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ABSTRACT

We present an automatic method for constructing high-performance preclassification decision
trees for OCR. Good preclassifiers must prune the set of aternative classes to a small number
without erroneously pruning the correct class. We build the decision tree using greedy entropy
minimization, using pseudo-randomly generated training samples derived from a model of imag-
ing defects, and then *‘populate’” the tree with many more samples to drive down the error rate.
We describe a refinement of the method of [BM94] that approaches the user-specified accuracy
more closely and thus allows higher pruning. The essential technical device is a leaf-selection
rule based on the Good-Turing Theorem [Good53]. Such a preclassifier, constructed for a pan-
European polyfont classifier, attains a 1% error rate and a 3.8 pruning factor, in tests on synthetic
images. On real pages printed in ten European languages, the preclassifier sped up the page
reader by afactor of 2.2, with no measurable increase in error.
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1. Introduction

Non-backtracking decision trees promise fast classification. Inferring optimal trees, under various mea-
sures, has been shown to be computationally infeasible [Bun87] in the worst case. However, when applied to
OCR problems, suboptimal heuristics often build roughly balanced, strongly pruning trees [CN84,WS87]. Many
such heuristics — including the one we use — have the serious practical drawback that error accumulates rapidly
as the tree deepens, when using a training set of fixed size.

We examine the role of decision trees as preclassifiers in a multi-stage decision strategy without backtrack-
ing. Preclassification trees prune the set of classes to a smaller number: that is, each leaf of the tree owns a sub-
set of the classes. Pruning the true class is an irrecoverable error. True classifiers, able to prune the set of classes
to a single choice, are generally slower: when executed downstream of the preclassifier, it will be presented with
fewer classes to be distinguished and, in our case, will run proportionally faster. Thus a good preclassifier is one
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that rarely prunes the true class but otherwise prunes as many classes as possible.

It is often possible to construct shallow preclassification trees with an acceptably low probability of error.
In our trials, we build the tree initially using a greedy entropy-minimization heuristic, using as many sample
images as our computing resources comfortably admit (in thislatest trial, 1,066,639 samples), with a pruning fac-
tor of 9. Trees as deep and strongly pruning as this usually exhibit unacceptable error: in our case, 15% on adis-
tinct test set.

We have experimented with massive generation of sample images to drive down this error rate by brute
force. In an early stage of thisresearch [Bai93], we built preclassification trees that achieve an error rate of less
than 1.0% and a pruning factor of x5.2, on polyfont ASCII text printed at type sizes 10 point and higher and at a
spatial sampling rate of 300 pixelsfinch (ppi). In [BM94], we described a refinement that guarantees any user-
specified upper bound on the error rate. Viewing the decision tree as a black box, this applied a statistically moti-
vated stopping rule which in practice was rather conservative, achieving 1/7 the target error.

We now describe an alternative method that achieves the user-specified error bound more tightly and thus
improves the pruning rate of the resulting tree. The method exploits the structure of the tree and does not require
a stopping rule.

We describe the engineering context in Section 2, and the derivation of a leaf-selection rule in Section 3.
Experimental trials, on both synthetic and real images, are described in Section 4. Section 5 contains conclusions
and discussion.

2. The Engineering Context

We now briefly sketch the engineering context of this work, including the application, the source of image
samples, features and classifiers, binary decision trees, and building and testing the trees.

2.1. The Application

The context of this effort was a project to build a classifier subsystem for a family of machine-print page
readers for ten European languages [BGI94]. This required distinguishing 209 character symbols (all of ASCII
and Latin-1, plus afew Turkish symbols), in 20 typefaces, over the range of type sizes 8-12 point (at 300 ppi).

2.2. Image Samples

We used a quantitative model of imaging defects [Bai92] with parameters for type size, spatial sampling
rate (digitizing resolution), blur, binarization threshold, pixel sensitivity variations, jitter, skew, stretching, height
above baseline, and kerning. Associated with it is a pseudo-random defect generator that reads one or more sam-
ple images of a symbol — in thistrial, these are high-resolution noiseless artwork purchased from typeface man-
ufacturers — and writes an arbitrarily large number of distorted versions exhibiting a user-specified distribution
over the model parameters. These distributions have been roughly calibrated on image populations occurring in
printed books and typewritten documents. During training, including tree-building, we use only synthetic images.
We test on both synthetic data (for consistency checking and debugging) and on real data from printed and
scanned paper documents.

2.3. Features and Classification

The classifier technology used here is described in [Bai88]. Briefly, it extracts local geometric shapes from
the input image of an isolated symbol, maps this diverse collection of shapes into a feature vector with binary
components. This binary feature vector is designed to be insensitive to location and type size; the preclassifier
will examine only this vector. From atraining set labeled with true class, type size, etc, we infer a single-stage



Bayesian classifier under an assumption of class-conditiona independence among the features. This is the
““main’’ classifier for which we need a preclassifier. Itsruntimeis O( C (F +1ogC) ), where C is the number of
classes to be distinguished at runtime, and F the number of binary features.

In this trial, C = 4032 classes (one for each <typeface,symbol> pair for which we have artwork), and
F = 704 features.

2.4. Decision Trees

At each node of our decision trees, a single feature is tested. Thus these are binary decision trees. Each
leaf of the tree contains a subset of the classes. An input image, represented by its feature vector, is said to be
correctly preclassified if the leaf it arrives at containsits true class.

2.5. BuildingaTree

The tree-growing heuristic is to execute a sequence of splits (<leaf feature> pairs) until a stated pruning fac-
tor is reached. At each step, examine all possible next splits and choose the one which most decreases the
expected entropy of thetree. Thetree' s expected entropy and pruning factor are estimated on the assumption that
the distribution of the training data is representative: this depends on the validity of the image defect model. The
method is greedy, with no look-ahead: multiple splits are not examined at each step.

Even with the short-cuts of this sub-optimal heuristic, the large scale of our problem strained our computing
resources. We use a Silicon Graphics Computer Systems Challenge XL, with 150 MHz R4.4k processors, run-
ning time-shared UNIX. In order for the program to terminate in reasonable time, it was necessary throughout
the tree-building phase to hold in main memory all training data and the growing tree itself. Asaresult, the num-
ber of training samples was effectively limited to about a million: precisely, 1,066,639, or 3/4 of the number
used to build the Bayesian classifier. After 32.5 CPU hours of tree-growing, the pruning factor reached x9. The
x9 tree contained 932 decision nodes and 933 leaves. Before the pruning factor could reach x10, the size of the
running process exceeded 512 Mbytes, a hard system limit, and the run terminated abnormally.

2.6. TestingtheTree

The trees are perfect on the training set by construction. Testing on a distinct set of 1,030,000 synthetic
samples revealed a 15% error rate (1000 for each <typeface,size,symbol> triple for the single typeface Avant
Garde-Book Oblique and the five integer type sizes 8-12 point). In the same test, the pruning factor was mea-
sured as x9.3, dlightly higher than on the training data.

2.7. Populatingthe Trees

In‘‘population’ of the tree, we use a sample set distinct from the training set to change the contents of the
leaves without changing the structure of the decision nodes. We first empty the contents of the leaves (throwing
away the class sets left over from the training data). Then, we generate a large number of distinct population
samples N (10000 for each <typeface,symbol> pair) and assign them to the leaves, counting the number assigned
to each leaf. Finally, we select a subset of the leaves and mark them with the symbol class, in order to achieve as
nearly as possible the desired error rate.



3. A Leaf-Selection Rule

Consider a single symbol class. Given sample-occurrence counts at the leaves, we wish to select the small-
est possible number of leaves to be marked with this class. Formally, let p; denote the probability that a sample
(from this class) isassigned to leaf i. In our application n = 933 and there are very many small p's. The problem
isto identify a set Sof leaves, with [S[&s small as possible, such that the total probability content of the leavesin
Siscloseto agiven target t (actualy t =.99). If we knew the p’s, we would simply sort them and take the larg-
est ones first; but if only sample data is available it is not clear how to proceed. We have considered both
sequential and non-sequential versions of the problem.  In the simplest sequential version, discussed in [BM94],
we want a stopping rule such that when we stop, the total probability of the leaves that have been visited is close
to the target t.  In a modified sequential version, we allow sampling to proceed further than this, and apply
some selection rule to decide which leaves to include in S In a non-sequential version, we ssimply use know!-
edge of the structure of the tree to choose a sample size N.

We have not seen any previous attack on this problem. Good [Good53], following up an observation by
Turing, showed that after N cases have been processed, giving for each k a number Ny of leaves that have been
visited exactly k times, then the total probability of the leaves that have been seen exactly k times can be esti-
mated by (k+ 1) N, 1/N.  We prove this result below. This result suggests a procedure for the non-sequential
version of the problem, i.e. when the number of test cases N is fixed, but does not immediately help in assessing
the expected performance of the procedure.

In our application, it seems that as sampling proceeds, the sum of the probabilities of the leaves that have
been visited (at least once) increases along a roughly exponential curve. We suggest a simple one-parameter
model that has this feature. Simulation suggests that the resulting procedure works well in our application.

3.1. The Good-Turingtheorem

We use the notation set up above. Fix N, and suppose we run N test cases. Let Z; be the number of cases
that are assigned to leaf i. Let By bethe set of leaves that are each hit exactly k times:

Bx= { i Zi= k}
The true probability content of this set of leavesis

Px= 2 P

jOBk

The expectation of thisis
E(PQ)= 3 Py Pl (1PN
i
However the empirical coverage of this set of leavesis Q= k[ Bk [IN, which has expectation
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If we denote the number of test cases by a superscript, we have exactly

E(QNLY)=E(PPY).
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3.2. TheDirichlet model.
Suppose a sequence of mtest cases is observed. We describe the realization by the notation

C11Y11!CZ’Y211Y22!C3!Y311Y32!Y33! e 1YKK (1)

where C, isthe index of the first leaf to be visited, Y, isthe number of times thisleaf isrepeated before a differ-
ent leaf isseen, C, isthe index of the second leaf to be visited, Y, isthe number of hits on thefirst leaf between
the first time the second leaf is seen and the first time a third leaf is seen, Y, isthe number of times the second
leaf is seen before a third leaf appears, and so on; Y;; is the number of times the j-th leaf that appears is seen
between the times the i-th and i + 1-th leaves appear. The number of different leaves that are ever seen is K,
which isarandom variable. The probability of thisrealization is

Yi1 Yi2 Yk
Pc, Pc,” ' Pk

K
WhereY+J- = z Y”
i=j

Since we do not know the p's, we will assume they have a prior distribution. It isvery convenient to make
this symmetric, since then in our analysis we will not need to keep track of the identities of the various leaves.
There is no loss of generality in this assumption if we relabel the leaves arbitrarily. We postulate a Dirichlet dis-
tribution with parameters n, a for the n unknown cell-probabilities p;, i.e.

f(p1, - - Pn) = Ca(a)pf—1pf-1---pa-1

where the constant ¢, (o) isT (na)/TI" (a)". This distribution is well-known to have some very elegant proper-
ties, in particular: the joint distribution of (p4,...,p;), conditiona on their sums=p;+ --- +p;, isthe same at
that of s, - - - ,5rj where the joint distributionof r ¢, - - - ,r; is Dirichlet with parametersj,a.
Assuming this prior, we can write down the joint probability density for the event that
K=K,pc, =P1,Pc,=P2, - - - Pc, = Pk, ad the observationsare asin eq (1) above:
a+Ye1—-1 a+Yeo—-1

p1 P2 o (A=py= e mp) TR

k

Let cumP, = % P;. Then for the Dirichlet prior, the posterior distribution of cumP, is simply beta with parame-
j=0

ters

K=-1,na+N-K-1
where
k -
K= 3 (a+)) B0
j=0

which is just what it would be if we started with a uniform prior for cumP, executed na + N binomial trials with
success probability cumPy, and observed K successes. Thus we may use the usua binomial formula for the for
the variance of the estimate cumP of cumP, namely

var(chnPk) = chnPk(l—chnPk)/N

We may expect this result to be a good approximation for both sequential and non-sequential procedures, pro-
vided we use a suitable smoothing procedure to interpolate between integer values of k. We choose to estimate
Py by a weighted straight-line smooth of Q. 1, with the weights depending on the variances of the individual
Qk’s. Then we sum to get an estimate cumP and estimate the (real-valued) cutoff k so that cumP, = 0.99. If



k=n+ f with n an integer, we mark all the leaves in the sets By, - - - B, and a random fraction f of the leavesin
Bn+1.

4. Experimental Trials

In these trials (and in [BM94]), the accuracy target t = 0.99. We populated trees for each of 1861 symbols
of a pan-European Latin alphabet, in each of ten typefaces (see [BGI94]). Thus we applied the population rule
separately to each of 1860 <typeface,symbol> pairs, letting type size vary during sampling randomly uniformly in
the interval [7.5,12.5] point. Each of the resulting trees is specific to a <typeface,symbol> pair. For each type-
face, we then merged all their symbols' trees into one by computing the set union of their leaf contents, giving a
tree populated for the entire typeface. Each of these typeface-specific trees was then tested using a distinct set of
synthetic images from that typeface.

In comparing our results with [BM94], we expect that the error rate of the tree, for each <typeface,symbol>
will be B 1.0%, rather than a small fraction of it. Since the minimum number of leaves is chosen, consistent
with this target, we expect the pruning factor to be higher. We also hope — but at our current state of under-
standing we cannot ensure — that the number of samples required will be less.

The results on atypical typeface, Avant Garde-Book Oblique, are as follows. The stopping-rule method of
population described in [BM94] required 8,161,999 samples to populate the tree When tested on a distinct set of
1,005,000 synthetic samples (1000 for each <typeface,size,symbol> triple for the five sizes 8-12), the error rate
was measured to be 0.15%, about 1/7th of the target. The pruning factor on the same test data is x2.58.

In applying the present leaf-selection method, we chose to generate N =10000 samples for each
<typeface,symbol> pair, so 1,860,000 samples were used atogether to populate the tree. When tested on the
same 1,005,000 samples used above, the tree’s error rate was measured to be 1.05%, close to the target of 1.0%.
Thetree’s effective pruning factor was x3.83.

The superiority of the leaf-selection method over the stopping-rule method is clear. It achieves the user-
specified error target more closely, improves the pruning factor of the tree, and, at least in these tests, does not
reguire as many population samples to be generated.

We also tested on ‘‘red’’ data. Six hundred pages were printed and then scanned (at 400ppi) containing
text in each of ten European languages, twenty typefaces, and three type sizes (8, 10, and 12 point). The ten
typeface-specific trees were merged into a single tree. The test exercised not only the preclassifier and classifier,
but other stages of the complete page reader including geometric layout analysis, shape-directed resegmentation,
and contextual analysis (both typographic and linguistic, specific to each language).

Theresults, averaged over all 600 pages, were that the page reader as a whole (not merely the classification
stage) was sped up by afactor of 2.2. Accuracy was unaffected: actualy, an improvement of 0.02% was mea-
sured, which is not significant at 95% statistical confidence. The lack of extra error is perhaps surprising in light
of the fact that our error target was fully 1.0 per cent. One possible explanation is that our image defect model is
pessimistic in the sense that it generates a superset of the defects that occur in our printing/scanning aparatus.

T For these tests, we used a subset of the original 209 symbols for which artwork existed in al of the type-
faces. The omitted symbols are rare punctuation which do not occur in the European text used in the tests
(described below) on real printed pages.



5. Discussion

We have described a method for automatic construction of preclassification decision trees for OCR that
closely achieve a user-specified target for the extra error that they contribute to a multi-stage decision procedure.
The essential technical device is a leaf-selection rule for tree-population, based on the Good-Turing Theorem
(1953). Compared to a previously described stopping-rule procedure, this method improves (in fact, it maxi-
mizes) the pruning factor consistent with the given error target. In large scale trials on actua printed pages, a
preclassification tree built in this way sped up the entire page reader by better than a factor of two without con-
tributing any measurable extra error.

These results suggest that our methodology, which is somewhat controversial due to its total reliance on
synthetic training data, has passed a significant test of its relevance to practice.

There remain severa interesting open questions. The fact that N = 10000 samples per <typeface,symbol>
pair produced good results is already an improvement over [BM94]: perhaps further improvements are possible.
More precisely, what is the minimum number of synthetically generated image samples required for population
that will ensure that the variance of the error is bounded to within a user-specified limits? We optimize each
<typeface,symbol>-specific tree separately and then merge them: can we do better by attempting to optimize the
merged tree? |Isthere some way to improve on our method for constructing the decision nodes of the tree?
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