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Abstract

A web page may be relevant to multiple topics; even when
nominally on a single topic, the page may attract attention
(and thus links) from multiple communities. Instead of indis-
criminately summing the authority provided by all pages, we
decompose a web page into separate subnodes with respect to
each community pointing to it. Utilizing the relevance of such
communities allows us to better model the semantic structure
of the Web, leading to better estimates of authority for a given
query. We apply a total of eighty queries over two real-world
datasets to demonstrate that the use of community decompo-
sition can consistently and significantly improve upon Page-
Rank’s top-ten results.

Introduction
Web search engines have adopted several different sources
of evidence to rank web pages matching a user query, such
as textual content and the link structure of the web. The latter
is particularly beneficial in helping to address the abundance
of relevant documents on the Web by determining authority
of a page based on the links that point to it. PageRank (Page
et al. 1998) and HITS (Kleinberg 1999) are two fundamen-
tal link analysis approaches. Put simply, in PageRank the
importance of a page depends on the number and quality
of pages that link to it. Under the HITS hub and authority
model, a page is important if it is linked from hubs that also
link to other important pages.

Both of these models treat all hyperlinks equally and as-
sess a page’s quality by summing the incoming authority
flows indiscriminately. However, hyperlinks are not iden-
tical; they may be created in different contexts and represent
different opinions. For example, a news website normally
contains articles on multiple topics and may have links from
different sources. These links convey endorsement in differ-
ent topics, and mixing them indiscriminately, as traditional
link analysis usually does, will hinder an understanding of
web page reputations. As a result, a page will be assigned
a generic score to tell whether it is good, fair or bad; but
we will have no idea whether a popular page is good for
“Sports” or “Arts”, given it is textually related to both.

We argue that it is more helpful to determine the author-
ity of a resource with respect to some topic or community
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than in general. To achieve this, we propose a novel rank-
ing model—CommunityRank. By identifying the various
communities that link to a resource, CommunityRank dif-
ferentiates incoming flows so that we can keep track of the
contribution from different communities. Such separation
avoids the problem of a heavily linked page getting highly
ranked for an irrelevant query, thus yielding more accurate
search results.

In this paper, we show that by introducing community de-
composition and considering community relevance, we can
improve the accuracy of PageRank algorithms by as much as
10% relative to the original performance. The experiments
are conducted on two real-world web datasets over a total of
80 queries. Our contributions include:

• A description of the use of community decomposition
to better model the source of authority and the resulting
scores.

• An experimental comparison of this approach to a num-
ber of well-known ranking algorithms demonstrating the
superiority of our approach.

In the remainder of this paper we will introduce related
work, followed by our CommunityRank model. The exper-
imental framework and results will then be presented, after
which we conclude with a discussion and future work.

Related work
Topicality in link analysis. Researchers have proposed a
number of different approaches of combining topical infor-
mation with link analysis.

Haveliwala’s Topic-Sensitive PageRank (TSPR) (Haveli-
wala 2002) is the first published algorithm to incorporate
topical information into link analysis. Pal and Narayan
(2005) utilize similar biasing when following a link: surfers
will prefer pages on the same topic as the current page.
Richardson and Domingos’ Intelligent Surfer (2002) adopts
the idea of selecting links (and jump targets) using a prob-
ability distribution based on the relevance of the target to
the surfer’s query. Nieet al. (2006) also propose bringing
topicality into web rankings. Their approach distributes a
page’s authority across topics through the use of a topical
random surfer. Compared to the above, we also utilize top-
ics to generate communities in this paper, but our approach
is not limited to using topics when generating communities.



Figure 1: The CommunityRank process.

Other work has considered breaking a page into subpages.
Chakrabartiet al. (1999) proposed segmenting a page into
small pagelets containing contiguous subsets of links con-
sistently on a particular topic. Caiet al. (2004) use a vision
based algorithm to partition a page into blocks. In contrast,
in this work we replicate a page based on various incoming
conceptual communities rather than breaking it apart based
on the page’s structural layout.

Link analysis for community discovery. The process of
discovering communities on the web has also been studied.
Kumar et al. (1999) utilized bipartite subgraphs and cores
to find web communities. Flakeet al. (2000) proposed us-
ing a maximum flow and minimum cut method to identify
these communities. Andersen and Lang (2006) utilized a lo-
cal random walk model to detect more pages from a seed set
of pages within the same community. The above researchers
utilize link analysis as a tool to detect communities on the
web. In contrast, our proposed approach employs the com-
munity information to help link analysis ranking algorithms.

Roberts and Rosenthal (2003) propose a simple algorithm
to find page clusters based on their outlink sets, and the au-
thority value of a page is proportional to the number of clus-
ters which tend to link to it rather than the number of pages
which link to it. This is somewhat similar in spirit to our ap-
proach, but we consider the pages’ content when generating
communities, and do not value each community equally.

The CommunityRank Model
A web page may be relevant to multiple topics; even when
on a single topic, the page may attract attention from mul-
tiple communities. Instead of indiscriminately summing the
authority provided by each community, it may be worth-
while to keep them apart. To achieve this, we decompose a
web page into several community-specific subnodes so that
authority from a particular community only flows into the
corresponding subnode. The re-organized hyperlink struc-
ture gives a more accurate and robust representation of the
relationship of the Web, thus preventing a resource that is
highly popular for one topic (e.g., community A) from dom-
inating the results of another topic (community C) in which
it is less authoritative. This process is depicted in Figure1,
and described below.

Identify communities. In our approach, a community is de-
fined as a group of parents to a page that share similar con-
cerns. We argue that a recommendation is conveyed via a
hyperlink within some context. By representing that con-
text, the task of community identification is mapped into
clustering the contexts of recommendations to a common
page. There are various options to represent a hyperlink’s
context. In this paper, we will consider two possibilities:

• fulltext: the full contents of the document in which the
hyperlink appears, or

• anchortext: the anchortext of the hyperlink.
Other options (not explored here) could include contents sur-
rounding the link’s occurrences in that page, topic distribu-
tion, web graph structure, page layout and so on.

The next step is to group these contexts into clusters based
on their similarity. Clustering can be an expensive process,
and in our model needs to be applied to the set of parents for
each document in the collection. In our current implemen-
tation, we adopt a simplification: we predefine twelve broad
categories, chosen from the top level of the dmoz Open Di-
rectory Project (ODP) (ODP 2006), and use a textual classi-
fier to determine the category of each context. In this way,
the contexts of hyperlinks to a given node are categorized
into several communities based on their classification labels.

Building the graph model. With the community disam-
biguation process in place, the next step is to split pages into
community-specific subnodes and set up the network among
them. To understand how to construct this graph model, we
take an initial look at a small web made up of seven pages in
Figure 2. In the original web (shown in the left part), nodeA
is linked from two relatively distinct communities, and that
communityX represents 33% of the links andY, 66%. As
we suggested, nodeA is split into two independent subn-
odes, e.g.AX andAY , as the right part of Figure 2 shows.
A similar process is applied to every node in the web.

The next question is how to map the link structure present
among the original nodes to the community-specific subn-
odes. For the purpose of separating authority flows on dif-
ferent topics, incoming links are distributed among subn-
odes such that each subnode only gets links from a single
community. In contrast, the outgoing links are duplicated
across all subnodes so that the total authority flow passed
on to the original node’s children remains approximately the
same as before splitting into subnodes. As shown in the right
part of Figure 2, links from communityX and community
Y are separately directed toAX andAY , respectively, while
the outgoing linkA → E is replicated in each subnode:
AX → E andAY → E.

Link analysis. Popular link analysis algorithms can be put
in two categories: “PageRank” based ranking schemes and
“hub and authority” based ranking scheme. In this section,
we introduce how to apply each of them to the graph model
presented above.

The PageRank algorithm presents a so-called “random
surfer” model, where a web surfer on a given page may ei-
ther with probabilityd follow an outgoing link of the current
page chosen uniformly at random, or otherwise jump to a
randomly selected page in the Web.



Figure 2: Splitting the web graph.

An intuition behind PageRank is that a high-valued page
p is also likely to be a good source containing links to other
good pages. The hub and authority model (Kleinberg 1999;
Rafiei & Mendelzon 2000) presents a different viewpoint: a
good pagep does not mean that itself is a good source of
further links; but it does mean that pages that point top may
be good sources, since they already led to pagep.

When the hub and authority model is extended to include
a random surfer (Rafiei & Mendelzon 2000; Ng, Zheng, &
Jordan 2001), the surfer’s behavior is a bit more involved.
Here we follow a non-term-specific variation of Rafiei &
Mendelzon, and so when the current page isp, the surfer
either jumps to a randomly selected page, or randomly picks
any pageq that has a link into pagep and makes a forward
transition out of pageq. In this model, the surfer can follow
links in both forward and backward direction. The probabil-
ity that pagep is “forward” visited by the random surfer is
defined as its authorityA(p) and the probability to be “back-
ward” visited is hub scoreH(p), which can be formulated as

H(q) = d
∑

p:q→p

A(p)

I(p)
+ (1 − d)

1

N

A(p) = d
∑

q:q→p

H(q)

O(q)
+ (1 − d)

1

N
(1)

whereI(p) andO(p) are pagep’s indegree and outdegree,
N is the graph’s size. As in the original HITS scheme, hubs
and authorities interact with each other. The main difference
is that a node’s authority (hubness) will be distributed among
its parents (children) instead of entirely copied to each par-
ent (child). In addition, we include a random jump transi-
tion. By incorporating these features, this HITS-like propa-
gation, denoted as Global HITS (GHITS), can be applied to
the full web graph, not just a query-specific subgraph.

We can directly apply PageRank or Global HITS onto
our community-based graph and denote such combina-
tions as Community-PageRank (CPR) and Community-
HITS (CHITS) seperately.

Query-time ranking. After authority calculations are com-
plete, every subnode will have a traditional authority score
based on its associated community. The next task is per-
formed at query time: to be able to rank results for a par-
ticular queryq, we need to calculate a query-specific im-
portance score for each web page. This can be achieved
by summing the scores of subnodes that belong to a page
weighted by their affinity to this query. We consider two
representations for each community: either by the category

label shared by community members, or by its content cen-
troid. Correspondingly, the relevance between a query and a
community can be calculated in two ways:

• category-level relevanceusing a textual classifier to gen-
erate a probability distribution for a queryj across the
predefined categories, in which theith component repre-
sentsq’s relative relevance to categoryi.

• term-level relevancetextual similarity between a com-
munity’s centroid and a query, with both in the form of
term-vectors.

We consider both forms in our experimental work.

Experimental Setup
The main goal of the proposed CommunityRank is to im-
prove the quality of web research. Hence, we compare
the retrieval performance of well-known ranking algorithms
versus the proposed CommunityRank approaches.

Datasets.To avoid a corpus bias, we used two different data
collections in our experiments. One is the TREC1 GOV col-
lection, a 1.25M Web pages crawl of the .gov domain from
2002. The second data set is a 2005 crawl from the Stanford
WebBase (Choet al. 2006), containing 57.7M pages and
approximately 900M links.

To test various ranking algorithms on the GOV corpus,
we chose the topic distillation task in the web track of
TREC 2003, which contains 50 queries. For experiments on
WebBase, we selected 30 queries (shown in Table 1) from
those frequently used by previous researchers, ODP cate-
gory names, and popular queries from Lycos and Google.

Evaluation. Since there is no standard evaluation bench-
mark for the WebBase dataset, the relevance between query
and search results has to be inspected manually. In our eval-
uation system, the top ten search results generated by vari-
ous ranking algorithms were mixed together. For each ran-
domly selected query and URL pair, subjects (a total of 7
participants) were asked to rate the relevance as quite rele-
vant, relevant, not sure, not relevant, and totally irrelevant,
to which we assigned the scores of 4, 3, 2, 1, 0, respectively.
We used two metrics to evaluate the performance. The first is
Precision at 10 (P@10), which reports the fraction of “good”
documents ranked in the top 10 results. In our setting, a
result is marked as “good” if its average human judgment

1http://trec.nist.gov/

harry potter college football diabetes
music lyrics george bush automobile warranty
online dictionary britney spear herpes treatments
olsen twins diamond bracelet madonna
weight watchers windshield wiper brad pitt
playstation jennifer lopez the passion of christ
new york fireworks lord of the rings poker
halloween costumes iraq war tsunami
games poems musculoskeletal disorders
tattoos jersey girl st patricks day cards

Table 1: Set of thirty queries used for relevance evaluation
in WebBase.



Method Link Community Propagation
Context Relevance

CPR FC Fulltext Category CPR

CPR AC Anchortext Category CPR

CPR FT Fulltext Term CPR

CPR AT Anchortext Term CPR

CHITS FC Fulltext Category CHITS

CHITS AC Anchortext Category CHITS

CHITS FT Fulltext Term CHITS

CHITS AT Anchortext Term CHITS

Table 2: Different configurations of the CommunityRank
model.

score is above 2.5. To further explore the quality of re-
trieval, we also evaluated the ranking algorithms over the
Normalized Discounted Cumulative Gain (NDCG) (Jarvelin
& Kekalainen 2000) metric. NDCG credits systems with
high precision at top ranks by weighting relevant documents
according to their rankings in the returned search results;
this characteristic is crucial in web search. We denote the
NDCG score for the top 10 ranked results as NDCG@10.

For GOV data, TREC provides relevance judgments for
performance evaluation. There are 10.32 relevant docu-
ments per query on average for the topic distillation task
of TREC 2003. In addition to P@10 and NDCG@10, we
add Mean Average Precision (MAP) and Rprec as evalua-
tion metrics since they are widely used in TREC.

Ranking methods compared. We compare five ranking
algorithms to our proposed approach: BM2500 (Robert-
son 1997), PageRank (PR), Global HITS (GHITS), Topic-
Sensitive PageRank (TSPR) and Intelligent Surfer (IS).
BM2500, PR and GHITS are used as baselines; we addi-
tionally chose TSPR and IS because, similar to our model,
they measure a page’s reputation with respect to different
aspects (topic or term) instead of mixing them together.

As discussed previously, the CommunityRank model may
have several options; the resulting different combinations
are shown in Table 2. In the experimental section below,
we will study and compare their performances.

We rank all documents using a combination of the query-
specific IR score and the authority score generated by link
analysis approaches. The IR score is calculated using the
OKAPI BM2500 (Robertson 1997) weighting function, and
the parameters are set the same as Caiet al. (2004). The
combination can be score-based, where a page’s final score
is a weighted summation of its authority score and IR score;
it also can be order-based, where weighted ranking positions
based on importance score and relevance score are summed
together. In our implementation, we choose the order-based
option. All ranking results presented in this paper are al-
ready combined with IR scores.

Textual classification. We use a well-known naive Bayes
classifier, “Rainbow” (McCallum 1996), to decide the cat-
egory for each hyperlink’s context for the purpose of com-
munity recognition. The classifier is trained on 19,000 pages
from each of twelve categories of the ODP hierarchy.

Method NDCG@10 P@10 MAP Rprec

BM2500 0.199 0.120 0.149 0.140

PR 0.218 0.138 0.153 0.153

GHITS 0.204 0.136 0.143 0.154

CPR FC 0.240 0.148 0.168 0.184

CPR AC 0.231 0.140 0.165 0.167

CPR FT 0.210 0.134 0.148 0.165

CPR AT 0.219 0.130 0.159 0.162

CHITS FC 0.241 0.144 0.173 0.184

CHITS AC 0.218 0.142 0.155 0.169

CHITS FT 0.215 0.132 0.160 0.160

CHITS AT 0.210 0.126 0.159 0.163

Table 3: Performance on GOV.

Experimental Results
Community decomposition and graph expansion.
Through community decomposition, each node in the web
graph is split into subnodes with respect to the different
communities linking to it. As a result, the 1.25 million pages
in GOV are decomposed into 1.43 million community-
specific subnodes and the 57.7 million nodes on WebBase
are divided into 69.3 million subnodes (here we used
“fulltext” to represent contexts in these calculations). The
“community indegree”, or number of communities pointing
to a page, is 1.3-1.4 on average. The indegree distribution is
shown in Figure 3. The number of communities linking to a
document is correlated with the number of pages pointing to
it (with coefficients of 0.29 and 0.27 for GOV and WebBase,
respectively).

Many pages on the web cover topics from different com-
munities. For example, in the GOV dataset, the page
http://dc.gov/ is the government homepage of District of
Columbia. We found parent pages from various commu-
nities, such as “Recreation”, “Sports”, “Business”, “Health”
and “Computers”, pointing to it. For another example, the
pagehttp://www.tourism.wa.gov/ is the official site of Wash-
ington’s state tourism. Its parents were categorized into ei-
ther “Recreation” or “Business” communities.

Results on GOV.Three approaches, BM2500, PageRank
and GHITS, are chosen as baselines. Their performance on
four evaluation metrics are shown in the first three lines of
Table 3. Recall that the CommunityRank model may have
different settings. Table 3 investigates which policy is opti-

Figure 3: Distribution of community indegree.



Figure 4: Combination of IR and importance scores on GOV.

mal. As can be seen,CPR FC get the best performance on
P@10. Methods shown in bold outperform the three base-
lines. The other four approaches, which use “Term-level”
rather than “Category-level” to measure query relevance,
fail on one or more metrics when comparing to PageR-
ank or GHITS. We also observe that “Fulltext” representa-
tion is slightly better than “Anchortext” representation while
“CHITS” propagation is similar to “CPR” propagation.

In the following experiments, we compare the winner
of our model CPR FC, denoted asCR* here, with the
other four rankers: PageRank, Global HITS, Topic-Sensitive
PageRank and Intelligent Surfer.

We first conduct a parameter study to investigate how dif-
ferent weights for importance and relevance scores will af-
fect ranking systems’ performance. Figure 4 shows the pre-
cision@10 asα is varied for the four ranking approaches,
whereα is the weight of BM2500 score in the combina-
tion. As can be seen, CR* curve is almost always equal
to or above other curves in the graph, showing that our ap-
proach generally outperforms other approaches. All curves
converged to the baseline whenα is 1, which corresponds to
the performance of BM2500. In GOV dataset, for each ap-
proach, we tune the combining parameter for the best P@10
and output its results with this optimal combination as final
results. In contrast, for experiments on WebBase, we fix the
weight of IR score as 0.8 to save the cost of manual evalua-
tion across different values ofα.

Figure 5 shows the overall performance comparison. CR*
outperforms other approaches on all metrics. An observation
is that IS does not work well on TREC data, as it performs
even more poorly than PageRank. To determine whether
these improvements are statistically significant, we calcu-
lated several single-tailed t-tests to compare CR* with all
other approaches. As Table 4 shows, CR* significantly ex-
ceeds the other approaches at a 95% confidence level on both
metrics, except for TSPR.

Results on WebBase.Performance on the BM2500, PageR-

Metric PR GHITS IS TSPR BM2500

P@10 0.025 0.034 0.013 0.082 0.007

NDCG@10 0.024 0.002 0.024 0.143 0.007

Table 4: P-values for the t-test on GOV.

Figure 5: Comparison of overall performance for GOV.

Method NDCG@10 P@10

BM2500 0.431 0.553

PR 0.445 0.560

GHITS 0.463 0.563

CPR FC 0.493 0.607

CPR AC 0.496 0.593

CPR FT 0.500 0.613

CPR AT 0.500 0.610

CHITS FC 0.492 0.583

CHITS AC 0.480 0.573

CHITS FT 0.501 0.610

CHITS AT 0.494 0.603

Table 5: Performance on WebBase.

ank and GHITS baselines using NDCG@10 and P@10 can
be found in the top three rows of Table 5. This table also
lists the performances of different community rankers on
WebBase. All the results are better than the baseline per-
formances. We note thatCPR FT achieves the best perfor-
mance by outperforming PageRank by 5% on NDCG@10
and 5.3% on P@10; we denote it asCR* for further com-
parisons. In contrast to the results presented for GOV,
“Term-Relevance” outperforms “Category-Relevance” on
WebBase.

Figure 6 shows the overall performance comparison. In-
telligent surfer and CR* lead the competition with P@10 of
62.0% and 61.3%, NDCG@10 of 0.497 and 0.500 respec-
tively. Interestingly, different from CR*’s consistent superi-
ority on GOV and WebBase, Intelligent Surfer shows dras-
tically different performance on the two datasets, from the
worst to the best.

Again we performed t-tests to compare CR* to the other
approaches. As Table 6 shows, CR* significantly outper-
forms BM2500, PR, GHITS, TSPR (on NDCG@10) at 90%
or better confidence level, CR* and intelligent surfer are sta-
tistically indistinguishable.

Discussion. From the experiments shown above, we learn

Metric PR GHITS IS TSPR BM2500

P@10 0.013 0.008 0.395 0.291 0.006

NDCG@10 0.002 0.07 0.489 0.077 0.0005

Table 6: P-values for the t-test on WebBase.



Figure 6: Comparison of overall performance for WebBase.

that the “Anchortext” representation does not work as well
as the “Fulltext” representation for WebBase. One possible
reason is that anchortext representation is short and gener-
ally similar across links to a given page, and thus less in-
formative. “CHITS” propagation is similar to “CPR” prop-
agation in performance. In contrast, term level relevance
measurement outperforms category level measurement on
WebBase, but fails on GOV. Intuitively, there are different
policies dealing withnarrow and broad queries. On one
hand, we find the need to generalize narrow queries, like
those in GOV having only 10 relevant documents, from the
term-level to category-level to include more potential candi-
dates; on the other hand, with broad queries like those we
used in WebBase that have plenty of relevant results, we fo-
cus on the term-level relevancy to refine the search.

Intelligent surfer exhibits quite poor performance on GOV
dataset. Since intelligent surfer only wanders within a term-
specific subgraph, given a small Web like GOV, the subgraph
is less likely to be well-connected and applicable to link
analysis. Based on our statistics, the average density of links
per page of term-specific subgraphs in GOV (for terms of 50
queries) is 3.11 versus 16.5 in WebBase. In addition, intel-
ligent surfer has significant time and space overhead since
it needs to generate term-specific rankings for all terms in
advance; on the contrary, the CommunityRank model only
needs to be calculated once while achieving matching per-
formance on WebBase and better results on GOV.

Conclusion
In this paper we propose a novel community ranking al-
gorithm which decomposes the normal web graph into
community-based subnode graph. Experimental results on
two real datasets indicate that our approach consistently im-
proves search engines’ ranking performance. In the future,
we expect to further study different choices for clustering,
the effects of link weights, and to apply this model on query-
specific datasets. We would also like to consider how to de-
scribe the reputation of a page within the communities in
which it is found.
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