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a similar reason, we did not find the method of projection pursuit [5] in exploratory data
analysis useful in this context.

4 Conclusions

We described a method for inferring from the training data faithful but concise rep-
resentations of the empirical class-conditional distributions. In doing this, we have aban-
doned many usual simplifying assumptions about the distributions: e.g. that they are
simply-connected, unimodal, convex, or parametric (e.g. Gaussian). We have shown that
a classifier can be constructed using a metric defined on these distribution maps.

Our method requires unusually large and representative training sets, which we provided
through pseudo-random generation of training samples using a realistic model of printing
and imaging distortions. We illustrated the method on a challenging recognition problem:
3755 character classes of machine-print Chinese, in four typefaces, over a range of text
sizes: in a test on over three million images, the perfect-metric classifier achieved better
than 99% top-choice accuracy. In addition, we showed that it is superior to a conventional
parametric classifier using comparable resources. The reject behavior, permitted by the
distinctive distributions of distances to correct or incorrect classes, is also very reliable.

We have also shown a way to construct similar feature transformations and classifiers
for arbitrary domains. The features and the metric were derived with minimum heuristics.
Moreover, the classifier’s accuracy can be improved with additional training data. In this
study we have concentrated on linear mappings as features. Future studies may focus on
investigating other families of features, especially those that can be used under weaker
conditions on the class-conditional distributions.
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Table 4: Changes in classifier accuracy and size

training | total #images #images % #images % #images % #new total #
set added for training correct correct | erroneous | erroneous | rejected | rejected || features | features
1 1,000 99,749 99.75 52 0.05 199 0.20 1 1
2 2,000 99,828 99.83 56 0.06 116 0.12 2 3
3 3,000 99,848 99.85 60 0.06 92 0.09 1 4
4 4,000 99,836 99.84 68 0.07 96 0.10 2 6
5 5,000 99,718 99.72 59 0.06 223 0.22 2 8
6 6,000 99,792 99.79 s 0.08 131 0.13 2 10
7 7,000 99,775 99.78 60 0.06 165 0.17 2 12
8 8,000 99,828 99.83 60 0.06 112 0.11 2 14
9 9,000 99,759 99.76 50 0.05 191 0.19 0 14
10 10,000 99,691 99.69 56 0.06 253 0.25 1 15
11 20,000 99,841 99.84 66 0.07 93 0.09 2 17
12 30,000 99,932 99.93 23 0.02 45 0.04 2 19
13 40,000 99,953 99.95 22 0.02 25 0.03 2 21
14 50,000 99,931 99.93 22 0.02 47 0.05 3 24
15 60,000 99,890 99.89 21 0.02 89 0.09 2 26
16 70,000 99,867 99.87 23 0.02 110 0.11 3 29
17 80,000 99,941 99.94 28 0.03 31 0.03 2 31
18 90,000 99,913 99.91 25 0.03 62 0.06 3 34
19 100,000 99,860 99.86 20 0.02 120 0.12 3 37
20 110,000 99,903 99.90 37 0.04 60 0.06 3 40
21 120,000 99,872 99.87 16 0.02 112 0.11 2 42
22 130,000 99,900 99.90 25 0.03 75 0.07 2 44
23 140,000 99,893 99.89 14 0.01 93 0.09 3 47
24 150,000 99,895 99.89 22 0.02 83 0.08 3 50
25 160,000 99,909 99.91 16 0.02 75 0.07 3 53
26 170,000 99,890 99.89 29 0.03 81 0.08 2 55
27 180,000 99,918 99.92 16 0.02 66 0.07 3 58
28 190,000 99,905 99.91 21 0.02 74 0.07 3 61
29 200,000 99,868 99.87 16 0.02 116 0.12 3 64
30 210,000 99,909 99.91 38 0.04 53 0.05 3 67
31 220,000 99,905 99.91 27 0.03 68 0.07 3 70
32 230,000 99,893 99.89 20 0.02 87 0.09 2 72
33 240,000 99,886 99.89 18 0.02 96 0.10 3 75
34 250,000 99,888 99.89 26 0.03 86 0.09 3 78
35 260,000 99,909 99.91 26 0.03 65 0.07 2 80
36 270,000 99,884 99.88 27 0.03 89 0.09 3 83
37 280,000 99,854 99.85 20 0.02 126 0.13 3 86
38 290,000 99,924 99.92 35 0.04 41 0.04 2 88
39 300,000 99,874 99.87 23 0.02 103 0.10 2 920
40 310,000 99,879 99.88 27 0.03 94 0.09 4 94
41 320,000 99,888 99.89 23 0.02 89 0.09 2 96
42 330,000 99,898 99.90 16 0.02 86 0.09 3 99
43 340,000 99,893 99.89 16 0.02 91 0.09 2 101
44 350,000 99,881 99.88 37 0.04 82 0.08 3 104
45 360,000 99,910 99.91 25 0.03 65 0.07 2 106
46 370,000 99,881 99.88 16 0.02 103 0.10 2 108
47 380,000 99,873 99.87 26 0.03 101 0.10 2 110
48 390,000 99,834 99.83 16 0.02 150 0.15 4 114
49 400,000 99,877 99.88 15 0.01 108 0.11 2 116
50 410,000 99,883 99.88 17 0.02 100 0.10 2 118
51 420,000 99,845 99.84 23 0.02 132 0.13 3 121
52 430,000 99,890 99.89 21 0.02 89 0.09 2 123
53 440,000 99,839 99.84 23 0.02 138 0.14 3 126
54 450,000 99,864 99.86 15 0.01 121 0.12 3 129
55 460,000 99,871 99.87 41 0.04 88 0.09 3 132
56 470,000 99,872 99.87 25 0.03 103 0.10 2 134
57 480,000 99,892 99.89 21 0.02 87 0.09 3 137
58 490,000 99,906 99.91 25 0.03 69 0.07 2 139
59 500,000 99,919 99.92 33 0.03 48 0.05 2 141
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The test set consists of 50,000 ‘c’s and 50,000 ‘e’s (100,000 samples in total). The same
test set is used to measure the error rate throughout the experiment, regardless of changes
in the training set and the features. Fach sample image is binarized, size-normalized to
48 x 48 pixels. The binary values of the pixels are used as input.

At each iteration, linear projections were found using the fixed increment perceptron
training algorithm. For each projection, the range of values was divided into 25 segments.
Once sufficient features were found to fully discriminate a given training set, the next train-
ing set was added and the algorithm searched for new features to resolve new ambiguities.
Because of difficulties in implementation, we considered ambiguities in the new training set
only and did not backtrack and re-examine previous training samples.

When the algorithm finished with a training set, we tested the accuracy of the classifier
with the fixed test set. Since we have an unlimited source of training data, in principle this
could continue indefinitely. However, seeing no new pattern on the results, we terminated
the experiment after 500,000 training samples were used. Table 4 shows the changes in
classification accuracy and the number of features added with each new training set.

From Table 4 it is not difficult to see that the accuracy of the classifier stabilized early
(when 100,000 training samples were used). This is more obvious from the graphs in Figure

6.

The results suggest that the initially derived features contribute most to classification
accuracy. We can measure the efficiency of each feature by the number (or %) of samples
separated from other classes by using that feature. As an example, we examined the 139
features obtained before training set 59 was added. Figure 7 shows the numbers of samples
distinguished by each of those 139 features, starting from the features derived using training
set 1. This graph illustrates the ability of the method in selecting the most useful features
first. Since the features are ordered by their efficiency, the sequence can be pruned according
to requirements on accuracy and availability of resources.

It is unclear what has caused the persistent errors and rejects. Our conjecture is that the
class-conditional distributions have nonzero and overlapping tails, so that there are certain
intrinsic ambiguities in the data — relative to the quantization of values we have adopted.

3.5 Alternative Procedures

A few other trials have been carried out using several alternative procedures. The trivial
method of obtaining mappings by Euclidean distance, produced very inefficient features, as
expected. The method of projection on the line connecting cluster centroids also yielded
many inefficient features, with low error rates but high reject rates. Using the same per-
ceptron method with value ranges divided into 50 segments instead of 25 resulted in slower
improvements in accuracy, though after 50,000 training samples were used the differences
were no longer obvious.

The method of principal components (Karhunen-Loéve expansion) [3] was considered
for finding useful directions for linear projections. However, maximization of the variability
of the entire data set does not contribute much to the discrimination between classes. For
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3.3 Adaptation to Unseen Samples

So far we have been concerned with separating all samples in a given training set. Given
a fixed training set of a small size, this is easily achievable. However, the usefulness of the
classifier is determined by its accuracy on previously unseen samples. In this section we
discuss ways to adapt the classifier to new samples.

The quantization of the value ranges of the features provides limited invariance of clas-
sification among samples projected onto the same line segment. By the definition of the
metric used by the classifier, an error occurs when a test sample has a feature value that
has not previously occurred among training samples of that class. To prevent this from
happening, the training set must be large enough relative to the range and quantization
of the feature values, so that the projections can be fully saturated. Yet too many train-
ing samples could also lead to the problem of over-saturation — in an extreme case where
all class-conditional distributions have infinite nonzero tails, any projection will eventually
have all values marked for all classes, and when this happens no discrimination will be
possible. In the previous discussions we have excluded these cases by assuming that each
sample has a unique classification. But in practice this often cannot be guaranteed.

It is therefore difficult to predict the quantity of training samples needed. An adaptive
procedure is preferred, so that the classifier can improve itself by using additional training
samples. It is possible that new training samples are projected to values that are marked
for other classes but unmarked for their classes, and thus introduce new ambiguities. The
classifier will need new features to resolve such ambiguities. If we keep adding in new
training samples and find no further need to include new features, the classifier can then
be considered stable. Errors will also be unlikely since newer samples are then less likely
to turn on values unmarked for their classes.

The way new features are found is similar to the selection of other features. We first
project the new training samples using existing mappings, and identify those that overlap
with other classes. Then we look for hyperplanes that separate those samples from other
classes. Older training samples of other classes also need to be re-examined for overlaps
with the new samples.

3.4 Results of Feature Selection

We tested the procedure in an experiment on a constrained problem in optical character
recognition. We chose the problem of distinguishing between images of the symbols ‘¢’ and
‘e’ in the Adobe Times Roman typeface, with noise introduced by a parameterized model of
document image defects [1]. The choice was motivated mainly by the practical importance
of the problem and the unambiguous shapes of the ideal prototypes. The use of the defect
model gives us a way to precisely define the scope of the problem, and also an indefinitely
large source of data for training and testing. The values of the defect model parameters are
identical to those used in a previous experiment [7], and will be omitted here for brevity.

Using the defect model and the ideal shape prototypes, we generated 500,000 training
samples that are divided into 59 sets. There are 1,000 (500 ‘c’s and 500 ‘e’s) samples in each
of the first ten training sets, and 10,000 (5,000 ‘c’s and 5,000 ‘e’s) in the subsequent ones.
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samples, i.e., projections that can separate a larger set of samples from others. We will now
focus on a condition on the class-conditional distributions that would allow discrimination
by more efficient projections. We require that for a given problem in a d-dimensional feature
space, and for each sample z, there exists one or a number of parallel (d — 1)-dimensional
hyperplanes that can separate x from samples of all other classes. We call these classes
partially linearly separable. Note that this condition is weaker than linear separability,
which requires all samples of one class be separable from samples of all other classes by a
single hyperplane. It occurs in practice that, in many applications with high-dimensional
input, different classes rarely spread over nested regions, and the classes are often partially
linearly separable. Figure 5 shows an example of two partially linearly separable classes.

3.2 Progressive Elimination of Ambiguities

We now describe an algorithm that searches for projections that fully discriminate be-
tween partially linearly separable classes. The algorithm removes ambiguities progressively
by introducing additional features that are targeted towards separating current ambiguous
samples.

The algorithm is applied to each class in turn. Suppose we start with a particular class
c. At the beginning, all training samples are first assigned to two sets 57 and S5, where
51 consists of all samples from class ¢, and S5 consists of samples from all other classes.
The sample mean m; of each set 5; (i = 1,2) are computed. A line mymyz is drawn passing
through m; and ms. All samples are then projected onto this line. The range of the
projection is then divided evenly into a fixed number of segments. A segment is marked
for a class if there is any sample of that class projected onto that segment. A distribution
map of the classes along this line is thus obtained.

If there is no segment marked for classes from both sets, then we have obtained a dis-
criminating feature for class ¢. Otherwise, 57 is pruned and only those samples overlapping
with S5 are retained (call the pruned set 7). The procedure is then repeated using 57 and
S5. In case that all samples in 57 overlap with those from S5, 57 is split into two halves
and the same procedure is applied to each half. This continues until either 57 is empty, or
it is impossible to separate 57 and S5 by any further projections.

Notice that when each new projection is made, some samples that are previously removed
from §7 may overlap with S5 when they are projected onto the new line. But there is no need
to backtrack to those samples because there has already been one projection on which they
can be separated. After 57 is finished, we put class ¢ into S5 and take another unprocessed
class from S5 to 57, and the algorithm iterates until all classes are processed.

In this procedure, the directions of the projections are determined by the geometry of
the spread of the classes, over which we have little control. An improvement can be made by
introducing an optimization procedure to choose projections that lead to as few ambiguities
as possible. The fixed increment perceptron training algorithm can be used in this context
to find a hyperplane between 57 and S5, so that the number of samples falling on the
opposite side is minimized. The only change from the previously described procedure is to
replace the line My, by the line perpendicular to the resultant hyperplane.
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not introduce classification errors. The worst case is when distributions of all classes are
projected onto identical values, so that the projection does not introduce any difference in
the values of the metric.

By the definition of the metric, the classifier is more prone to indecisions due to ambigu-
ities than to errors. A sample has a unique classification when the metric is minimized for
one single class. This occurs when there is at least one value range in which the sample is
outside all but one class model. We now describe a method to obtain projections such that
this condition is satisfied as far as possible. Following the convention in image recognition,
we will call each of these projections a feature of the sample.

3.1 Efficiency of Features

Given a fixed set of training samples of n classes, we need a set of projections so that
each sample of each class is separated from samples of all other classes by at least one
projection. We assume that there is no intrinsic ambiguities in the samples, i.e., no two
classes share an identical sample.

A set of projections can be obtained trivially as follows: pick an arbitrary metric in the
feature space, say, the Euclidean distance d(z,y) between two samples z and y. For each
sample z, compute d(z,y) between z and all other samples y(y # z). Set the value range to
be [0, maz(d(z,y))]. Then we have a mapping from the feature space onto this value range,
which is simply the distance from this particular sample. Do this for all samples, and each
sample will then be separated from all others by the distance measured from itself.

The projections thus obtained guarantee the discrimination between training samples of
different classes, but they are often not satisfactory to be used in the distribution-map based
classifier. The projections are too specific to particular samples, and too many of them are
needed. For this reason we call these projections inefficient. A constant scaling factor may
be used to compress the value ranges, so that the projected value remains invariant for
samples in the immediate neighborhood of the sample from which distance is measured.
But this remedy may not work in application domains where samples are far apart in a
large space, or when they are at almost the same distance from each other.

Figure 5: Two classes (¢1: black circles, ¢g: white squares) that are not linearly
separable but are partially linearly separable.

What we need are projections that better exploit local cluster characteristics of the
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set of distortion parameters; and (2) the feature set is not sufficient to distinguish between
certain pairs of classes. While errors of the first type are intrinsic to the problem, those of
the second type can be corrected by enhancing the feature set.

Table 3: Correct rates in various size neighborhoods, for 3755 classes.

N: size of neighborhood

1 2 3 4 5 6 7 8 9 10

number of errors || 29,153 | 6,919 | 4,419 | 3,423 | 2,819 | 2,411 | 2,103 | 1,873 | 1,728 | 1,566

correct rate (%) 99.03 | 99.77 | 99.85 | 99.89 | 99.91 | 99.92 | 99.93 | 99.94 | 99.94 | 99.95

3 Feature Transformations for Arbitrary Domains

In the character recognition experiment we project the samples using some well-known
feature transformations. In other application domains, such transformations may not be
readily available. In the sections below we discuss a way to automatically construct pro-
jections suitable for this classifier.

Our method imposes no restriction on the form of the projections, given that they satisfy
several criteria. First, the value range has to be bounded and discretized, and has a suitable
cardinality. The cardinality (number of discrete values) needed depends on the number of
available training samples. It has to be small enough so that training samples limited in
quantity (say, a few hundreds) can form a dense model. It has to be large enough to reveal
differences between samples of different classes. For this reason, binary values are usually
not sufficient to differentiate the classes. As an example, in the previous experiment, we
found that a cardinality of 25 for each projection was useful with 800 training samples for
each class.

A second criterion is that the projections should be different from each other. A pro-
jection need not be strictly orthogonal to all others. It may add to the discriminating
power of the classifier as long as it is not identical to others. In principle, a projection does




in larger point sizes, and worse for smaller point sizes. Comparing the figures in Table 1, we
can see that perfect metrics yield substantially fewer errors than those given by Mahalanobis
distance: in fact, the error rate is lower by a factor of 2.4, at 95% statistical confidence.

The advantage of the perfect metrics is even more impressive when we compare the
number of errors in neighborhoods of the top choice. For the perfect metrics, the number
of errors drops rapidly as the size of the neighborhood increases, which is not the case with
the Mahalanobis-distance classifier. In fact, 274 (78.5%) of the 349 errors by the perfect
metrics can be corrected if we take the top two choices, whereas only 164 (16.8%) of the
979 errors by the Mahalanobis distance classifier can be corrected similarly.

2.5 Classification performance of perfect metrics on 3755 classes

Our second experiment was to evaluate the perfect-metric classifier for the 3755 classes
in full GB2312-80 Level 1. The classifier was trained on 800 samples of each of the 3755
classes, and tested on another 800 samples of each class. A total of 800 x 3755 = 3,004, 000
samples were tested. Table 2 summarizes the classification results. Table 3 shows the
number of errors and correct rates in neighborhoods of various sizes.

Table 2: Classification results by perfect metrics for 3755 classes.

number of | number of
point size samples €rTors % correct
8 751,000 14,650 98.05
10 751,000 4,464 99.41
12 751,000 5,347 99.29
14 751,000 4,692 99.38
font
Song 751,000 7,707 98.97
FangSong 751,000 5,116 99.32
Hei 751,000 11,136 98.52
Kai 751,000 5,194 99.31
|| total || 3,004,000 | 29,153 | 99.03 ||

To judge the degree of perfection of the metrics on the test set, we count the occurrence
frequencies of each value of the Hamming distance for the correct and incorrect classes
respectively. Figure 4 shows these frequencies. Figure 4 suggests that the metrics are
‘nearly perfect’ on the test set since the input matches the correct class with a zero distance
in 80.75% of the cases, while incorrect classes have zero distance in fewer than 0.0003% of
the cases. The same point can be made, more strikingly, by picking a threshold distance
of two: then, 95.8777% of distances to correct classes are < threshold, while 99.9986% of
distances to incorrect classes are above threshold. In another interesting statistic, if we
reject (refuse to commit on a decision) when the top choice distance is greater than six,
then we miss only 0.62% of the correct decisions and avoid 11.93% of the substitution errors.

For 22,142 images including 11,200 (38.42%) of the errors, the feature vector was
matched to more than one classes with zero distance. This could be caused by two reasons:
(1) the input image is identical to certain instances of an incorrect class under a certain



standard error of the feature values. Note that by simply adding the contribution of each
feature during the computation of Hamming distance, we have made an implicit assumption
of independence among the features. The independence assumption, applied to the Maha-
lanobis classifier, implies that the off-diagonal terms in the cross-correlation matrix are 0.
The storage requirements per class are 4 x 448 x 2 = 3584 numbers, which — assuming
parsimoniously one byte per number — is still 2.5 times greater than for the perfect-metric
classifier. Also, we estimate that the computation time required by the perfect-metric clas-
sifier is no greater than for the Mahalanobis classifier. For n classes and m features, the
perfect-metric classifier requires nm lookups in distribution maps, nm additions, and n com-
parisons, for a total of about 4nm + n arithmetic operations; by contrast, the Mahalanobis
classifier evaluates 4nm expressions of the form ((z — mean)/serr)? (3 arithmetic opera-
tions each), plus 4nm additions and 4n comparisons, for a total of 16nm + 4n arithmetic
operations.

In summary, it is safe to say that the perfect-metric classifier does not consume greater
CPU time and space resources than the Mahalanobis classifier; arguably, the opposite is
true. Also note that we do not combine the statistics of the four fonts. This might be
expected to give the Mahalanobis classifier an advantage over the perfect-metric classifier,
for which the data for all four fonts were combined into a single distribution map.

2.4 Comparison with a Mahalanobis-distance classifier

Our first experiment was to compare the performance of the perfect-metric classifier with
that of a Mahalanobis-distance classifier. Because of limitations in computing resources —
a Mahalanobis classifier for all 3755 classes would require over 50M bytes of main memory
in our naive implementation — we compared them using the first 300 classes (GB1601
— GB1918). Both classifiers were trained using 800 training samples and tested with 800
distinct samples for each class. A total of 240,000 (800 x 300) testing samples were classified.
Table 1 summarizes the classification results.

Table 1: Comparison of results for 300 classes.

perfect metrics | Mahalanobis distance
point no. of | no. of % no. of %
size samples | errors | correct | errors correct
8 60,000 239 99.60 399 99.33
10 60,000 46 99.92 134 99.78
12 60,000 31 99.95 187 99.69
14 60,000 33 99.94 259 99.57
font
Song 60,000 102 99.83 193 99.68
FangSong || 60,000 49 99.92 263 99.56
Hei 60,000 151 99.75 189 99.69
Kai 60,000 47 99.92 334 99.44
[ total ]| 240,000 [ 349 | 99.85 | 979 9959 |

Table 1 shows, as expected, that the classification results are better for images printed



bytes of storage. Note that this representation can express multi-modal distributions, and
is not limited to parametric approximations.

Figure 2: The feature values for one sample image, shown as a distribution
map. The horizontal coordinate ranges from 0 to 447, representing each of the
448 features. The vertical coordinate ranges from 0 to 24, representing the
value of each feature.

o
=k

Figure 3: Comparison of distribution maps for 3 classes (GB1601 — GB1603).
Note the frequent occurrence of multi-modal distributions.

During testing, for each character image, we extract its features and, for each class,
match the features to the class distribution map, by computing a 448-bit vector in which
each feature’s bit is set to 1 if and only if the feature’s value occurs in the class distribution
map. Finally, the ‘distance’ to that class is simply Hamming distance of this vector to an
ideal vector containing all ‘1’s. It is important to note that each class has its own peculiar
metric. By contrast with some other minimum distance classifiers, there is no single metric
that applies to all classes.

If all feature values occur for a class, then the resulting bit-vector is all 1’s, and Hamming
distance is 0. Thus, by construction, all samples in the training set have distance 0 to their
correct class. And if, for each pair of classes, there is at least one feature for which the
distribution maps have no ‘1’s in common, then all samples in the training set will have
non-zero distance to all but their correct class. Under these circumstances, we say that the
metrics are ‘perfect’ on the training set. So, perfection in this sense depends in part on the
discriminating power of the features.

On the test set, we cannot expect the metrics to be perfect, but, as we shall see, they can
be remarkably close to perfect. Naturally, for classification we do not rely on zero distance,
but rank the classes in ascending order on distance.

In addition to a large-scale trial of this perfect-metric classifier, we will compare it to
a conventional parametric classifier built with the same training data and under similar
assumptions and computational constraints. For this we choose minimum Mahalanobis
distance. During training we estimate, for each font/class/feature triple, the mean and
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Figure 1: Examples of distorted images generated by the defect model.

10, 12, and 14 point. The pseudo-random generator accepts a specification of a distribution
on these parameters; each parameter is randomized independently. The distributions used
in these experiments are as follows. The digitizing resolution was fixed at 400 pixels/inch.
The standard error of the Gaussian blurring kernel varied, from image to image, normally
with mean 0.7 and standard error 0.3 (output pixels). The binarization threshold varied,
from image to image, normally with mean 0.25 and standard error 0.04 (intensity). Pixel
sensor sensitivity varied, from pixel to pixel, normally with mean 0.125 and standard error
0.04 (intensity). Jitter varied, from pixel to pixel, normally with mean 0.2 and standard
error 0.1 (output pixels). Skew varied, from image to image, normally with mean 0 and
standard error 0.7 (degrees). The multiplicative factor affecting width varied uniformly in
the interval [0.85,1.15], and the multiplicative factor affecting height varied normally with
mean 0 and standard error 0.02. Translation offsets were chosen uniformly in [0,1], in units
of output pixel.

Fifty samples were generated for each font /size/symbol triple, for a total training/testing
set of 200 for each font/symbol pair and so 800 total for each symbol. To help the reader
appreciate the kind of defects generated, Figure 1 shows a selection.

2.3 Construction of Metrics and the Classifier

The feature extractors were applied to each training sample. We can consider the result
as either an integer-valued vector of 448 dimensions, or, equivalently, as a binary-valued
vector of 448 x 25 = 11200 dimensions, called a distribution map. In a distribution map
for a single sample, each feature is represented by 25 bits, and for a single sample a single
bit is set to 1 indicating the value of the feature. Such a distribution map is illustrated in
Figure 2.

For each class, the distribution maps for 800 training samples are combined into one
map by computing their Boolean union. In such a class distribution map, each feature
value that occurs at least once in the training set is represented by a bit set to 1, and 0
bits represent feature values that never occur. We choose to combine all four fonts’ training
data into a single set of class distribution maps. The distribution maps of the first 3 classes
used in our experiments are shown in Figure 3. The classifier is completely described by
the set of all 3755 distribution maps, for a total of 3755 x 11200 ~ 42.1M bits, or 5.26M



assumptions about these distributions: in particular, we will not assume that they are
simply-connected, unimodal, convex, or approximately parametric (e.g. multi-dimensional
Gaussian). However, we will tentatively assume that the distributions are ‘locally dense’
in suitable subspaces. Intuitively, we mean that images belonging to the same class, when
projected to the right subspace, will cluster together in (possibly more than one) local re-
gion. Choosing such subspaces and exploiting the resulting distributions for classification
is the strategic goal towards which this paper is a first tactical step.

We proceed by treating each of our integer-valued features as such a subspace, of di-
mension one: that is, we project the whole space onto each dimension, and examine the
distributions there. In order that clustering will be easily detectable, the cardinality of
values in each subspace should be neither too small nor too large.

If the cardinality of a feature’s values is less than 1/n the number of training samples
for a class, then some value must occur more than n times, and further we can expect that
clusters, if any, will form densely and be easy to extract automatically. In fact, we hope for
more: that every feature value possible for a class will occur at least once in the training
set.

A cardinality of two — as occurs in each component of the binary-valued vector space
— is often too small to reveal details of distributions. On the other hand, if the cardinality
of the subspaces is too large, there will be too many variations in each subspace to be
represented by a training set of reasonable size.

With this in mind, we compress the integer-valued ranges of both the contour and the
stroke-direction features to lie in [0,24], matching the range of the projection features. We
will generate training sets with 800 samples per class, so that for each feature, we have 32
times as many samples as we have feature values. We describe the creation of such a data
set in the next section.

2.2 Generation of Distorted Samples

We use an explicit, quantitative, parameterized model of defects due to printing, optics,
and digitization, and a pseudo-random image generator that implements the model. The
model is based on approximations to the physics of the printing and imaging process ([4]
& [13]). A detailed description is in [1]; here, we give a brief overview. The input to
the generator is an ‘ideal’ back and white image at high resolution: in practice, we use
bitmaps or scalable outline descriptions purchased from typeface manufacturers. The model
parameters specify the nominal text size of the output (in units of points), the output spatial
sampling rate (digitizing resolution in pixels/inch), the point spread function (the standard
error of its Gaussian blurring kernel in units of output pixels), the digitizing threshold (in
units of intensity, where 0.0 represents white and 1.0 black), the distribution of sensitivity
among the pixel sensors (a noise term added to the threshold), the distribution of jitter
among the pixels (i.e. discrepancies of the sensor centers from an ideal square grid, in units
of output pixel), rotation (skew angle), stretching factors (both horizontally and vertically),
and translation offsets with respect to the pixel grid.

Nominal text sizes of the training set data are 7,9, 11, and 13 point, and for the test set 8,



The experiments embrace all 3755 character classes of the GuoBiao Coding GB2312-80,
Level 1 [2].

2.1 The Features

In this experiment we are concerned with the best use of given feature transformations.
Therefore we have chosen, somewhat arbitrarily, some features commonly used in published
Chinese recognition systems [12]. The binary image of an input character is first size-
normalized to a 48x48 binary-valued pixel matrix by simple scaling and centering. That
is, each image is mapped to a point in a binary-valued vector space of 48 x 48 = 2304
dimensions, containing at most 22304 ~ 1069 distinct points.

For reasons that will become clear later, we choose not to use this binary-valued space
directly. Instead, we will use three integer-valued feature sets: vertical and horizontal
projection profiles, distances from outer contours to the bounding box, and distributions of
stroke directions.

The projection features are computed as follows. The image area is divided into upper
and lower halves, and a vertical projection profile (counting the number of black pixels
in each column), is computed for each. Similarly, two horizontal projection profiles are
obtained for the left and right halves. These four profiles are then concatenated to form a
vector with 48x4=192 dimensions; each projection feature’s integer value lies in the range
[0,24].

The contour features are distances from each of the four edges of the bounding box to
the character’s outer contour. For each column, we calculate the distance from the upper
edge of the box to the first black pixel of the column, and from the lower edge to the last
black pixel. Similarly for each row, we calculate the distance from the left edge to the
leftmost black pixel, and from the right edge to the rightmost black pixel. These distances
form a vector of 48 x 4 = 192 dimensions; each contour feature’s integer value lies in the
range [0,48].

The stroke-direction features are computed by run-length analysis as follows. From
each black pixel, we compute the length of the black runs containing that pixel as they are
extended in four directions (horizontal, NE-SW diagonal, vertical, and NW-SE diagonal).
The pixel is then labeled with the direction in which the run length is the maximum. Then
we partition the image area into 16 (12 x 12) square regions and count the number of pixels
of each of the four types in each region. These counts are stored in a vector of 16x4=64
dimensions; each stroke direction feature’s integer value lies in the range [0,144].

Each character image is thus mapped to a point in an integer-valued vector space of
192 4 192 + 64 = 448 dimensions, containing at most 2592 x 49192 x 145%* ~ 107! distinct
points.

Now of course the actual distributions of images (points) of different character classes
and fonts in either of these vector spaces (binary-valued or integer-valued) can be expected
to be sparse compared to the total volume of the space, and complex in detail. An im-
portant aspect of our approach is that we will avoid making many of the usual simplifying



1 Introduction

One of the challenges in pattern recognition is to find faithful but concise descriptions
of the class-conditional distributions of the samples. The samples are typically expressed as
points in a high-dimensional feature space, and they often spread over regions that are in
general non-simply connected, multi-modal, and nonconvex. This irregular geometry adds
to the difficulty of finding compact expressions; in particular, the abstractions provided by
simple parametric models are often unjustified. The problem is exacerbated by the fact
that training data collected in an ad hoc manner is often uselessly sparse.

The complex interplay among the representativeness of samples, the discriminating
power of features, and mutual dependencies among features is analyzed in detail in a the-
ory of asymptotically perfect classifiers recently proposed by Kleinberg [9] [10] [11]. He
suggested that nearly perfect accuracy is achievable, provided that one is given training
data which is, in a certain precise sense, sufficiently representative relative to the expressive
power of the features.

Motivated by this analysis, we attempt to study empirical class-conditional distributions
by first exerting some control over the statistical properties of the training data. In a
machine-print character-recognition setting, this can be done by the use of a pseudo-random
image generator based on a realistic model of document image distortions. The image
generator provides a source of indefinitely many samples which are projected down to finite
and discrete ranges of feature values to produce dense one-dimensional maps. A series of
such maps together give a distinctive profile of each class.

The distinctive profiles can be used to construct a metric for classification. For an
arbitrary test sample, the metric counts the number of projected value ranges of each class
that do not include that sample. The metric is zero when the sample fits the profile of a
particular class perfectly. Larger values of the metric indicate discrepancies of the sample
from the ranges of feature values of the corresponding classes.

We will first illustrate the method with an experiment in which the classifier is applied
to the recognition of 3755 classes of machine-print Chinese characters in four typefaces.
In this experiment we use feature transformations designed specifically for character im-
ages. The feature extractors transform a binary-valued image into an integer-valued vector
with component values in limited ranges. The class-conditional distributions in this fea-
ture space are mapped. For applications to other domains, it is necessary to have feature
transformations that can be used similarly. We will describe a method to select suitable
linear transformations that can project the classes into subspaces where they are partially
separable[8], so that a similar classifier can be constructed.!

2 Distribution Maps of Printed Characters

To illustrate the mapping process, we designed an experiment to build a classifier for the
four most commonly used fonts in printed Chinese: Song, Fang Song, Hei, and Kai. The
text size will range from 7 point to 14 point, at a spatial sampling rate of 400 pixels/inch.

!Preliminary versions of this paper have appeared in [6] [8].
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Abstract

A difficult problem in classification is representing the class-conditional distributions
concisely and faithfully. We propose a way of mapping such distributions and its use in
constructing a similarity metric. A classifier using this metric can achieve low error rates
and useful confidence scores permitting reliable reject behavior. We illustrate the method
by an application in a challenging character recognition problem with thousands of classes.
For applications to arbitrary domains, we present a method to automatically construct
feature transformations that are suitable for such mappings.



