today’s document recognition al-
gorithms falls abruptly when image quality degrades
even slightly. In an effort to surmount this barrier, re-
searchers have in recent years intensified their study of
explicit, quantitative, parameterized models of the im-
age defects that occur during printing and scanning.
I review the recent literature and discuss the form
these models might take. I give a preview of a large
public-domain database of character images, labeled
with ground—truth including all defect model parame-
ters, the first of its kind. I describe the use of massive
pseudo-randomly generated training sets for the con-
struction of high-performance decision trees for pre-
classification. Also, I report preliminary results along
a more theoretical line of attack: the estimation of the
intrinsic error rate of precise—specified text recognition
problems (this is joint work with Tin K. Ho). Finally,
I list some open problems.

1 Introduction

In recent years, some researchers in document
recognition have voiced the concern[IEE92] that exist-
ing methods for designing high-performance classifiers
have hit a barrier. This point-of-view is supported by
two observations:

1. The accuracy of today’s document recogni-
tion algorithms falls abruptly when image
quality degrades even slightly. “Slightly”
of course, in the eyes of human readers. This
has long been the conventional wisdom among re-
searchers. Recently, it has been illustrated com-
pellingly by experiments [RKN92] carried out at
the Information Science Research Institute of the
University of Nevada.

2. Significant improvement in accuracy on
hard problems now depends as much, or
more, on the size and quality of train-
ing sets as on algorithms and hardware.
This opinion, although strongly held by some re-
searchers, is not yet widely accepted. It seems to
have been corroborated by the surprising outcome
of a recent U.S. National Institute of Standards
and Technology (NIST) competition on hand-
printed digits [Wil92]. The competition’s one
clear winner ignored the training set offered by
NIST, and used instead its own, much larger, pro-
prietary training set. Furthermore, in spite of

their widely-divergent algorithms and hardware,
most of the competitors who used the same train-
ing set were tightly clustered in accuracy. One of
the most promising attacks on this problem relies
on one of the oldest and simplest of algorithms:
nearest-neighbor classification[Sab93].

These observations suggest that research on image
quality and the representativeness of image data sets
should now be assigned a higher priority than in the
past. One issue inextricably involved with both of
these topics is image degradation. An empirical sci-
entist, faced with phenomena that he or she hopes to
understand better, naturally proposes explicit, unam-
biguous, quantitative models of it, and attempts to
validate the models by fitting them to real data. Such
a research program may be expected to assist engi-
neers eventually, by allowing them to measure image
quality, to control the effects of variation in quality,
and perhaps to construct classifiers automatically to
meet given accuracy goals.

By “defects”! T mean a wide variety of less—than—
ideal properties of real images. In this paper, I con-
strain the discussion to models of defects due to the
physics of apparatus for printing and imaging (in “ap-
paratus” we must include the people operating the
machines). T do not discuss here the exciting nascent
literature on models of shape deformations due to pa-
rameterized typefaces or individual handwriting style
variations.

The physical causes of image defects are myriad:
spreading and flaking of ink/toner; paper surface de-
fects; optical and mechanical deformations and vibra-
tion; low print contrast; non—uniform illumination;
defocusing; finite spatial sampling rate; variations in
pixel sensor sensitivity and placement; noise in elec-
tronic components; binarization (e.g. fixed and adap-
tive thresholding); and miscellaneous trauma (e.g.
coffee stains). And, of course images may result from
more than one stage of printing and imaging.

The physics may of course include both ‘global” and
‘local’ effects. Spatial deformations may affect an en-
tire page image, while ink dropouts affect only a sin-
gle character image, and pixels may be individually

1The term “degradation” is a reasonably apt alternative, but
I prefer “defect” since it is shorter. “Distortion” is also widely
used, but it carries the principal sense of “continuous deforma-
tion,” and as a result sounds awkward — to my ear — when
applied to discrete phenomena such as dropouts.



