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Abstract

Whole-book recognition, a technique that improves recognition of book-images using fully automatic mutual-entropy-
based model adaptation, has achieved character error rate as low as 1.9% on 50 pages of real book images in our previous
publications. However, the linguistic model for word recognition was simple, assuming a uniform distribution on the words in
the dictionary, so that the algorithm is unaware of prior word-occurrence distribution. As a result, the statistics of the output
transcript differs largely from that of a real distribution. In this paper, we propose a post-processing technique thatimproves
the existing whole-book recognition results by applying the constraints of a rich linguistic model - a prior word-occurrence
distribution. This technique further drives the charactererror rate down from 1.9% to 0.97%. We also show that the whole-
book recognition algorithm combined with this post-processing technique shows faster improvements in which word error
rates fall monotonically with passage length.
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1. Introduction

We are investigating fully automatic methods for whole-book recognition. In[10] we introduced an information-theoretic framework
for identifying significant disagreements between models—theiconicmodel and thelinguisticmodel—and interpreting these as candidates
for corrections of one or the other of the two models so that, when the updated models are reapplied to perform recognition, a lower error
rate on the entire passage results.

Our research builds on over a decades’ work showing that adaptive classifiers can improve accuracy without human intervention[6].
Tao Hong[3] showed that within a book, strong “visual” (image-based,iconic) consistency-constraints support automatic post-processing
that reduces error. These successes appear, to us, to be due largely to isogeny— the tendency of particular documents to contain only a
small subset of all the typefaces, languages, image qualities, and othervariabilities that occur in large collections[8]. It is well known that
if models of the typefaces, languages, etc were known, even if only approximately, optimizing recognition jointly across all the models
improves the accuracy[1, 5, 7].

In a long, highly isogenous book, identical (or similar) character imageswill occur multiple times, and the same word will also occur
multiple times, independently. If the models are inaccurate, the resulting errors cause repeated disagreements between the models, which
can be measured at character, word, and passage scales. Correct model adaptation, which leads to a better accuracy, will presumably also
lower passage-scale model disagreement. Therefore passage-scale mutual entropy can drive model correction and reduce error rates.

In [10], a small-scale experiment, on a single textline, using an adaptation algorithm we now call ME1.0, illustrated policies that allowed
automatic corrections to be made to both models, and showed empirically thatboth character error-rates and word-error rates could fall as
a result. In [9], using an improved algorithm (ME2.0) which copes with segmentation errors and runs faster, we experimented on passages
up to ten pages in length, and observed that the word recognition rate for longer words increased significantly as passage length increased.

However, in previous papers [10], [9] and [11], the model adaptation that drives the disagreements down was not constrained to make
word recognition results fit the prior word-occurrence distribution. As aresult, the statistics of the recognition results differs largely from
the real distribution, for which we believe that there is a large margin for enhancing the recognition results, as long as we transform them
to a transcript that follows the constraint imposed by a rich linguistic model -the prior word-occurrence distribution.



In this paper, we design a post-process technique to enhance the word recognition result produced by the whole-book recognition. We
formulate this as an optimization problem to minimize the difference between the(ideal) linguistic model and the OCR results’ word-
occurrence distribution. We show the effectiveness of this algorithm over a series of experiments from short to long passages up to 50
pages. We observed that the longer the input passage is, the better performance gain the algorithm achieves. We will show that the whole-
book recognition combined with this post-processing technique can achieve a faster trend of improvement as the passage length goes up to
50 pages. Also we will show the algorithm reduces the character error rate from 1.9% to 0.97% on the 50-page experiment.

In Section 2, we introduce the mathematical framework of the whole-bookrecognition, placing emphasis on the post-processing step.
In Section 3, we motivate the design of the present experiments and givedetails of the algorithm with post-processing. In Section 4, we
present and analyze the results of the experiments. In Section 5, we discuss the results and draw conclusions.

2. Mathematical Framework

2.1. Probabilistic Models

In our framework, two different kinds of models are required: an iconic model and a linguistic model. The iconic model, when applied
to recognition, must allow the computation ofa posterioriprobabilities for all the character classes. (Of course, many such models are
known [2]; we use Hamming-distance matching to multiple character image templates.) For a linguistic model, we expect to be given
a lexicon (a dictionary containing valid words). The lexicon should cover most valid words, but may be incomplete; we also expect
probabilities to be assigned to each word in the lexicon.

2.2. Independence Assumptions and Word Recognition

Now let X denote a sequence ofT observations of character images (i.e. a word that isT characters long), and letS denote the true
classes of these characters (in communication-theory terms, it is the inner state sequence that generatesX):

X = (x1, x2, · · · , xT ) , S = (s1, s2, · · · , sT ) (1)

wherexi are character images, andsj are symbols of an alphabet. We adopt the following independence assumption, that eachxi is solely
determined by its associatedsi:

P (xi|si,F) = P (xi|si) (2)

WhereF = (Y, K) , Y ⊆ X − {xi} andK ⊆ S − {si}. This assumption is similar to the one chosen by Kopec and Chou in their
Document Image Decoding theory[4].

Our linguistic modelis P (S), the prior probability that wordS is valid. Our independence assumption implies that

P (X|S) =

T
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Our iconic modelis denoted by the functionP (s|x) for all symbolss and all character imagesx. So we can deriveP (S|X), the result
of word recognition informed by both the iconic and linguistic models:

P (S|X) =
1

α
·

T
Y

i=1

P (si|xi) ·
P (S)

T
Y

i=1

P (si)

(6)



Themutual entropyM(P, P ′) between two distributionP andP ′ is defined as:

M(P, P ′) = −
X

P · log P ′ (7)

and we apply it to measure the difference or “disagreement” between thedistributionsP (S|X) andP ′(S|X), whereP (S|X) is thea

posteriorprobability distribution of the character stringS given the image of the whole wordX, andP
′

(S|X) = P (s1|x1) · P (s2|x2) ·
· · · · P (sT |xT ) is the distribution of the character string assuming that there is no linguistic constraints or the distributions of individual
characters are independent of one another. [10] and [9] utilizes this measurement to guide the model adaptation automatically to improve
the models.

2.3. Incorporating Rich Linguistic Model For Post-Processing

After we get the word-level interpretationP (S|X), we may post-processP (S|X) to get the final interpretation of each wordP (S|X,X )
using passage-level contexts, whereX represents the whole passage’s word images.

We denote the prior distribution of word occurrence in the passage asPf (S). For a givenS0, the valuePf (S0) indicates the frequency
of occurrence of the entryS0 in the corpus.Pf (S) can be obtained beforehand from a large corpus, where the statistics ofword occurrence
is stable.

The word recognition resultP (S|X) obtained from Equation 6 is not good enough because the prior word occurrence distribu-
tion Pf (S) - a passage-level information - is not incorporated. It is often the casethat some unusual words frequently appear on the
top choices of the candidate lists in the word recognition results. Thereforethe average distribution of the word recognition results

norm

 

X

X∈X

P (S|X)

!

1 differs largely from the prior word distributionPf (S|X), which tends to cause poor accuracy forP (S|X).

In regarding to this problem, our post-process technique takes the set{P (S|X), X ∈ X} as input, and produces the set{P (S|X,X )|X ∈ X}
as output, which conforms to this constraint:

lim
N→∞

P(S|X ) = Pf (S) (8)

WhereN denotes the total number of the words in the passage. and

P(S|X ) =norm
X

X∈X

P (S|X,X ) (9)

=

P

X∈X
P (S|X,X )

N
(10)

Generally, the step fromP (S|X) to a new distributionP ′(S|X) should follow this regularity: for anyS1,S2 andX1, X2,

P ′(S1|X1)/P ′(S2|X1)

P (S1|X1)/P (S2|X1)
=

P ′(S1|X2)/P ′(S2|X2)

P (S1|X2)/P (S2|X2)
(11)

Which means during the transform fromP (S|X) to P ′(S|X), we process every wordX in the passage consistently: the scaling changes
on any two words’ probability ratios are the same for allX from P (S|X) to P ′(S|X). With this assumption, there exists one and only
one vectorJ that satisfies:

(

P ′(S|X) = norm(P (S|X) · diagJ), ∀X ∈ X

J = norm J
(12)

Where thediag operator means to transform a vector into a diagonal matrix whose diagonal elements equal the vector’s.P (S|X) is a
horizontal vector, which is right multiplied by a diagonal matrixdiagJ , producing another horizontal vector.

In order to get the final word recognition resultP (S|X,X ), we need to find some properJ0 so that

P (S|X,X ) = norm(P (S|X) · diagJ0) (13)

provided thatP (S|X,X ) satisfies the constraint of equation 8.
We can turn this problem into an optimization problem:

J0 = arg min
J

max
S

P
′(S|X )

Pf (S)
(14)

1The definition of the operatornorm is as follows:norm(V ) =
V

V · 1T
, where1 = [1, 1, · · · , 1], with the same dimension asV .



Where

P
′(S|X ) = norm

X

X∈X

norm(P (S|X) · diagJ) (15)

Pf (S) doesn’t appear in an earlier stage as in formulae 5 and 6 becauseP (S), the true-or-false information of a stringS, is more
important and effective on detecting the disagreements between the iconicmodel and the linguistic model on the level of a single word.
The frequency informationPf (S) is useful at a stage that the individual word recognition results are obtained.

3. Experimental Design

The principal goals of the work reported here is to test how much the post-process technique enhances the existing word recognition
results produced by the whole-book recognition. As a result, we need to describe the whole-book recognition’s workflow plus the design
of the post-process algorithm.

In the experiment reported here (using ME2.0), model adaptation proceeds by a sequence ofepochs. In one epoch, every word in
the passage is examined: its top-choice word interpretation (resulting fromthe current models) assigns a character class labelsi to each
characterxi in the word. Among these, the algorithm chooses the pair(x∗, s∗) with the highest character-scale disagreement within
the word, then attempts to adapt the iconic model for character classs∗ by picking one of its templates at random and replacing it with
x∗. This attempted adaptation is evaluated, and may be accepted as acorrection, or undone and discarded. Thus the total number of
adaptations attempted in an epoch equals the number of words in the passage, and is in general larger than the number of corrections
accepted. Evaluating an attempted adaptation is accomplished, within our theoretical framework, by recomputing the passage-scale mutual
entropy due to the adaptation: if it decreases, the adaptation is accepted.

In these experiments, we use page images plus an imperfect OCR transcript for one of the books (“Popular Tales of the West Highlands”)
in the publicly released Google Book Search Dataset. In this book, each page contains roughly 350 words, and we use up to 50 pages on
the experiments in this paper. We used this OCR transcript to perform wordsegmentation alignment, and we proofread the transcript and
the alignment manually.

We initialized the iconic model from a short passage, yielding a low inital accuracy of sixty percent words correct and fifty-five percent
characters correct. The linguistic model was initialized with the 4073 words occurring in 50 pages’ groundtruth: thus it is a “perfect
lexicon” for the 50 pages, and a superset for smaller passage lengths. (This contrasts with our previous papers, where the linguistic model
was initialized from a public-domain dictionary containing 50,000 words which did not fully cover the test set.) The joint recognition
results from these initialized models yielded an approximately 25% charactererror rate, and we runs the whole book recognition algorithm
to get improved results for each experiment.

Our new post-process algorithm is as follows. ThePf (S), the prior word occurrence distribution, is estimated using the 50 pages’
groundtruth words. After the adaptation, we recompute the 50 pages’ transcript, keeping the word choices with top five probability values
for each word, and taking the rest as zeroes, which is a good approximation toP (S|X). TheJ vector in formula 14 is initialized with
a uniform distribution, and an initial average transformed distributionP

′(S|X ) is computed through formula 15. And our post-process
stage consists of multiple iterations: in each iteration, it finds theS0 with the maximalP′(S0|X )/Pf (S0), and adjust the value ofJ(S0)
to make theP′(S0|X )/Pf (S0) approach1.0. We use at least 100 iterations in total, and the longer the passage is, the more iterations we
use. This is a greedy hill-climbing approach that is not guaranteed to achieve a global optimum, but it is effective in practice, as we show
next.

4. Experimental Results

The principal experimental result is that word or character error ratefalls as a function of the passage length of the transcripts operated
upon by our post-processing algorithm. In Figure 1, the star (*) represents word error rates on the input of the algorithm, and the cross
(+) represents word error rates on its output. The horizontal axis (passage length in pages) and the vertical axis (word error rate) are
displayed in log scale. Likewise, in Figure 2, the data points are character error rates from the algorithm’s input and output respectively.
In experiments of Figure 1 and 2, the input of the algorithm is produced bythe whole-book recognition algorithm operated on 50 pages.
Passage lengths include 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 17, 25 and 50 separately. The 50-page result was computed in a single experiment; the
others, form < 50 pages, were computed as averages over⌊ 50/m ⌋ experiments on nonoverlapping subsets of pages.

In Figure 1, the post-processing algorithm damages the results on the short passages, and improves the results on a majority long
passages. The word error rate falls monotonically as the passage lengthgoes up, and achieves the highest gain in the 50-page experiment.
In Figure 2, there are similar phenomema, except the algorithm starts to improve instead of damage at a longer passage than the word
case. The character error rate improves most in the 50-page experiment, from 1.9% to 0.97%. The monotonic trends for the margins of
the improvements may be due to the fact that the longer the passage is, the more meaningful the passage-level statistics is, so that the
constraints from the prior word-occurrence distribution is more effective on improving the results.

Figure 3 and 4 show the comparisons between the whole-book recognitionalgorithm and that combined with the post-processing. Sim-
ilar to Figure 1 and 2, on these two Figures, the stars (*) are error rates for the output transcripts of the whole-book recognition algorithm,



Figure 1. Word Error Rate as Function of the Passage Length fo r Post-Processing. The stars(*)
represents data from the input of the post-procesing, or the output of the whole-book recognition;
the crosses(+) represents data from the output of the post-p rocessing.

Figure 2. Character Error Rate as Function of the Passage Len gth for Post-Processing. The stars(*)
represents data from the input of the post-procesing, or the output of the whole-book recognition;
the crosses(+) represents data from the output of the post-p rocessing.



Figure 3. Word Error Rates as Functions of Passage Lengths. C ircles (o) are the word error rates
from the initial state. Stars(*) are the word error rates of t he results of the whole-book recognition.
Crosses(+) are the word error rates of the results of the post -processing, which is also the final
results of the whole process.

Table 1. Wrong Recognition Results Corrected Through Post-P rocessing

GT
Before Post Processing After Post Processing

1st cand. 2nd cand. 1st cand. 2nd cand.

and

nud:-32.0321 and:-32.6529 and:-32.6529 nud:-34.4321
end:-25.3238 and:-25.6529 and:-25.6529 end:-30.1238
nud:-34.9821 and:-35.9029 and:-35.9029 nud:-37.3821
nud:-31.3821 and:-32.1029 and:-32.1029 nud:-33.7821

are

aro:-25.3098 are:-26.0248 are:-26.0248 aro:-28.1098
aro:-22.5098 are:-22.9248 are:-22.9248 aro:-25.3098
aro:-24.5598 are:-26.3748 are:-26.3748 aro:-27.3598
aro:-22.7598 are:-24.6248 are:-24.6248 aro:-25.5598

and the crosses (+) are for the output transcripts of the post-processing algorithm. Experiments for Figure 3 and 4 are different from those
for Figure 1 and 2: in Figure 3 and 4, the whole-book recognition’s results on a certain page range are post-processed correspondingly,
while in Figure 1 and 2, the same output from 50-page whole-book recognition are post-processed in parts with different passage lengths.

We observe strong correlations between the error rates and the passage lengths on all the data series. Especially, we see better linear
relationships on the post-processed results. And for the data series of post-processing, the trends for reducing the error rates are faster than
those without post-processing. In Figure 3 and 4, on short passages, the post-processing technique still get improvements, for the input
transcripts’ error rates are high so that they’re easier for the post-processing technique to improve.

To get a deeper understanding of why the post-processing technique works, see some examples in Table 1. (In this table, the numeric
values are log probability values that are not normalized.) Because mutual-entropy-based model adaptation doesn’t distinguish words with
different frequencies, there are often words recognized incorrectly as an infrequent word in the corpus, which may be corrected with the
prior word-occurrence distribution.

5. Discussion and Conclusions

Our post-processing technique, which attempts to transform the post-OCRword distributions to match a prior word-occurrence dis-
tribution, is shown to be effective for enhancing the whole-book recognition’s results. We have shown that the longer the passage this
post-processing technique operates on, the higher performance gainit achieves. We have also shown the near monotonic trends for im-
proving performance of the enhanced system as the passage lengths increase.

Future works may include: (1) incorporating the post-processing into every iteration of the whole-book recognition algorithm so that



Figure 4. Character Error Rates as Functions of Passage Leng ths. Circles (o) are the character error
rates from the initial state. Stars(*) are the character err or rates of the results of the whole-book
recognition. Crosses(+) are the character error rates of th e results of the post-processing, which is
also the final results of the whole process.

the constraints from the prior word-occurrence distribution can directly affect the model adaptation process, which may yields higher
performance; (2) analyzing how the optimization problem (equation 14) corresponds to the increasing word or character accuracy; (3)
analyzing the relationship of the passage length the post-processing algorithm operates on and its effectiveness. (4) a stopping rule for the
optimization.
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