
Undue Influence: Eliminating the Impact of Link Plagiarism
on Web Search Rankings

Baoning Wu and Brian D. Davison
Department of Computer Science & Engineering

Lehigh University
Bethlehem, PA 18015 USA

{baw4,davison}@cse.lehigh.edu

ABSTRACT
Link farm spam and replicated pages can greatly deteriorate link-
based ranking algorithms such as HITS. In order to identify and
neutralize link farm spam and replicated pages, we look for suf-
ficient material copied from one page to another. In particular, we
focus on the use of “complete hyperlinks” to distinguish link targets
by the anchor text used. We build and analyze the bipartite graph
of documents and their complete hyperlinks to find pages that share
anchor text and link targets. Link farms and replicated pages are
identified in this process, permitting the influence of problematic
links to be reduced in a weighted adjacency matrix. Experiments
and user evaluations show significant improvement in the quality
of results produced using HITS-like methods.

1. Introduction
The search engine is the door to the Web today. Many websites

get significant traffic through search engine results, so it has be-
come commercially expedient for a web site to rank as highly as
possible. Search engine spamming is the use of techniques that
provide an artificially high ranking, and is of significant concern to
commercial search engines [18].

Before the invention of link-based ranking algorithms, most
search engine spam was related to content, and included techniques
such as repeated key words and invisible text. With the advent of
link-based ranking algorithms such as PageRank [6] and HITS [19]
in the search engine world, such textual manipulation became less
effective, and so the focus turned to link-based techniques.

When first introduced, algorithms like HITS (variants of which
are found in search engines such as Teoma which powers Ask
Jeeves) were able to triumph over content spam and gave quite rel-
evant results. However with the appearance of link farms, in which
sites are densely interconnected, HITS is no longer robust [5, 21,
22, 8].1 For example, the top 10 authorities generated by HITS for
1In manual review of HITS results over hundreds of queries in 2004
we found that more than 80 percent were distorted, containing rec-
ognizably irrelevant highly ranked authorities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

Rank URL
1 http://www.tripadvisor.com/
2 http://www.virtualtourist.com/
3 http://www.abed.com/memoryfoam.html
4 http://www.abed.com/furniture.html
5 http://www.rental-car.us/
6 http://www.accommodation-specials.com/
7 http://www.lasikeyesurgery.com/
8 http://www.lasikeyesurgery.com/lasik-surgery.asp
9 http://mortgage-rate-refinancing.com/

10 http://mortgage-rate-refinancing.com/mortgage-calculator.html

Table 1: Example of top list dominated by link farms.

query weather are shown in Table 1.
There are three major factors that will degrade HITS results:
• “Mutually reinforcing relationships” [5] in which a page is

the target of many links from multiple pages of the same web
site, or alternatively, one page that points to many pages of
another web site.

• The existence of many duplicate pages, making links cited
within them rank highly.

• Link farms [24, 16] in which a set of Web pages is densely
interconnected.

Some of these issues have been addressed in part by other research,
which we will discuss below in Section 2. Our approach is unique
in that it addresses duplicate pages and link farms at the same time
by examining “complete hyperlinks” to recognize repeated content.

The outline of our idea is as follows. We propose to use the link
target together with its anchor text as a basic unit (“complete hyper-
links”). To make duplicate pages or build link farms, many links
are intentionally created and duplicated. If we can identify these
copied links, duplicate pages and link farms can be detected. Our
intuition is that duplication of a complete link is a much stronger
sign of this copying behavior than just a duplicate link target. Based
on this concept, we extract one or more complete links from each
HTML document and build a document-hyperlink matrix for these
pages. The bipartite subgraph within this matrix is a good indica-
tion of duplicate pages or link farms.

While we won’t punish a page for a single copied hyperlink, if
there are enough such duplicate complete links, the chance is small
that all these links within this page are generated independently
by different people. Therefore, we penalize such links by down-
weighting them in the adjacency matrix and then calculate HITS
results. Our policy is only to punish links, but not to ban pages
containing these links. User evaluation of query results shows a
significant improvement in the quality of results produced using
HITS-like methods.

The remainder of this paper is organized as follows. Section 2
reviews related work about link farms, community discovery, and
duplicate Web pages. The algorithm for finding the bipartite graph
on the document-hyperlink matrix will be introduced in Section
3. Some experimental results and human evaluation results will be
presented in Section 4. We wrap up with a discussion and summary
of our conclusions.

2. Related Work
The idea of “mutually reinforcing relationships” is first intro-

duced by Bharat and Henzinger [5]. The “TKC effect” is first men-
tioned by Lempel and Moran [21]. The authors propose the SALSA
algorithm which is more resistant to the TKC effect than HITS. But
SALSA is still vulnerable to a form of the TKC effect when many
pages all point to each other [26].

Chakrabarti proposed using Document Object Models together
with hyperlinks to beat nepotistic “clique attacks” [8]. Li et al. [22]
found that HITS is vulnerable to the “small-in-large-out” situation.
Gyongyi et al. describe a new algorithm, TrustRank, to combat Web
spam [17]. Zhang et al. show how to use the “amplification factor”
in PageRank results to detect link collusions [29]. Fetterly et al. use
statistical analysis to find spam [13]. Amitay et al. [3] propose cat-
egorization algorithms to detect website functionality. They recog-
nized that sites with similar roles exhibit similar structural patterns.
Wu and Davison present a different method for finding link farm
spam [28], in which an automated method is used to select a seed
set of bad pages (spam pages) which are then expanded to include
others that link to enough known bad pages. Finally, Davison [11]
examined the viability of recognizing whether a hyperlink would
be considered nepotistic.

Kumar et al. [20] used bipartite subgraphs and cores to find web
communities. Flake et al. [14] proposed using maximum flow and
minimum cut method to identify these commnuties. Reddy and
Kitsuregawa also used bipartite graphs to find web communities
[25]. Roberts and Rosenthal [26] propose simple algorithms to find
clusters of web pages based on their outlink sets.

Several significant research papers about detecting duplicates of
web pages by using shingles or chunks have been published [7, 27,
9, 4, 12].

3. Algorithm Details
In this section, we present our algorithm for addressing link farm

and duplicate page issues, and can be summarized as:

1. Parse all pages for a query to get “complete hyperlinks” for
each page and generate a document-hyperlink matrix. Filter
out hyperlinks to pages within the same domain.

2. Find densely connected bipartite components within the ma-
trix generated in step 1, by identifying the union of all satis-
fying complete bipartite graphs.

3. Change the adjacency matrix with weighted values according
to the components found in step 2.

4. Apply additional re-weighting such that l links from one do-
main to a single page to have weight 1/l (identical to one half
of Bharat and Henzinger’s imp improvement to HITS [5]).

5. Calculate final ranking using the re-weighted link graph.

3.1 Complete hyperlinks

In the parsing process, for each page we get all the outgoing
links together with their anchor texts. Suppose we have a data set

Finding Bipartite Components:

INPUT: document-hyperlink matrix A; thresholds k and l
OUTPUT: reduced document-hyperlink matrix with only bipartite
components of k ∗ l or larger

1. Zero all rows of A that have a sum smaller than l

2. Zero all columns of A that have a sum smaller than k

3. Repeat Steps 1 and 2 until A no longer changes.

Figure 1: Algorithm for finding bipartite components.

of n pages for a query and after parsing we get together m dif-
ferent complete hyperlinks. Then for this data set, an n ∗ m size
“document-hyperlink” matrix A can be built. If the document i
contains complete link j, then A[i, j] will be set to 1, otherwise 0.

3.2 Finding bipartite components

A bipartite graph has two disjoint sets X and Y. In a complete
bipartite graph, each element in X will point to each element in Y
and each element in Y is pointed to by each element in X. If there
are k elements in set X and l elements in set Y, the bipartite graph
has size k ∗ l.

For the “document-hyperlink” matrix A[n∗m] generated above,
we can find bipartite components with the set X filled with docu-
ments and set Y filled with complete links. If the bipartite compo-
nent sizes are above some thresholds, we will consider them as a
problematic community.

In reality, link farms often do not form a single complete bipartite
component; instead we have found that they are usually densely
connected via multiple overlapping small bipartite cores.

Initial Steps. It is not necessary to find each overlapping core;
our algorithm aims at finding the pages forming complete bipartite
cores with at least k documents, each containing at least l common
complete links where k and l are thresholds that can be adjusted.

The algorithm is shown in Figure 1. For a simple example, a
starting matrix with 5 documents and 4 complete links is given in
Table 2(a), and the thresholds are 2 and 2. We need to find all
bipartite components which have at least 2 documents and each of
them has at least 2 common complete links. Once the iterations are
complete, we will get the matrix in Table 2(b).

One problem with the above step is that sometimes an element
will be marked incorrectly in the final matrix because it just has
enough links within another bipartite component. As we can see
from Table 2(b) that the A[P4, L1] is still 1 because P1 and P2
have enough number of L1, but we don’t want to punish the link
L1 in page P4. So in order to get the final correct matrix as Table
2(c), we need a final adjusting step.

Final Step. Given document-hyperlink matrix A, we calculate a
special form of B = A ∗ AT to get a document-document matrix
in which B[i, j] records the common hyperlinks within document
i and document j. For example, if the given matrix is that in Table
2(b), we will get the matrix in Table 3(a) after this step.

For each B[i, j], if the number of different members is less than
the threshold l or i = j, then the element is removed. For example,
in Table 3(a), P1 and P2 have two members, which is equal to the
threshold 2. So the link P1-L1 and P1-L2 are valid. But for row of
P4, P4 and P1 have only 1 common complete link L1, so the link
P4-L1 is removed from B[P4, P1] and B[P4, P2].

Remove all elements in matrix A that are not present in B. For

L1 L2 L3 L4
P1 1 1 0 0
P2 1 1 0 0
P3 0 1 0 0
P4 1 0 1 1
P5 0 0 1 1

(a) Initial document-hyperlink matrix.

L1 L2 L3 L4
P1 1 1 0 0
P2 1 1 0 0
P4 1 0 1 1
P5 0 0 1 1

(b) After one iteration.

L1 L2 L3 L4
P1 1 1 0 0
P2 1 1 0 0
P4 0 0 1 1
P5 0 0 1 1

(c) Final document-hyperlink matrix.

Table 2: Document-hyperlink matrix views.

Final Adjustment:

INPUT: Partially reduced document-hyperlink matrix A
OUTPUT: Final reduced document-hyperlink matrix A

• Generate a matrix B in which B[i, j] contains the intersec-
tion of the complete hyperlinks of documents i and j, as long
as as i 6= j.

• For each element B[i, j], drop the element if the number of
complete links is less than the threshold l.

• Remove all elements in A that are not present in B.

Figure 2: Detail of the final adjusting step.

example, since P4-L1 is no longer present, that element will be set
to 0. Then we get the matrix in Table 2(c). Now all the bipartite
components are stored in the matrix A and in order to distinguish
this new matrix from the original document-hyperlink matrix, we
call this new matrix the bipartite matrix.

3.3 Down-weighting the adjacency matrix

As we mentioned before, there are two possibilities to form the
bipartite core, one is the link farm and the other is duplicate pages.
To eliminate their effects on link-based ranking algorithms, one in-
tuition is to give lower weight to these links within the adjacency
matrix as in [5, 26].

Based on the bipartite matrix, a straightforward way to down-
weight the adjacency matrix is used in our algorithm: For each
unique complete link L, we count the total N appearances of L
in the bipartite matrix. Then for each appearance of L in the final
document-hyperlink matrix, we assign 1/N in the adjacency matrix

P1 P2 P4 P5
P1 0 L1,L2 L1 0
P2 L1,L2 0 L1 0
P4 L1 L1 0 L3,L4
P5 0 0 L3,L4 0

(a) Document-document matrix B.

L1 L2 L3 L4
P1 0.5 0.5 0 0
P2 0.5 0.5 0 0
P3 0 1 0 0
P4 1 0 0.5 0.5
P5 0 0 0.5 0.5

(b) Down-weighted document-hyperlink
matrix.

Table 3: Document-document and document-hyperlink matri-
ces.

instead of 1, which is the default value. For example, in Table 2(c),
L1 appears twice, so both A[P1, L1] and A[P2, L1] in Table 2(a)
will be set to 1/2. The final down-weighted matrix for this example
is shown in Table 3(b).

3.4 Ranking using the weighted adjacency matrix

The final step is to use the down-weighted adjacency matrix for
ranking the results. Several methods can be used in this step, and
we tried both Kleinberg’s HITS and ranking by popularity.

First we used original HITS on this weighted adjacency matrix
and found that the results are not good for some queries. By in-
spection, we find that the main reason is that “mutually reinforcing
relationships” exist. So, inspired by Bharat and Henzinger’s imp
version of HITS, we re-weight instances of l links from one do-
main to a single page to have weight 1/l to address this problem.
After solving this problem, we find that most tested queries get
good results.

The second algorithm is just ranking by popularity. Here “pop-
ularity” of a page means the sum of all weighted values for the
incoming links to the page. This algorithm is fast because no itera-
tive process is involved.

3.5 Computational complexity

The most computationally expensive part of our algorithm is to
find bipartite subgraphs for the document-hyperlink matrix. There
are 4 steps for finding the bipartite components of a matrix. The
time complexity of Steps 1 and 2 are O(n ∗ m) each; Step 3 loops
over Steps 1 and 2 at most 2*min(n,m) times. So the time com-
plexity of the first three steps are O(nm∗min(n,m)). The final
step has a complexity of O(n2m). So if n = m, in total the time
complexity for detecting bipartite components is O(n3).

4. Experiments and Evaluation
In this section, we describe the data sets that are used in our

experiments, the ranking results of our algorithms discussed in the
previous sections, and finally a user study to evaluate our results.

4.1 Data set

Rank URL
1 http://www.discountcars.net/
2 http://www.motel-discounts.com/
3 http://www.stlouishoteldeals.com/
4 http://www.richmondhoteldeals.com/
5 http://www.jacksonvillehoteldeals.com/
6 http://www.jacksonhoteldeals.com/
7 http://www.keywesthoteldeals.com/
8 http://www.austinhoteldeals.com/
9 http://www.gatlinburghoteldeals.com/

10 http://www.ashevillehoteldeals.com/

(a) HITS results.

Rank URL
1 http://www.rentadeal.com/
2 http://www.allaboutstlouis.com/
3 http://www.allaboutboston.com/
4 https://travel2.securesites.com/

about travelguides/addlisting.html
5 http://www.allaboutsanfranciscoca.com/
6 http://www.allaboutwashingtondc.com/
7 http://www.allaboutalbuquerque.com/
8 http://www.allabout-losangeles.com/
9 http://www.allabout-denver.com/

10 http://www.allabout-chicago.com/

(b) BH-HITS results.

Rank URL
1 http://www.hertz.com/
2 http://www.avis.com/
3 http://www.nationalcar.com/
4 http://www.thrifty.com/
5 http://www.dollar.com/
6 http://www.alamo.com/
7 http://www.budget.com/
8 http://www.enterprise.com/
9 http://www.budgetrentacar.com/
10 http://www.europcar.com/

(c) CL-HITS results.

Rank URL
1 http://www.hertz.com/
2 http://www.avis.com/
3 http://www.thrifty.com/
4 http://www.nationalcar.com/
5 http://www.google.com/
6 http://www.alamo.com/
7 http://www.dollar.com/
8 http://www.budget.com/
9 http://www.bnm.com/

10 http://www.enterprise.com/

(d) CL-POP results.

Table 4: Results for query rental car.

We adopted the same data collecting process as HITS to collect
our experiment data. Initially we send a query to search.yahoo.com
get top 200 URLs for this query, then for each URL, we get the
top 50 incoming links to this URL by querying search.yahoo.com
again and we also download all outgoing pages within this URL.
The expanded data set is used as the base data set for this query.

For this experiment, we used 412 queries and downloaded more
than 2.1 million unique Web pages. These queries include queries
used by previous researchers [19, 26, 8, 10, 21, 22], the names
of the categories from the dmoz Open Directory Project [2], and
popular queries from Lycos and Google [1, 15].

4.2 Experimental results

For each query, we compare the rankings generated by four
methods. The first is simply HITS on the original graph. The sec-
ond is BH-HITS (inspired by Bharat and Henzinger’s imp), which
is HITS applied to the graph after re-weighting l links from one
domain to a single page to have weight 1/l. The third is CL-HITS,
which is HITS applied to the BH-HITS weighted graph but also in-
corporates re-weightings based on bipartite components found, and
the last is CL-POP, which applies weighted popularity to rank pages
on the same graph as CL-HITS. We show experimental results for
two queries here.

Query: rental car. The top results for the four algorithms are in
Tables 4(a)-4(d). HITS and BH-HITS are both overwhelmed with
link farms. CL-HITS and CL-POP both give relevant results, with
the exception of google.com in position 5 for CL-POP.

Query: translation online. The top 10 authority URLs for this
query by HITS are in Table 5(a). The top 10 authority URLs for
this query by BH-HITS are in Table 5(b). The top 10 author-
ity URLs for this query by CL-HITS and CL-POP are identical,

and are listed in Table 5(c). HITS is dominated by pages from
http://www.teleactivities.com/, where a lot of nepo-
tistic links [20, 11] exist. BH-HITS solves this problem, but un-
fortunately, is still dominated by several strongly connected pages,
which has nothing to do with the query translation online. While
CL-POP needs significantly less computation, it performs well,
generating the same top list as CL-HITS.

4.3 Duplicate pages

Duplicate pages can be a problem for Web page ranking. One
common approach is to delete these duplicate pages before rank-
ing [20, 25]. There are some difficulties with this process, such as
which duplicate to keep and which one to delete. We believe it is
better to give weighted value to the outgoing links within duplicate
pages instead of keeping one page and deleting the rest. Another
problem is that two pages may escape detection under the shingle
test [7] while in fact many links within these two pages are com-
mon while much textual content is different. By giving different
weights, only duplicate links within duplicate pages are punished;
other unique links within these duplicate pages are still retain their
original value.

As mentioned earlier, our bipartite component detection algo-
rithm can detect duplicate links among pages. Since we can still
use the same mechanism for weighting as described in section 3.3,
no preprocessing step is necessary to detect these duplicate pages.

For example, for the query maps, people usually want to find web
pages related to maps, driving directions, etc. The top 10 authority
URLS for this query by BH-HITS are in Table 6(a). Although most
of the top URLs are related to maps, several more famous websites
for maps don’t show up here, such as maps.yahoo.com. The
reason for this is that there are many duplicate pages that replicate

Rank URL
1 http://www.teleactivities.org/
2 http://www.no-gambling.com/
3 http://www.danubecasino.com/
4 http://www.teleorg.org/
5 http://www.teleactivities.com/
6 http://www.teleactivities.net/
7 http://www.teleactivities.net/resources/ezines.htm
8 http://www.teleactivities.net/resources/sites.htm
9 http://www.teleactivities.net/resources/forums.htm
10 http://www.teleactivities.net/resources/awards.htm

(a) HITS results.

Rank URL
1 http://www.no-gambling.com/
2 http://www.teleorg.org/
3 http://ong.altervista.org/
4 http://bx.b0x.com/
5 http://video-poker.batcave.net/
6 http://www.websamba.com/marketing-campaigns
7 http://online-casino.o-f.com/
8 http://caribbean-poker.webxis.com/
9 http://roulette.zomi.net/

10 http://teleservices.netfirms.com/

(b) BH-HITS results.

Rank URL
1 http://www.freetranslation.com/
2 http://www.systransoft.com/
3 http://babelfish.altavista.com/
4 http://www.yourdictionary.com/
5 http://dictionaries.travlang.com/
6 http://www.google.com/
7 http://www.foreignword.com/
8 http://www.babylon.com/
9 http://www.worldlingo.com/products services

/worldlingo translator.html
10 http://www.allwords.com/

(c) CL-HITS and CL-POP results.

Table 5: Results for query translation online.

http://dmoz.org/Shopping/Publications/Maps/,
but a link to maps.yahoo.com is not included within this page.

Our bipartite component detecting algorithm finds this automat-
ically, so the weights for these pages are reduced. The result of
CL-HITS for maps is in Table 6(b). We can see that the results
have more diversity than BH-HITS. So BH-HITS itself is not good
at handling replicated pages. Our algorithm can achieve this with-
out a separate process.

4.4 Evaluation of rankings

To compare the relevance of results generated by our algorithms
with the results generated by HITS and BH-HITS, an evaluation
web interface was built.

For this evaluation, 20 queries were selected. For each query, the
top 10 URLs generated from 4 algorithms HITS, BH-HITS, CL-
HITS and CL-POP were mixed for a blind evaluation. Users were
presented with a randomly chosen query and a randomly selected
set of ten results (in random order). For each URL presented with

Rank URL
1 http://www.maps.com/
2 http://www.mapsworldwide.com/
3 http://www.cartographic.com/
4 http://www.amaps.com/
5 http://www.cdmaps.com/
6 http://www.ewpnet.com/maps.htm
7 http://mapsguidesandmore.com/
8 http://www.njdiningguide.com/maps.html
9 http://www.stanfords.co.uk/
10 http://www.delorme.com/

(a) BH-HITS results.

Rank URL
1 http://www.maps.com/
2 http://maps.yahoo.com/
3 http://www.delorme.com/
4 http://tiger.census.gov/
5 http://www.davidrumsey.com/
6 http://memory.loc.gov/ammem/

gmdhtml/gmdhome.html
7 http://www.esri.com/
8 http://www.maptech.com/
9 http://www.streetmap.co.uk/

10 http://www.libs.uga.edu/darchive/
hargrett/maps/maps.html

(b) CL-HITS results.

Table 6: Results for query maps.

a query, study participants had five choices of relevance: 1. quite
relevant, 2. relevant, 3. not sure, 4. not relevant, and 5. totally
irrelevant for each URL. Only one choice was permitted for each
URL (although a user could refrain from making a choice). After
completion of each set of evaluations, a participant could option-
ally choose to evaluate another set of results for another randomly
selected query.

The study included 28 participants, recording a total of 1688
preferences. The distribution of preference scores is shown in Ta-
ble 7, in which both HITS and BH-HITS have bigger percentages
in “not relevant” and “totally irrelevant”, while CL-HITS and CL-
POP have bigger percentages in “quite relevant” and “relevant”.
This is primarily a result of many fewer spam results by using CL-
HITS and CL-POP.

We can also use this data to calculate precision at rank 10. If we
allow both “quite relevant” and “relevant” choices to count, HITS
achieved a precision at 10 of 23.6%, BH-HITS 42.8%, CL-HITS
77.2%, and CL-POP 72.5%.

5. Discussion
In this paper, we have demonstrated the effectiveness of our al-

gorithm in improving the quality of HITS-style results despite the
presence of significant link spam. We made the explicit decision
to penalize spamming behavior by re-weighting the graph, and did
not attempt to penalize specific pages. In many cases, we find bipar-
tite graphs of popular, high-quality interlinked sites that are under
common corporate ownership. We chose to retain such pages (as
well as more obviously spamming pages) in our dataset, but to re-
duce the effect that the bipartite component will have on the overall
computation.

HITS BH-HITS CL-HITS CL-POP
1 12.9% 24.5% 48.4% 46.3%
2 10.7% 18.3% 28.8% 26.2%
3 6.6% 10.4% 6.7% 6.4%
4 26.8% 14.7% 11.3% 12.7%
5 42.8% 31.9% 4.6% 8.1%

Table 7: Evaluation results.

One might wonder why we have used complete links, rather than
something simpler, such as simply duplication of link targets. More
importantly, a spammer who knows that our approach has been im-
plemented could easily change the anchor text used, thwarting our
recognition efforts. We consider both issues next.

We examined the effects of less-stringent link matching. Instead
of using the exact match of the anchor text, for each anchor text we
removed stop words and stemmed each word and put them in alpha-
betical order. This “bag of words” text replaced the original anchor
text, and based on our user studies, this approached achieved a pre-
cision at 10 of 76.2%, which is quite close to the results of using
exact anchor text matching. This suggests that either exact anchor
text matching or bag of words matching could be used.

When we compared the performance of using the links alone
with the performance of using complete links on the same data set
as above, the “quite relevant” and “relevant” categories summed to
66.4%, which is noticeably lower than the results of using complete
links, suggesting that while using links alone may match more tar-
gets, it may be too aggressive, causing too many good links to be
down-weighted.

Finally, we argue that our approach (especially the bag of words
version) is expected to be an effective deterrent when its use is pub-
lic knowledge. Most link farm spam is successful today not only
because of an increase in perceived quality, but also as a result of
the effects of link bombing [23]. With the knowledge of our algo-
rithm, spammers will have to expend more effort (generating differ-
ent anchor texts to escape detection) and will have a less effective
boost in rank (since the link bombing effect will be markedly re-
duced by the use of different anchors).

6. Conclusion
In this paper, we proposed a polynomial time method using com-

plete links for detecting link farms and duplicate pages in order
to get better results for link-based ranking algorithms. While we
cannot claim that our approach complete addresses the problem of
search engine spam, we found that it can identify highly authorita-
tive and relevant results, showed significant improvements over the
original HITS performance on current, spam-dominated datasets,
and for its effectiveness as a deterrent even if use became public
knowledge. We also found that after graph re-weighting, rank-
ing by popularity often provides similar quality to HITS at a much
lower computational cost.

7. References
[1] Lycos 50, 2005. http://50.lycos.com/.
[2] Open Directory Project, 2005. http://dmoz.org/.
[3] E. Amitay, D. Carmel, A. Darlow, R. Lempel, and A. Soffer. The

connectivity sonar: Detecting site functionality by structural patterns.
In 14th ACM Conf. on Hypertext and Hypermedia, pages 38–47,
2003.

[4] K. Bharat, A. Z. Broder, J. Dean, and M. R. Henzinger. A comparison
of techniques to find mirrored hosts on the WWW. Journal of the
American Society of Information Science, 51(12):1114–1122, 2000.

[5] K. Bharat and M. R. Henzinger. Improved algorithms for topic
distillation in a hyperlinked environment. In Proc. of 19th SIGIR,
pages 104–111, Melbourne, AU, 1998.

[6] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems,
30(1–7):107–117, 1998.

[7] A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic
clustering of the web. In Proceedings of the Sixth International World
Wide Web Conference, pages 1157–1166, 1997.

[8] S. Chakrabarti. Integrating the document object model with
hyperlinks for enhanced topic distillation and information extraction.
In Proc. of 10th World Wide Web conference, pages 211–220, 2001.

[9] J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding replicated
Web collections. In Proc. 2000 SIGMOD, pages 355–366, 2000.

[10] D. Cohn and H. Chang. Learning to probabilistically identify
authoritative documents. In Proc. 17th ICML Conf., 2000.

[11] B. D. Davison. Recognizing nepotistic links on the Web. In Artificial
Intelligence for Web Search, pages 23–28. AAAI Press, Jul 2000.
Technical Report WS-00-01.

[12] D. Fetterly, M. Manasse, and M. Najork. the evolution of clusters of
near-duplicate web pages. In Proc. of 1st Latin American Web
Congress, Nov 2003.

[13] D. Fetterly, M. Manasse, and M. Najork. Spam, damn spam, and
statistics: Using statistical analysis to locate spam web pages. In
Proceedings of WebDB, pages 1–6, June 2004.

[14] G. Flake, S. Lawrence, and C. L. Giles. Efficient identification of
web communities. In Sixth ACM SIGKDD Conference, pages
150–160, Boston, MA, August 2000.

[15] Google, Inc. Google Zeitgeist, Jan. 2005.
http://www.google.com/press/zeitgeist/zeitgeist-jan05.html.

[16] Z. Gyöngyi and H. Garcia-Molina. Web spam taxonomy. In 1st
AIRWeb Workshop, 2005.

[17] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen. Combating web
spam with TrustRank. In Proceedings of the 30th VLDB Conference,
Sept. 2004.

[18] M. R. Henzinger, R. Motwani, and C. Silverstein. Challenges in web
search engines. SIGIR Forum, 36(2), Fall 2002.

[19] J. M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604–632, 1999.

[20] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling
the Web for emerging cyber-communities. Computer Networks,
31(11–16):1481–1493, 1999.

[21] R. Lempel and S. Moran. The stochastic approach for link-structure
analysis (SALSA) and the TKC effect. Computer Networks,
33(1–6):387–401, 2000.

[22] L. Li, Y. Shang, and W. Zhang. Improvement of HITS-based
algorithms on web documents. In Proc.of 11th International WWW
Conference, pages 527–535. ACM Press, 2002.

[23] A. Mathes. Filler Friday: Google Bombing, Apr 2001. Online at
http://www.uber.nu/2001/04/06/.

[24] A. Perkins. White paper: The classification of search engine spam,
Sept. 2001. Online at
http://www.silverdisc.co.uk/articles/spam-classification/.

[25] P. Reddy and M. Kitsuregawa. Inferring web communities through
relaxed cocitation and dense bipartite graphs. In Proc. of Data Base
Engineering Workshop, 2001.

[26] G. O. Roberts and J. S. Rosenthal. Downweighting tightly knit
communities in world wide web rankings. Advances and
Applications in Statistics, 3(3):199–216, Dec. 2003.

[27] N. Shivakumar and H. Garcia-Molina. Finding near-replicas of
documents on the web. In Proc. of WebDB workshop. LNCS, 1999.

[28] B. Wu and B. D. Davison. Identifying link farm spam pages. In
Proceedings of the 14th International World Wide Web Conference,
pages 820–829, May 2005.

[29] H. Zhang, A. Goel, R. Govindan, K. Mason, and B. V. Roy. Making
eigenvector-based reputation systems robust to collusions. In
Proceedings of the Third Workshop on Algorithms and Models for
the Web Graph, Oct. 2004.

