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ABSTRACT

We prese nt an automatic method for construc ting high-per forma nce pre classifica tion decision
trees for OCR. Good pre classifier s must prune the set of alter native classes to a small number
without err oneously pruning the corr ect class. We build the decision tree using gree dy entropy
minimization, using pseudo-r andomly gener ated training samples der ived from a model of imag-
ing defe cts, and then ‘‘ populate’’ the tree with many more samples to drive down the er ror ra te.
We descr ibe a re fineme nt of the method of [BM94] that approa ches the user- specifie d acc urac y
more closely and thus allows higher pruning. The essential technica l device is a leaf -sele ction
rule based on the Good-Tur ing Theore m [Good53]. Such a prec lassifier , constructe d for a pan-
Europea n polyfont classifie r, attains a 1% err or ra te and a 3.8 pruning fac tor, in tests on synthetic
images. On re al pages printed in ten Europea n languages, the pre classifier sped up the page
rea der by a fa ctor of 2.2, with no mea surable incre ase in er ror.

Keywords: decision tree , classifica tion, char acter rec ogniti on, image def ect models, lear ning, population

1. Introduct ion

Non-bac ktrac king decision tree s promise fast classifica tion. Inf err ing optimal tree s, under var ious mea -
sures, has been shown to be computationally infea sible [Bun87] in the worst ca se. Howeve r, when applied to
OCR problems, suboptimal heuristics often build roughly balanc ed, strongly pruning tree s [CN84,WS87]. Many
such heuristics — including the one we use — have the ser ious prac tical draw back that err or acc umulates rapidly
as the tree deepe ns, when using a training set of fixed size.

We examine the role of decision tree s as pre classifier s in a multi-stage dec ision strategy without backtra ck-
ing. Prec lassifica tion tree s prune the set of classe s to a smaller number: that is, eac h leaf of the tree owns a sub-
set of the classe s. Pruning the true class is an irre cover able err or. True classifier s, able to prune the set of classe s
to a single choice, ar e gener ally slower: when exec uted downstream of the pre classifier , it will be prese nted with
fewe r classe s to be distingui shed and, in our ca se, will run proportionally faste r. Thus a good pre classifier is one
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that rar ely prunes the true class but otherwise prunes as many classes as possible.

It is often possible to construct shallow prec lassification tree s with an ac ceptably low probability of er ror .
In our trials, we build the tree initi ally using a gree dy entropy-minimization heur istic, using as many sample
images as our computing resour ce s comfor tably admit (in this latest trial, 1,066,639 samples) , with a pruning fac -
tor of 9. Tre es as deep and strongly pruning as this usually exhibit unacc eptable er ror: in our ca se, 15% on a dis-
tinct test set.

We have exper imented with massive gener ation of sample images to drive down this er ror ra te by brute
forc e. In an ear ly stage of this rese arc h [Bai93], we built prec lassification tree s that ac hieve an err or ra te of less
than 1.0% and a pruning fa ctor of ×5.2, on polyfont ASCII text printed at type sizes 10 point and higher and at a
spatial sampling rate of 300 pixels/inch (ppi). In [BM94], we descr ibed a re finement that guara ntees any user-
specifie d upper bound on the er ror rate . Viewing the decision tree as a black box, this applied a statistically moti-
vated stopping rule which in prac tice was rathe r conser vative, achieving 1/7 the targe t er ror.

We now descr ibe an alterna tive method that achie ves the user- specif ied er ror bound more tightl y and thus
improves the pruning rate of the re sultin g tree . The method exploits the structure of the tree and does not re quire
a stopping rule.

We descr ibe the engineer ing context in Section 2, and the der ivation of a leaf -se lection rule in Section 3.
Experimental trials, on both synthetic and re al images, are descr ibed in Section 4. Section 5 contains conclusions
and discussion.

2. The Engineering Context

We now briefly sketch the engineer ing context of this work, including the application, the source of image
samples, fea tures and classifier s, binary decision trees, and building and testing the tree s.

2.1. The Application

The context of this ef fort was a projec t to build a classifie r subsystem for a fa mily of machine- print page
rea der s for ten Europe an languages [BGI 94]. This re quired disting uishing 209 char ac ter symbols (all of ASCII
and Latin-1, plus a fe w Turkish symbols), in 20 typefac es, over the range of type sizes 8-12 point (at 300 ppi).

2.2. Image Samples

We used a quantitative model of imaging def ects [Bai92] with par ameter s for type size, spatial sampling
rate (digitizing resolution), blur, binarization threshold, pixel sensitivity var iations, jitter, skew, stretching, height
above baseline, and ker ning. Associated with it is a pseudo-r andom def ect gener ator that re ads one or more sam-
ple images of a symbol — in this trial, these ar e high-resolution noiseless artwor k purcha sed fr om typefa ce man-
ufac turer s — and writes an ar bitrarily large number of distorted versions exhibitin g a user -spec ified distributi on
over the model par ameter s. These distributi ons have been roughly calibra ted on image populations occ urring in
printed books and typewritten documents. During training, including tree -building, we use only synthetic images.
We test on both synthetic data (f or consistency chec king and debugging) and on rea l data fr om printed and
scanne d paper documents.

2.3. Feat ures and Classification

The classifier technology used here is descr ibed in [Bai88]. Brief ly, it extra cts local geometric shapes fr om
the input image of an isolated symbol, maps this diverse collection of shapes into a fea ture vector with binary
components. This binary fe ature vector is designed to be insensitive to location and type size; the prec lassifier
will examine only this vector. From a training set labeled with true class, type size, etc, we infer a single-stage
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Bayesian classifier under an assumption of class- conditional independenc e among the fea tures. This is the
‘‘ma in’’ classifier for which we need a pre classifier . Its runtime is O( C (F + logC) ), where C is the number of
classes to be distingu ished at runtime, and F the number of binary fe ature s.

In this trial, C = 4032 classes (one for eac h <typefac e, symbol> pair for which we have ar twork), and
F = 704 fea tures.

2.4. Dec ision Tree s

At eac h node of our decision tree s, a single fe ature is tested. Thus these ar e binary decision tree s. Eac h
leaf of the tree contains a subset of the classes. An input image, repr ese nted by its fe ature vector, is said to be
corr ec tly prec lassified if the leaf it ar rives at contains its true class.

2.5. Build ing a Tree

The tree -grow ing heuristic is to exec ute a sequence of splits (<leaf, fea ture> pairs) until a stated pruning fa c-
tor is re ache d. At ea ch step, examine all possible next splits and choose the one which most decr ease s the
expec ted entropy of the tree . The tree ’s expec ted entropy and pruning fac tor are estimated on the assumption that
the distributi on of the training data is re prese ntative: this depends on the validity of the image def ect model. The
method is gree dy, with no look-ahea d: multipl e splits are not examined at ea ch step.

Even with the short-c uts of this sub-optimal heuristic, the large sca le of our problem strained our computing
resour ces. We use a Sili con Gra phics Computer Systems Challenge XL, with 150 MHz R4.4k proce ssors, run-
ning time-shar ed UNIX. In order for the progra m to terminate in re asonable time, it was nece ssar y throughout
the tree -building phase to hold in main memory all training data and the growing tree itself. As a result, the num-
ber of training samples was eff ectively limited to about a milli on: prec isely, 1,066,639, or 3/4 of the number
used to build the Bayesian classifier . After 32.5 CPU hours of tree -gr owing, the pruning fa ctor re ache d ×9. The
×9 tree contained 932 decision nodes and 933 leaves. Befor e the pruning fac tor could re ach ×10, the size of the
running proce ss exce eded 512 Mbytes, a har d system limit, and the run terminated abnorma lly.

2.6. Testing the Tree

The tree s are perf ec t on the training set by construction. Testing on a distinct set of 1,030,000 synthetic
samples reve aled a 15% er ror ra te (1000 for ea ch <typefac e, size,symbol> triple for the single typefac e Avant
Garde -Book Oblique and the five integer type sizes 8-12 point). In the same test, the pruning fac tor was mea -
sured as ×9.3, slightl y higher than on the training data.

2.7. Populating the Trees

In ‘‘population’’ of the tree , we use a sample set distinct fr om the training set to change the contents of the
leaves without changing the structure of the decision nodes. We first empty the contents of the leave s (throwing
away the class sets left over fr om the training data). Then, we gener ate a large number of distinct population
samples N (10000 for ea ch <typefac e, symbol> pair) and assign them to the leaves, counting the number assigned
to ea ch leaf . Finally, we selec t a subset of the leave s and mar k them with the symbol class, in order to ac hieve as
near ly as possible the desired er ror ra te.
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3. A Leaf- Select ion Rule

Consider a single symbol class. Given sample-oc cur renc e counts at the leave s, we wish to select the small-
est possible number of leave s to be marke d with this class. Formally, let p i denote the probability that a sample
(fr om this class) is assigned to leaf i. In our application n = 933 and there are ver y many small p’s. The problem
is to identify a set S of leaves, with Sas small as possible, such that the total probability content of the leaves in
S is close to a given target t (ac tually t = .99). If we knew the p’s, we would simply sort them and take the larg-
est ones first; but if only sample data is available it is not clear how to proc eed. We have considere d both
sequential and non-seque ntial ver sions of the problem. In the simplest sequential ver sion, discussed in [BM94],
we want a stopping rule such that when we stop, the total probability of the leave s that have been visited is close
to the target t. In a modified sequential ver sion, we allow sampling to proce ed fur ther than this, and apply
some selec tion rule to decide which leaves to include in S. In a non-seque ntial version, we simply use knowl-
edge of the structure of the tree to choose a sample size N.

We have not see n any previous attack on this problem. Good [Good53], following up an observa tion by
Turing, showed that af ter N case s have been proce ssed, giving for eac h k a number N k of leaves that have been
visited exac tly k times, then the total probability of the leaves that have been seen exac tly k times can be esti-
mated by (k + 1 ) N k + 1 / N. We prove this result below. This re sult suggests a proce dure for the non-seque ntial
version of the problem, i.e. when the number of test case s N is fixed, but does not immediately help in asse ssing
the expec ted perf ormanc e of the proce dure .

In our application, it see ms that as sampling proc eeds, the sum of the probabilities of the leaves that have
been visited (at least once) incre ases along a roughly exponential curve . We suggest a simple one-pa rame ter
model that has this fe ature . Simulatio n suggests that the re sultin g proce dure works well in our application.

3.1. The Good-Turing theor em

We use the notation set up above. Fix N, and suppose we run N test case s. Let Z j be the number of ca ses
that are assigned to leaf i. Let B k be the set of leaves that are ea ch hit exac tly k times:

B k = { i:Z i = k}

The true probability content of this set of leaves is

P k =
j∈B k

Σ p j

The expec tation of this is

E(P k ) =
j

Σ p j

k
N

pj
k ( 1 − p j ) N − k

However the empirica l cover age of this set of leaves is Q k = kB k / N, which has expec tation

E(Q k ) =
N
k

j
Σ 

k
N

pj
k ( 1 − p j ) N − k

so that we have

E(Q k + 1 ) ∼∼ E(P k )

If we denote the number of test case s by a supersc ript, we have exac tly

E(Qk + 1
(N + 1 ) ) = E(Pk

(N) ) .
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3.2. The Dirichlet model.

Suppose a sequenc e of m test case s is observe d. We descr ibe the re alization by the notation

C 1 ,Y 11 ,C 2 ,Y 21 ,Y 22 ,C 3 ,Y 31 ,Y 32 ,Y 33 , . . . ,Y KK (1)

where C 1 is the index of the first leaf to be visited, Y 1 is the number of times this leaf is re peated befor e a diffe r-
ent leaf is seen, C 2 is the index of the second leaf to be visited, Y 11 is the number of hits on the first leaf betwee n
the first time the second leaf is seen and the first time a third leaf is seen, Y 22 is the number of times the second
leaf is seen befor e a third leaf appea rs, and so on; Y i j is the number of times the j-th leaf that appea rs is seen
between the times the i-th and i + 1-th leaves appea r. The number of diffe re nt leave s that ar e ever seen is K,
which is a ra ndom variable . The probability of this re alization is

pC 1

Y + 1 pC 2

Y + 2 . . . pK
Y KK

where Y + j =
i = j
Σ
K

Y i j .

Since we do not know the p’s, we will assume they have a prior distributi on. It is ver y convenient to make
this symmetric, since then in our analysis we will not need to keep trac k of the identiti es of the various leaves.
There is no loss of gener ality in this assumption if we re label the leave s arbitra rily. We postulate a Dirichlet dis-
tribution with para meter s n, α for the n unknown ce ll-probabilities p i , i.e.

f (p 1 , . . . p n ) = c n (α) p1
α − 1p2

α − 1 . . . pn
α − 1

where the constant c n (α) is Γ (nα) /Γ (α) n . This distributi on is well-known to have some ver y elega nt proper -
ties, in particular : the joint distributi on of (p 1 , ... ,p j ), conditional on their sum s = p 1 + . . . + p j , is the same at
that of sr 1 , . . . ,sr j where the joint distribution of r 1 , . . . ,r j is Dirichlet with para meter s j ,α.

Assuming this prior, we ca n write down the joint probability density for the event that
K = k ,p C 1

= p 1 ,p C 2
= p 2 , . . . p C k

= p k , and the obser vations ar e as in eq (1) above:

p1
α + Y + 1 − 1

p2
α + Y + 2 − 1 . . . ( 1 − p 1 − . . . − p k )(n − k) α − 1

Let cumP k =
j = 0
Σ
k

P j . Then for the Dirichlet prior, the posterior distributio n of cumP k is simply beta with para me-

ters

K − 1 ,nα + N − K − 1

where

K =
j = 0
Σ
k

(α + j) B k 

which is just what it would be if we started with a uniform prior for cumP k , exec uted nα + N binomial trials with
succe ss probability cumP k , and observe d K succe sses. Thus we may use the usual binomial for mula for the for
the varianc e of the estimate cumPˆ

k of cumP k , namely

var (cumPˆ
k ) = cumPˆ

k ( 1 − cumPˆ
k ) / N

We may expec t this result to be a good approximation for both sequential and non-sequential proce dures, pro-
vided we use a suitable smoothing proce dure to interpolate betwee n integer values of k. We choose to estimate
P k by a weighted straight-line smooth of Q k + 1 , with the weights depending on the var iances of the individu al
Q k’s. Then we sum to get an estimate cumPˆ

k and estimate the (r eal- valued) cutoff k so that cumPˆ
k = 0. 99. If
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k = n + f with n an integer, we mark all the leaves in the sets B 0 , . . . B n and a ra ndom fr action f of the leaves in
B n + 1 .

4. Experiment al Trials

In these trials (and in [BM94]), the acc ura cy target t = 0. 99. We populated tree s for ea ch of 186† symbols
of a pan-E uropea n Latin alphabet, in ea ch of ten typefac es (see [BGI 94]). Thus we applied the population rule
separ ately to ea ch of 1860 <typefac e, symbol> pairs, letting type size vary during sampling ra ndomly uniformly in
the interval [7. 5,12.5] point. Eac h of the re sulting tree s is spec ific to a <typefac e, symbol> pair. For eac h type-
fac e, we then mer ged all their symbols’ tree s into one by computing the set union of their leaf contents, giving a
tree populated for the entire typefa ce. Eac h of these typefac e- specific tree s was then tested using a distinct set of
synthetic images from that typefa ce.

In compar ing our re sults with [BM94], we expec t that the err or ra te of the tree , for eac h <typefac e, symbol>
will be ∼∼ 1.0%, rather than a small fr action of it. Since the minimum number of leaves is chosen, consistent
with this targe t, we expec t the pruning fa ctor to be higher. We also hope — but at our cur rent state of under-
standing we cannot ensure — that the number of samples re quired will be less.

The re sults on a typical typefac e, Avant Gar de-Book Oblique, are as follows. The stopping-rule method of
population descr ibed in [BM94] re quired 8,161,999 samples to populate the tree When tested on a distinct set of
1,005,000 synthetic samples (1000 for ea ch <typefac e, size,symbol> triple for the five sizes 8-12), the er ror ra te
was measur ed to be 0.15%, about 1/7th of the targe t. The pruning fa ctor on the same test data is ×2.58.

In applying the prese nt leaf -se lection method, we chose to gener ate N = 10000 samples for eac h
<typefac e, symbol> pair, so 1,860,000 samples wer e used altogether to populate the tree . When tested on the
same 1,005,000 samples used above, the tree ’s er ror rate was measur ed to be 1.05%, close to the targe t of 1.0%.
The tree ’s ef fec tive pruning fa ctor was ×3.83.

The superiority of the leaf -selec tion method over the stopping-rule method is clear . It achieve s the user-
specifie d er ror targe t more closely, improves the pruning fa ctor of the tree , and, at least in these tests, does not
require as many population samples to be gener ated.

We also tested on ‘‘r eal’ ’ data. Six hundred pages wer e printed and then scanne d (at 400ppi) containing
text in eac h of ten Europe an languages, twenty typefac es, and three type sizes (8, 10, and 12 point). The ten
typefac e- specific tree s wer e merge d into a single tree . The test exer cised not only the prec lassifier and classifier ,
but other stages of the complete page re ader including geometric layout analysis, shape- directe d re segmentation,
and contextual analysis (both typographic and linguist ic, specific to eac h language) .

The re sults, aver aged over all 600 pages, wer e that the page re ader as a whole (not mer ely the classifica tion
stage) was sped up by a fa ctor of 2.2. Accur acy was unaff ected: ac tually, an improvement of 0.02% was mea -
sured, which is not significant at 95% statistical confidenc e. The lack of extra err or is perha ps surprising in light
of the fac t that our err or targe t was fully 1.0 per cent. One possible explanation is that our image def ect model is
pessimistic in the sense that it gener ates a superse t of the def ects that occur in our printing/scanning apar atus.

† For these tests, we used a subset of the original 209 symbols for which artwork existed in all of the type-
faces. The omitted symbols are rare punctuation which do not occur in the European text used in the tests
(described below) on real printed pages.
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5. Discussion

We have descr ibed a method for automatic construction of prec lassifica tion dec ision tree s for OCR that
closely achieve a user -spec ified target for the extra er ror that they contribute to a multi-stage decision proce dure .
The essential technical device is a leaf -sele ction rule for tree -population, based on the Good-Tur ing Theor em
(1953). Compared to a previously descr ibed stopping-rule proc edure , this method improves (in fac t, it maxi-
mizes) the pruning fac tor consistent with the given err or targe t. In large scale trials on ac tual printed pages, a
prec lassification tree built in this way sped up the entire page re ader by better than a fac tor of two without con-
tributing any measur able extra err or.

These re sults suggest that our methodology, which is somewha t controver sial due to its total relianc e on
synthetic training data, has passed a significant test of its rele vance to prac tice.

There rema in sever al interesting open questions. The fa ct that N = 10000 samples per <typefac e, symbol>
pair produce d good results is alre ady an improvement over [BM94]: perha ps fur ther improvements ar e possible.
More prec isely, what is the minimum number of synthetically gener ated image samples require d for population
that will ensure that the varia nce of the er ror is bounded to within a user- specif ied limits ? We optimize eac h
<typefac e, symbol>-spec ific tree separ ately and then mer ge them: can we do better by attempting to optimi ze the
merge d tree ? Is there some way to improve on our method for constructing the decision nodes of the tree ?
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