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Abstract

Whole-book recognition, a technique that improves redmmiof book-images using fully automatic mutual-entropy-
based model adaptation, has achieved character error ratea as 1.9% on 50 pages of real book images in our previous
publications. However, the linguistic model for word rendtpn was simple, assuming a uniform distribution on thedsan
the dictionary, so that the algorithm is unaware of prior wesccurrence distribution. As a result, the statisticshaf butput
transcript differs largely from that of a real distributiomn this paper, we propose a post-processing techniqueitiarioves
the existing whole-book recognition results by applying ¢bnstraints of a rich linguistic model - a prior word-oceceince
distribution. This technique further drives the charaateror rate down from 1.9% to 0.97%. We also show that the whole
book recognition algorithm combined with this post-praieg technique shows faster improvements in which word erro
rates fall monotonically with passage length.
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1. Introduction

We are investigating fully automatic methods for whole-book recognitioril@hwe introduced an information-theoretic framework
for identifying significant disagreements between models—itieic model and théinguistic model—and interpreting these as candidates
for corrections of one or the other of the two models so that, when thaeghdaodels are reapplied to perform recognition, a lower error
rate on the entire passage results.

Our research builds on over a decades’ work showing that adapéissifters can improve accuracy without human intervention[6].
Tao Hong[3] showed that within a book, strong “visual” (image-bagahic) consistency-constraints support automatic post-processing
that reduces error. These successes appear, to us, to be dletlaigegeny— the tendency of particular documents to contain only a
small subset of all the typefaces, languages, image qualities, andvatiadilities that occur in large collections[8]. It is well known that
if models of the typefaces, languages, etc were known, even if onkpzippately, optimizing recognition jointly across all the models
improves the accuracy[1, 5, 7].

In a long, highly isogenous book, identical (or similar) character imagksccur multiple times, and the same word will also occur
multiple times, independently. If the models are inaccurate, the resultiogs@ause repeated disagreements between the models, which
can be measured at character, word, and passage scales.t @mdet adaptation, which leads to a better accuracy, will presumably also
lower passage-scale model disagreement. Therefore passdgenstual entropy can drive model correction and reduce erra.rate

In [10], a small-scale experiment, on a single textline, using an adaptédioritam we now call ME1.0, illustrated policies that allowed
automatic corrections to be made to both models, and showed empiricalyothatharacter error-rates and word-error rates could fall as
aresult. In [9], using an improved algorithm (ME2.0) which copes witingentation errors and runs faster, we experimented on passages
up to ten pages in length, and observed that the word recognition ratenf@rlaiords increased significantly as passage length increased.

However, in previous papers [10], [9] and [11], the model adaptatiat drives the disagreements down was not constrained to make
word recognition results fit the prior word-occurrence distribution. Assalt, the statistics of the recognition results differs largely from
the real distribution, for which we believe that there is a large margin fbaecing the recognition results, as long as we transform them
to a transcript that follows the constraint imposed by a rich linguistic mothe prior word-occurrence distribution.



In this paper, we design a post-process technique to enhance theamogphition result produced by the whole-book recognition. We
formulate this as an optimization problem to minimize the difference betweefidibal) linguistic model and the OCR results’ word-
occurrence distribution. We show the effectiveness of this algorithm aeeries of experiments from short to long passages up to 50
pages. We observed that the longer the input passage is, the betbemaarfe gain the algorithm achieves. We will show that the whole-
book recognition combined with this post-processing technique can achi@ster trend of improvement as the passage length goes up to
50 pages. Also we will show the algorithm reduces the character eteofroan 1.9% to 0.97% on the 50-page experiment.

In Section 2, we introduce the mathematical framework of the whole-bexgnition, placing emphasis on the post-processing step.
In Section 3, we motivate the design of the present experiments andefizis of the algorithm with post-processing. In Section 4, we
present and analyze the results of the experiments. In Section 5, weglibe results and draw conclusions.

2. Mathematical Framework
2.1. Probabilistic Models

In our framework, two different kinds of models are required: amiconodel and a linguistic model. The iconic model, when applied
to recognition, must allow the computation afposterioriprobabilities for all the character classes. (Of course, many suckelmace
known [2]; we use Hamming-distance matching to multiple character imagpla¢ées.) For a linguistic model, we expect to be given
a lexicon (a dictionary containing valid words). The lexicon should covestmmalid words, but may be incomplete; we also expect
probabilities to be assigned to each word in the lexicon.

2.2. Independence Assumptions and Word Recognition

Now let X denote a sequence &fobservations of character imagé®.(a word that isT" characters long), and & denote the true
classes of these characters (in communication-theory terms, it is threstate sequence that general€s
X:(m17x2,~~~,wT),S:(51,52,~~7sT) (1)

wherex; are character images, angdare symbols of an alphabet. We adopt the following independence psanthat eacly; is solely
determined by its associateg

P(zi|si, F) = P(xilsi) 2

WhereF = (Y,K),Y C X — {z;}andK C S — {s;}. This assumption is similar to the one chosen by Kopec and Chou in their
Document Image Decoding theory[4].
Our linguistic modeis P(.S), the prior probability that word is valid. Our independence assumption implies that

T
P(X|S):HP(xi|5i) )
i=1
And
T
Plovz o) = [T P (4)
where
o Z HP(SZ‘JJZ) . M )
(8182-..8T) =1 HP(Si)

Ouriconic models denoted by the functiof(s|x) for all symbolss and all character images So we can derivé(S|X), the result
of word recognition informed by both the iconic and linguistic models:

T

P(S|X) = i : HP(sAxi) C—— (6)



Themutual entropyM (P, P') between two distributiod® and P’ is defined as:
M(P,P')=->"P-logP' @

and we apply it to measure the difference or “disagreement” betweedighibutions P(S|X) and P'(S|X), where P(S|X) is thea
posteriorprobability distribution of the character strirfygiven the image of the whole worH, andP'(S|X) = P(si]z1) - P(s2|z2) -

-+« P(sr|z7) is the distribution of the character string assuming that there is no linguisttrearts or the distributions of individual
characters are independent of one another. [10] and [9] utilizes #asumement to guide the model adaptation automatically to improve
the models.

2.3. Incorporating Rich Linguistic Model For Post-Processing

After we get the word-level interpretatidi(S| X ), we may post-proced3(S| X) to get the final interpretation of each waR{ S| X, X)
using passage-level contexts, whateepresents the whole passage’s word images.

We denote the prior distribution of word occurrence in the passadk @). For a givenSy, the valueP; (So) indicates the frequency
of occurrence of the entr§, in the corpus P, (.S) can be obtained beforehand from a large corpus, where the statisticsdbccurrence
is stable.

The word recognition resulP(S|X) obtained from Equation 6 is not good enough because the prior worgtreace distribu-
tion Ps(S) - a passage-level information - is not incorporated. It is often the tegesome unusual words frequently appear on the
top choices of the candidate lists in the word recognition results. Therdferaverage distribution of the word recognition results

norm ( Z P(S|X)> ! differs largely from the prior word distributioR; (S| X), which tends to cause poor accuracy R(S|X).
Xex
In regarding to this problem, our post-process technique takes the661X), X € X'} asinput, and produces the §ét(S| X, X)| X € X}

as output, which conforms to this constraint:
Jlim P(S]X) = Py(S) (8)

WhereN denotes the total number of the words in the passage. and

P(S|X) =norm "~ P(S|X, X) )
Xex
>xex P(SIX, X)
S5 ~ (10)

Generally, the step fron?(S|X) to a new distribution?’ (S| X) should follow this regularity: for any,52 and X1, Xo,

P(S1|X1)/P'(S2|X1) _ P'(S1]X5)/P'(S5|X5) 1)
P(Si11X1)/P(S2|X1)  P(51]X2)/P(S2|X2)

Which means during the transform froR(S|X) to P'(S|X), we process every worldl in the passage consistently: the scaling changes
on any two words’ probability ratios are the same forlfrom P(S|X) to P’(S|X). With this assumption, there exists one and only
one vectorJ that satisfies:

(12)

P'(S|X) = norm(P(S|X) - diagJ),¥X € X
J=normJ

Where thediag operator means to transform a vector into a diagonal matrix whose dibglmments equal the vector®2(S|X) is a
horizontal vector, which is right multiplied by a diagonal mauliag./, producing another horizontal vector.
In order to get the final word recognition res#{.S| X, X'), we need to find some propds so that

P(S|X,X) =norm(P(S|X) - diagJo) (13)

provided thatP(S| X, X) satisfies the constraint of equation 8.
We can turn this problem into an optimization problem:
P/(S|X
J° = arg m]in max P(s1X) (14)

Py (S)

1The definition of the operatarorm is as follows:norm(V) = v wherel = [1,1,-- -, 1], with the same dimension &5.



Where

P’(S|X) =norm » " norm(P(S|X) - diag.) (15)
Xex

P;(S) doesn't appear in an earlier stage as in formulae 5 and 6 be¢3fg the true-or-false information of a stringj, is more
important and effective on detecting the disagreements between the imodi and the linguistic model on the level of a single word.
The frequency informatiot®; (.S) is useful at a stage that the individual word recognition results are @otain

3. Experimental Design

The principal goals of the work reported here is to test how much thegsosess technique enhances the existing word recognition
results produced by the whole-book recognition. As a result, we neeestide the whole-book recognition’s workflow plus the design
of the post-process algorithm.

In the experiment reported here (using ME2.0), model adaptatiorepds by a sequence epochs In one epoch, every word in
the passage is examined: its top-choice word interpretation (resultingtfr@rurrent models) assigns a character class kahel each
characterz; in the word. Among these, the algorithm chooses the @ait sx) with the highest character-scale disagreement within
the word, then attempts to adapt the iconic model for character glasg picking one of its templates at random and replacing it with
x+. This attempted adaptation is evaluated, and may be acceptedasgeetion or undone and discarded. Thus the total number of
adaptations attempted in an epoch equals the number of words in the ggaasedgs in general larger than the number of corrections
accepted. Evaluating an attempted adaptation is accomplished, within oretib@ldramework, by recomputing the passage-scale mutual
entropy due to the adaptation: if it decreases, the adaptation is accepted.

In these experiments, we use page images plus an imperfect OCRipafts®ne of the books (“Popular Tales of the West Highlands™)
in the publicly released Google Book Search Dataset. In this book, egehcpatains roughly 350 words, and we use up to 50 pages on
the experiments in this paper. We used this OCR transcript to performsegrdentation alignment, and we proofread the transcript and
the alignment manually.

We initialized the iconic model from a short passage, yielding a low initalraogwof sixty percent words correct and fifty-five percent
characters correct. The linguistic model was initialized with the 4073 woedardng in 50 pages’ groundtruth: thus it is a “perfect
lexicon” for the 50 pages, and a superset for smaller passage le(ifitls contrasts with our previous papers, where the linguistic model
was initialized from a public-domain dictionary containing 50,000 words kvigici not fully cover the test set.) The joint recognition
results from these initialized models yielded an approximately 25% charoterate, and we runs the whole book recognition algorithm
to get improved results for each experiment.

Our new post-process algorithm is as follows. TRg.S), the prior word occurrence distribution, is estimated using the 50 pages’
groundtruth words. After the adaptation, we recompute the 50 pagasttipt, keeping the word choices with top five probability values
for each word, and taking the rest as zeroes, which is a good apgtieinto P(S|X). The J vector in formula 14 is initialized with
a uniform distribution, and an initial average transformed distribuR6(S|X’) is computed through formula 15. And our post-process
stage consists of multiple iterations: in each iteration, it findsStheith the maximalP’(So|.X') / P¢(So), and adjust the value of(Sy)
to make theP’(So|X')/ Pr(So) approachl.0. We use at least 100 iterations in total, and the longer the passage is, théerations we
use. This is a greedy hill-climbing approach that is not guaranteed tovachiglobal optimum, but it is effective in practice, as we show
next.

4. Experimental Results

The principal experimental result is that word or character erroffafleas a function of the passage length of the transcripts operated
upon by our post-processing algorithm. In Figure 1, the star (*) sspris word error rates on the input of the algorithm, and the cross
(+) represents word error rates on its output. The horizontal axisdgaslength in pages) and the vertical axis (word error rate) are
displayed in log scale. Likewise, in Figure 2, the data points are charaoterates from the algorithm’s input and output respectively.
In experiments of Figure 1 and 2, the input of the algorithm is producetidoywhole-book recognition algorithm operated on 50 pages.
Passage lengthsinclude 1, 2, 3, 4,5, 6, 7, 8, 10, 12, 17, 25 angh&fasaly. The 50-page result was computed in a single experiment; the
others, form < 50 pages, were computed as averages %8y/m | experiments on nonoverlapping subsets of pages.

In Figure 1, the post-processing algorithm damages the results on thepslseages, and improves the results on a majority long
passages. The word error rate falls monotonically as the passage ¢eegthip, and achieves the highest gain in the 50-page experiment.
In Figure 2, there are similar phenomema, except the algorithm starts tovienmstead of damage at a longer passage than the word
case. The character error rate improves most in the 50-page experiitom 1.9% to 0.97%. The monotonic trends for the margins of
the improvements may be due to the fact that the longer the passage isprineneaningful the passage-level statistics is, so that the
constraints from the prior word-occurrence distribution is more effeain improving the results.

Figure 3 and 4 show the comparisons between the whole-book recogaigianithm and that combined with the post-processing. Sim-
ilar to Figure 1 and 2, on these two Figures, the stars (*) are error @téisef output transcripts of the whole-book recognition algorithm,
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Table 1. Wrong Recognition Results Corrected Through Post-P

rocessing

GT

Before Post Processing

After Post Processing

1st cand.

2nd cand.

1st cand.

2nd cand.

nud:-32.0321

and:-32.6529

and:-32.6529

nud:-34.4321

end:-25.3238

and:-25.6529

and:-25.6529

end:-30.1238

and 143,981

and:-35.9029

and:-35.9029

nud:-37.3821

nud:-31.3821

and:-32.1029

and:-32.1029

nud:-33.7821

aro:-25.3098

are:-26.0248

are:-26.0248

aro:-28.1098

aro:-22.5098

are:-22.9248

are:-22.9248

aro:-25.3098

ar aro:-24.5598

are:-26.3748

are:-26.3748

aro:-27.3598

aro:-22.7598

are:-24.6248

are:-24.6248

aro:-25.5598

and the crosses (+) are for the output transcripts of the post-progesgorithm. Experiments for Figure 3 and 4 are different from those
for Figure 1 and 2: in Figure 3 and 4, the whole-book recognition’sltesu a certain page range are post-processed correspondingly,
while in Figure 1 and 2, the same output from 50-page whole-book nétimg are post-processed in parts with different passage lengths.

We observe strong correlations between the error rates and the @desgtihs on all the data series. Especially, we see better linear
relationships on the post-processed results. And for the data seriestginpcessing, the trends for reducing the error rates are faster tha
those without post-processing. In Figure 3 and 4, on short passhggsost-processing technique still get improvements, for the input
transcripts’ error rates are high so that they're easier for the posegsing technique to improve.

To get a deeper understanding of why the post-processing technares,\8ee some examples in Table 1. (In this table, the numeric
values are log probability values that are not normalized.) Becausahmaritropy-based model adaptation doesn't distinguish words with
different frequencies, there are often words recognized indtyres an infrequent word in the corpus, which may be corrected with the
prior word-occurrence distribution.

5. Discussion and Conclusions

Our post-processing technique, which attempts to transform the postv@@Rdistributions to match a prior word-occurrence dis-
tribution, is shown to be effective for enhancing the whole-book reitiogr's results. We have shown that the longer the passage this
post-processing technique operates on, the higher performanci gelvieves. We have also shown the near monotonic trends for im-
proving performance of the enhanced system as the passage lerngdase

Future works may include: (1) incorporating the post-processing irgoyateration of the whole-book recognition algorithm so that
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the constraints from the prior word-occurrence distribution can diredfidctathe model adaptation process, which may yields higher
performance; (2) analyzing how the optimization problem (equation a#gsponds to the increasing word or character accuracy; (3)
analyzing the relationship of the passage length the post-processinigrafgoperates on and its effectiveness. (4) a stopping rule for the
optimization.
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