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Abstract

In this paper, we target at four specific recommendatiorstaskhe aca-
demic environment: the recommendation for author coasttips, paper ci-
tation recommendation for authors, paper citation recongagon for pa-
pers, and publishing venue recommendation for author+pagues. Differ-
ent from previous work which tackles each of these tasksragglg while
neglecting their mutual effect and connection, we propogeirg multi-
relational model that can exploit the latent correlatiotwsen relations and
solve several tasks in a unified way. Moreover, for bettekiram purpose,
we extend the work maximizing MAP over one single tensor, avadke it
applicable to maximize MAP over multiple matrices and teasdExperi-
ments conducted over two real world data sets demonstratefiictiveness
of our model: 1) improved performance can be achieved witit jnodeling
over multiple relations; 2) our model can outperform thrésesof-the art
algorithms for several tasks.

Keywords. Recommender systems, matrix/tensor factorization, joioteling,
MAP, latent factor model

1 Introduction

People can conduct many activities in academic environnauttlishing papers,
collaborating with other authors, or citing other papeutilars. Theses activities
are sometimes not easy to fulfill. For example, reading ardefore citing new
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published papers is one of the most important tasks thatareser should conduct
for research, however, to find relevant and referentialrgifie literature from hun-
dreds of thousands of publications is a time-consuming ahdrintensive task
especially with the rapid development of Internet which emkublished papers
easy to be accessed. To better facilitate such activitidermation needs have
arisen for developing systems that can automatically leefedict or recommend
proper venues to submit, papers to cite, and authors tdoaslide. In this paper, we
focus on the prediction task in academic environment, amticpéarly pay atten-
tion to the following four tasks: the prediction on publisgivenues, collaborators,
cited papers for authors, and cited papers for papers.

Even though individual systems or algorithms have beenqgwegp to tackle
each of the four tasks separately, which we will review iredegections, limita-
tions still remain. Most of the previous methods only focasome single type of
relationship while neglect to explore the mutual intermctamong different rela-
tionships. In a real complicated academic environmentchvioiften consists of
heterogeneous nodes and links, each scientific factor egndifferent roles, and
participate in different activities. For example, indival researcher can work as
an author to write paper, as a collaborator to work with aeptesearcher, or to be
cited by another researcher. The entire academic netwadngosed of multiple
relations that mutually affect each other.

To better model this multi-relational academic activitee®d to provide good
recommendations, several challenges remain:

e Coupled high order data: as mentioned above, there are multi-typed scien-
tific entities in the academic environment, playing différeoles and partic-
ipating in different activities. These activities are ofteoupled. It is quite
natural for a paper that has a large number of citations frimergpapers to
be cited by more authors.

e Cold start problem: the cold start problem is a typical problem in recom-
mender systems. Take the task of citation recommendatiopdpers as
one example, some most recently published papers will héeltited since
they have never been cited before by other papers or auteees, though
they are highly relevant to a topic or may have great contidibuin a certain
field.

e Personalization support for authors. Researchers play an important role in
many activities, and they may have different preferenceselacting which
paper to cite, or which venue to submit, even though thosergam venues
focus on similar topics.



e Interest evolution for authors:. The interest of researchers evolves over
time. Even though they keep on working in one research fiktlr tesearch
focus and methods may change.

To tackle these challenges, we propose a joint multi-@hati model referred
as the JIMRM model which directly models several groups optamliactivities in
the academic environment and provide a more general framketivat can solve
several prediction tasks simultaneously in a unified way.

Our model is fundamentally the latent factor collaborafitering(CF)-based
model, in which each relation can be represented as a matnigloer-dimensional
matrix. However, the following three characteristics idigtish our model from
previous oneskirstly, our model is composed of multiple matrices or tensors, each
of which indicate one relation in the academic environmant| are highly coupled
with each other.Secondly, we integrate the temporal information into the gener-
ation of several matrices to better reflect the involutioercauthors’ preferences;
Thirdly, we choose the objective function for solving the model agimaing
the mean average precision (MAP) as compared to most of éweopis work min-
imizing the predicting error (RMSE). MAP is a ranking-bastandard IR measure
for which errors at top of the ranking list will lead to a highgenalty than errors at
lower places of the ranking list. This top-heavy biased progpmakes MAP par-
ticularly suitable to work as the objective function for oeemender systems, since
most people will only pay attention to the top ranked resultee recommendation
list. For this reason, we choose to maximize MAP as our obgdétinction.

To sum up, the main contribution of our work are as follows:

e We propose a joint multi-relational model which integraseseral coupled
relations in an academic environment. This model is pdertu designed
for four recommendations: the prediction task on paper ssdion for
venues, co-authorship prediction, paper citation premtictor authors, and
paper citation prediction for papers.

e we choose to maximize MAP as the objective function for swj\the model,
and extend the tensor factorization approach optimizingPMAto a more
general framework that can maximize MAP for coupled mudtiptatrices
and tensors.

e experimental evaluation over two real world data sets destnate the capa-
bility of our model in four recommendation tasks, as theyvstmproved
performance as compared to three state-of-the-art dtgosit



2 Redated Work

Recently, researchers have explored to enhance the draalifatent factor models
by incorporating additional features or content of papéting entities. Typical
works include the 'Regression Based Factor Models’ [1], @R model [20],
and the 'feature-based matrix factorization’ [3] model.wéwer, all of these three
models can only cope with the two-order data interactions, @annot be model
higher-order data structures. 'Factorization Machine'delgporoposed by Rendle
[12] combines latent factorization model with SVM. Comphkeith these work,
our model incorporate both features for papers and autheagjng it capable to
model more than two-order data interactions.

The second direction of development for latent factor maaphasizes on
joint modeling multi-relational relations. One typical wo the 'collective ma-
trix factorization’ model [17] however is only limited to bevo or three relations.
Most recently, Yin et al. [24] proposed a 'Bayesian proliabd relational-data
Analysis’ (BPRA) model which extends the BPMF and BPTF mdgetaking it
applicable to arbitrary order of coupled multi-relatiomilta structures. However,
the model isbased upon point-wise RMSE optimization, diffié from our targeted
ranking-based optimization.

Several ranking-based optimization models have been pegptw replace op-
timizing point-wise measures, such as RMSE or MSE. One &ypiork: the
'‘Bayesian Personalized Ranking’ (BPR) model [13] minimsizke AUC metric
by using a smooth version of the hinge loss.The method thatost similar to
our work is the TFMAP model [15], which proposes a method terapimate and
optimize the MAP measure. However, their model is for usamicontext recom-
mendation, and is only able to deal with one single tensaticel, which are both
different from our work in this paper.

We then summarize some relevant work with each specific resemdation
task considered in this paper. Future paper citation recendation is the most
widely explored problem. We categorized existing work® ithiree groups. In the
first group, neighborhood based CF models along with gragsied link prediction
approaches are widely used to tackle the citation recomati&ms for a given au-
thor or paper with a partial list of initial citations prowd, typical works in this
category include [11], [26], [18] and more. In the secondugrof approach, proba-
bilistic topic modeling is used for citation list generatitn the third group, citation
context (the text around citation mentions) is utilized.pital work includes the
context-award citation recommendation work and its exterssproposed by He
et al. [7, 6] Despite of these existing work, few work has beelteped using CF
latent factor models for recommendation, excluding the @idtlel.

Coauthor-ship recommendation is mostly tackled by usiraplgtbased link



prediction approach. The most representative work is pegddy Liben-Nowell

[10], which measures the performance on using several gvaphd metrics. The
work on predicting future conference(venue) submissi@eidom explored. Yang
et al. [21] proposed an extended version of the neighbort@ednodel to solve
this problem recently. In their model, they incorporatd@tyetric features of pa-
pers and further distinguish the importance of four differg/pes of neighboring
papers via parameter tuning and optimization. Similar toghper citation work,
few existing work applies the latent factor model based Cpragch, which is

different from the work in this paper.

3 Preiminary Experiments

In this section, we conducted some simple experiments onréabworld data
sets: theACM data set andArnetMiner data set to analyze the characteristics of
activities and relationships among scientific factors mdlsademic environments.

3.1 Datasets

The ACM data set is a subset of thédCM Digital Library, from which we
crawled one descriptive web page for each 172,890 distiapers having both
title and abstract information. For each published paperemiracted the informa-
tion about its authors and references. Due to possible an#dmes’ ambiguity, we
represent each candidate author name by a concatenatibe fafst name and last
name, while removing all the middle names. We then use exatthrto merge
candidate author names. Finally, we obtain 170,897 distimthors, and 2097
venues.

The ArnetMiner data set is the data set ‘DBLP-Citation-network V5’ pro-
vided by Tsinghua University for their ArnetMiner acadermsiarch engine [19].
It is the crawling result from the ArnetMiner search engimeFeb 21st, 2011 and
further combined with the citation information from ACM. &loriginal data set is
reported to have 1,572,277 papers and to include 2,084 j(dtbn-relationships.
After carrying out the same data processing method as weodithé ACM data
set, we find 1,558,415 papers, 795,385 authors and 6010senue

3.2 Coupled Relations

We are first interested in finding out whether multiple r&las in an academic en-
vironment are coupled. As a simple test example, we compuitedch author in
both data sets his/her total number of publications, citetiand coauthors, and
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evaluate the correlation between these three factors.ré-iyand 2 show our re-
sults.

As we can see, there exists an obvious linear positive atioel between num-
ber of publications and coauthors, indicating that undestneircumstances, the
more coauthors you have, the more publications you can\aehienis observation
is compatible with our common sense. However, the coraalietween publi-
cation number and citation number is not so obvious. As shiowiigure 2, we
have many data points scattered in the lower-left corneheffigure, indicating
that some authors who do not publish many papers can alsevachigh citation.

3.3 Cold Start Problem

We evaluate the changes in papers’ ability in attractingticih to demonstrate the
existence of cold start problem in the academic environméfetaverage the num-
ber of citations each paper retrieves in both data sets oaryyeasis. This simple
statistical result, as shown in Table 1, indicates thatayey a newly published
paper begins to retrieve citations 2 more years later ttgpublication. However,



Table 1: Statistics on Papers’ Citations
Dataset No. of Papers First Citation Avg. Citation
after publication Frequency

ACM 55392 2.0350 0.9693
Amet 315831 2.7599 0.8528
ossf A | A

Percentage
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Figure 3: Average number of citations change over time

after that, it just costs around 0.97 years and 0.85 yeansdpers in ACM and Ar-
netMiner data set to retrieve one new citation. Another &nsgatistics, as shown
in Figure 3, indicates that papers on average can achievé ahdiseir citations
in the following year of its publication, and that number dmally drops as time
evolves.

3.4 Interestsevolution

We evaluate the evolution of authors’ research interestshiegking the changes in
their publishing venues. For ACM data set, we collect formeaugthor the publish-
ing venues of his papers published before 2003 and after @3¢&ding 2003) as
two sets, and adopt the Jaccard Similarity method to ddtedimilarity/difference
between these two sets. For ArnetMiner data set, we set Higpint as 2006. We
choose the year point by guaranteeing that the average mwhbestinct venues
of authors in each separate data set is equivalent beforafterdthat year point.
Table 2 shows the results.

As indicated, the average Jaccard values for both data sefsretty small,
indicating that authors have a diversified publishing velisie Authors chose dif-
ferent venues to submit, indicating that their researcluganay evolve over time.



Table 2: Statistics on Changes of Publishing Venues

ACM ArnetMiner
(Y =2003) (Y = 2006)
No. of Authors 23358 188143
Avg No.VenuesbeforeY 2.73 5.14
Avg No.Venues after Y 2.75 5.09
AvgJaccard Similarity  0.0946 0.1188

Table 3: Notations

K Number of entity type$ K = 6)
a,p,pe, v, w,ar represents author, citing paper
cited paper, venue, word
and feature entity type respectively.
a; entity of typea with indexi
k entity type.k € a,p, pc, v, w, ay
Ny, Number of entities of typé in data corpus
D Dimension for latent vector
14 Number of relationgV” = 6)
O Latent matrix for entities of typé
Ok, Latent feature vector fa*" entity of typek

4 Joint Multi-Relational Model (JMRM): Model Design
and Generation

Inspired by the information needs for developing recomneersystems in the
academic environment and in order to fulfill the challenges, propose a joint
multi-relation model. Our model is designed for four partar recommendation
tasks in the academic environment, each of which represemsicademic activ-
ity, and induces one relation. Therefore, we have four malations in the model:
the author-paper-venue relation (represented as the AR36t), author-author-
collaboration relation (AA-matrix), author-paper-citat relation (AP-matrix), and
paper-paper-citation relation (PP-matrix). Figure 4 shdte framework of the
model. In order to deal with the cold start problem and bedtgrport authors’
personalization, we further incorporate additional fea$ufor papers and authors.
In the current work, we only consider the pure paper contsiagoer features, and
we use the PW-matrix to represent it. We model authors arid féetures as the
AF-matrix, and will introduce more detailed features fothars in the following
section.

We formally describe as follows the four recommendatioediction tasks and
introduce how the corresponding relation is constructed.
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Figure 5: Graphical Model Representation

Task 1 Publishing venue prediction: this task involves predicting the publishing
venuev, for a given author-paper paft;, p;) such that papey; written by author
a; 1S published in venuey.

Corresponding relation APV-tensor: the author-paper-venue relation This
three-order relation consisting of triplescauthor-paper-venue indicates
the publishing venue selection for papers with known awghee have:
APV (a;,pj,vr) = 1 if paperp; written by authora; is published in venuey;
Otherwise, APV (a;, pj, v) = 0.

Task 2 Recommend paper citations for authors:. this task involves recommend
a set of paperp for a given author; such that each papes (p; € p) is cited at
least once by authar;.

Corresponding relation AP-matrix: the author-paper-citation relation The AP
matrix models the citation relationship between authors papers. An author
may cite a paper multiple times at different times, and tleggrence of the author
over papers may also change over time. In order to modeldhigporal evolution
property, we first generate a three-order tensor incorpayathe temporal factor
as the third dimension, and then collapse the tensor intooadimensional ma-
trix by aggregating the number of citations at different ngeaith a time decay



function. Given an authat;, and a papep; cited bya;, the number of timegp;

is cited bya, on yeart, (the value for entry< a;,p;,t;, >) can be retrieved as:
Elai,pj,tk) = 32, cp; 0W(Pai) =t A pj € cp,;) Wherep,; is any paper pub-
lished bya;, pq; is the publication set af;. cp,,; is the set of all cited papers pf;.
Functiony(p,;) retrieves the publication year of,;, andd(c) is a function which
returns 1 if conditiorc is satisfied and 0 otherwise. We aggregate the citations at
different time points based upon the hypothesis that asthaterests decay over
time, and therefore more recent citation contribute moeyiethan older citation.

We penalize the old citations by introducing an exponemtigday kernel function.
The entry< a;, p; > for the collapsed author-paper matrix can thus be defined as:
Eap(ai,pj) = ngzm e BTe=t%) . B(a;, p;,t1) whereT; and Ty are the earliest
and last year for paper publication in the data set, @igithe decay rate.

Task 3 Recommend coauthors for authors: this task involves recommend a set
of authorsa for a given author; such that for each authar; € a, there exists a
coauthorship betweesy anda;.

Corresponding relation AA-matrix: the author-author-collaboration relation
The AA-matrix indicates the collaboration, an importantiab interactions be-
tween pairs of authors. Similar to the changing interesfsauthors over pa-
pers, researchers may also change to work with others sarin different
time periods. We follow the same procedure as introducedttfer AP-matrix
generation by first constructing the author-author-timeste, and then collapse
it into author-author matrix. The entry fot a;,a; > can thus be determined by:
Eaalai,a5) = 307 p e P00 B(a;, a;, ;) whereE(a;, aj, ) is the number
of times authom; collaborates withu; on yeart;,.

Task 4 Recommend paper citations for papers. this task involves recommend a
set of paperg for a given papep; such that each papgr (p; € p) is cited at least
once by papep;.

Corresponding relation PP-matrix: the paper-paper-citation relation The gen-
eration of the PP-matrix is different from that of the AP-mabr AA-matrix, since
each paper can only cite another paper once. However, tharaexists temporal
influence, as a paper may cite a paper published long timeaxgbmore recent
one. Suppose we have three papgrsp2 andp3, published iny1, y2 andy3 re-
spectively {1 < y2 < y3), and we have papeB citesp2 andpl. In our work, we
assume thgb2 will have a greater contribution in presenting the topienests or
preferences fop3 thanpl, since in publishing papers, we often need to review and
compare with those most recently published and stateesfthpapers. With this
assumption, we have for each entryp;, p; > indicating that papep; citesp; in
the PP-matrix asEpp(p;, pj) = e PWP)=v®:)) wherey(p;) andy(p;) returns
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the publishing year fop; andp; respectively.

PW-matrix: the paper-word relation PW-matrix indicates the features of papers.
In current work, we only consider the pure content of papars] therefore we
collect the top returned words in the data set with highegifency. Each entry of
< p;,w; > indicates the term frequency of word; in paperp;.

AF-matrix: the author-feature relation We identify 20 distinctive features for
authors listed in Table 4 to represent the personalizedaptppf an author from
three aspects.

Table 4: Author Features
Feature Category Feature

Simple bibliographic| total publicationNo ; total citationNo ; H-index [8];
G-index [4]; Rational H-index distance [14];

Rational H-index X [14]; E-index [25]; Individual H-indexX];
Normalized individual H-index [5]

Network-based PageRank score on coauthor network;

PageRank score on citation network

Temporal-based CareerTime [23]; LastRestTime [23];

Publnterval [23]; Citation Influence Ratio [23];
Contemporary H-index [16]; AR-index [9]

AWCR-index [5]; Avg Publication number; avg Citation nunbe

5 Joint Multi-Relational Model: Algorithm

5.1 Preliminary Notations

As shown in Figure 4, our joint multi-relational model castsi of six relations
generated by authors, papers, venues, words and featuiésserit is noticeable
to mention that we distinguish the ‘paper’ entity into twdfelient entities types:
the citing papers and cited papers, and therefore we ahegbave six entity types.
The joint multi-relational model is a further extension ageheralization of
the classical matrix or tensor factorization, in which eadality in the interactions
can be represented by a latent feature vectd’th whereD is typically a small
number. By doing this, each tensor or matrix can be factdrie¢o lower rank
approximations. Figure 5 shows the graphical model for tat dactorization
associated with our model. The lower-dimensional latewtors are denoted by

0 = (61,...,0k) (K = 6), where for eachk € K 0, = (0k1,...,0kn,) €
RNkXD

11



5.2 Modd Factorization maximizing MAP
521 Computing MAP

We choose to maximize MAP as our objective function due teojpsheavy bias
property. Two questions remain for incorporating MAP intatnix/tensor factor-
ization: how to represent the ‘rank’ of the entities and éfiere compute the MAP
scores based upon the latent feature vectors. We followaime sdea proposed in
paper [15] to smoothly approximate MAP, and make it appedprio be used for
both tensors and matrices. Since our model contains onertand five matrices,
for better illustration, we choose to take the APV-tensat AP-matrix as two ex-
amples to show how to compute the MAP scores. The same medindakcapplied
to the other four matrices.

In a tensor like APV-tensor, the predicted value for eacyeata;, p;, v, >
can be computed agh,p v, = (0o, 0, 00,.) = 301 Oaidbp,dbu,.a WhereD is
the dimension for latent vector.

Similarly, In a matrix like AP-matrix, the predicted valuerfeach entry<
a;,pj > can be computed as:

faipj = <9az‘79pj> = 25):1 Haidepjd

Under these schemes, suppesgin triple < a;,p;, v, > is the entity that
needs to be ranked, apdin tuple < a;, p; > is the entity that needs to be ranked,
then we can directly approximale’r,,,.,, for v, and1/r,,,, for p; by:

! zg(faipjvm) :g(waw@maevm»

Taipj vm

L~ g(faipj) = 9(<9ai’917j>)

Taipj
where functiory(-) is the sigmoid function satisfying(x) = H%
Correspondingly, the loss function in terms of the MAP valéfmr APV-tensor

and AP-matrix can be computed as in equation 1:

12



N,

Ng
1
Lopw = MAPa v =
P P NaNp; —1 Zt 1fAPva1pJ,Jm

X Z fAPV 7,T-’]vt1 9017917_179'Utl>)
t1=1

Ny
X Z fAPVaipjvkzg(<9ai7 (evtz - 0%1)7 9Pj>) (1)

t2=1

1 Qe 1
Lep = MAP,, = 27
1= IZ fAP P

iPj

X Z fAPalpn 90«1’01%1))

tl=1

Np
X Z fAPaipm g(<9¢lia (0Pt2 - 9Pt1)>) (2)
t2=1
To compute the loss function for matrix AA, PP, PW and AF, wa talow
the same way as we do for the AP matrix.

5.2.2 Optimization

We introduced the loss function for each individual matearsor in the last section.
The overall loss function for this multi-relational modsltherefore a summation
over all individual loss functions plus the regularizatiterms to prevent over-
fitting, as shown in Equation 3. We ugeto denote the regularization terms, where
|| - || indicates the Frobenius norms.

We choose to use gradient ascent to solve this optimizatiolblgm. For each
relation (matrix or tensor) in the model, we alternativeriorm gradient ascent
on the latent feature vector for one entity at each step,eAt@ep the other latent
vectors unchanged. The gradients for the same entity adifbsgent relations will
be merged. The same process will be repeated for a certaitveruof times, or
until it finally converges with no further updates on all lsitéeature vectors. To
better illustrate, we list below the gradients for the autpaper and venue entity in
the APV-tensor, and author and paper entity in the AP-maS8irilar process can
be applied into other entities in other relations. We ledneegeneralized updating
forms for a model withK' N x M matrices for future’s work.

13



L=Lapy+Laa+Lap+Lpp+Lpw + Lar+Q
Ao
Q= k| 9y |2 3
) 5 | O || 3)

k€a,p,pc,v,w,ar

For one particular authat;, paperp; and venuev,, in the APV-tensor, the
gradients for updating their corresponding latent veétgy ¢, and@,,, can be
computed as follows. For notation convenience, we adopfdit@ving substitu-
tions:

fAPV aipjom <9¢1i ) 9101‘ ) 0Um>

fAPV aipj(vey —vey) <9ai ’ epjv (9Ut1 - 9'Ut1 )>

N, N,
> 3.
- PVaipsUtl
69(” s=1 Zt 1 fAPVa irsve t1=1

X [61(0,, ®9Ut1)+g(fAPvalpsvtl)

x Z fAPVaipsvtz (fAPV a;ps(viy *Url))

to=1
X (Op, © O, )] = Ao,
0L A Y
— = ) Z farv,
O, s=1 Zt 1fAPVasp]u, t1=1 o

X [61 (9% © evtl) + g(fAPVaSpjvtl )

N,
X Z fAPVast“Q (fAPVaspJ(vtzfvtl))

to=1

x (oas © Ou,,, )] — Abp,

OLapv Z Z faPVipyon (as © Op,)

90,,, s=1d=1 Ztl 1fAPVa sPavty

Ny
XY FAPVa g, 19 (FAPV e

to=1
< g(farv,, vty —vmy) T (9(FAPVapyor,)

— g(farva.,, ) (Fapv,, bty —vm) )]
— A, (4)
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where
N,
o = 9/(fAPvaipjvm)ZfAPvaipjvtlg(fAPvaipj@hfum)) (5)

t1=1

Ny
- g(fAPvaipjvm)ZfAPvaipjvt] "(fapv,, ooy oy — o))

t1=1

For one authot,; and papep; in the AP-matrix:

N
OLap 1 -
= farp,,,, [02(0p,))
00, Zivjl fap,,,, t; '

Np
+ g(fAPaiPtl ) Z 'fAPaiptg g/('fAPai(Pt2 7pt1))(9pf2 )]

t2:1
— A,
N,

oL fap,.,. (Oa,
5, = >o Ll <3 Far G

s= 121&1 lfAPa sPty to=1
X g(fAPas(pt2 7pj)) (g(fAPasptz )
- g(fAPaspj))g/(fAPas(pt2—pj))]

— A, (6)
where
52 = fAPap ZfAPa Pty fAPw(pfl pj))
t1=1
NP
_ g(fAPai,Pj) Z fAPa““1 g/(fAP%‘(Ptl *Pj)) (7)

t1=1

whereg/(z) is the derivative ofj(xz) and® denotes element-wise product, and
A is the regularization parameter.

5.3 Recommendation by Factor Matrices

After retrieving the latent matrix for each entity type, ststraightforward to gen-
erate the ranking list based upon the recommendation taskhendesign of ma-
trix/tensor. Take the prediction task for the author-pagitation as one example,
given one author;, we can achieve the relevance score of each paper the
candidate set by computingz%j ~ g(faipj) = g({0a; 0p,)), and rank all papers
in descending order. The same process can be applied thail r@commendation
tasks considered in our model.
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Table 5: data set statistics

data set authors papers venues APV AA AP PP
records records records records
ACM 24764 18,121 846 47,810 112,456 366,201 71,396

ArnetMiner 49,298 47,794 1,682 132,186 361,794 1,675,5637,581

6 Experimental Evaluation

We report in this section the experimental evaluation tesidr our model, and
compare it with several existing state-of-the-art aldoris.

6.1 Data Preprocessing

We conduct our experiments on a subset of the ACM and ArnetMitata set
introduced in section 3. For papers in each data set sepjanatcollect the pa-
pers with complete information (authors, abstract, ptiohig venue and publishing
year) and have been cited at least 5 times in the ACM data det@times in the
ArnetMiner data set. Based on these papers, we furtherctalliegheir authors and
publishing venues.

We construct the tensor and matrices as introduced in se8tior each data
set. Thes parameter in AA, AP and PP matrix is set to be 0.5. The PWicsland
AF-relation are constructed for all valid authors and papé&eable 5 shows a brief
data statistics for both data sets, and the total numbercofds for each relation.
Five-fold cross validation is conducted over the APV-rielat AA-relation, AP-
relation and PP-relation to get the averaged predictingitedn the APV-relation,
since each paper can have multiple authors but just oneshurtj venue, in order
to avoid to have overlapped records in the training andrtgstet, we split the APV-
relation into five folds by guaranteeing that one particplaper with all its authors
(and the associated records) would appear in either th@rigpor the testing set.

We adopted MAP as our evaluation metric, as the model is alpedesigned
for maximizing MAP. Since the data in each relation is qupiarse (as shown in
Table 6), we cannot treat all entries with no observed dataegsitive samples
(consider the situation that papershould also cite papér, but unfortunately it
did not.), in which case the recommendation results wouldldéteriorated. To
avoid this, we randomly select 200 negative samples (mugitehithan the average
node degree in each relation) for each entity in the testaig She performance
is therefore measured based on the recommendation listomédins the known
positive samples and 200 randomly selected negative sample

In all experiments, we set the latent dimensionality= 10, the regularization
parametetn = 0.001 and the learning-rate as 0.001.
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Table 6: data set statistics
Avg. node degree
data set APV AA AP PP
ACM 1 10.28 1751 4.71

ArnetMiner | 1 18.40 42.03 7.81

Table 7: Performance comparison over different combimatiof relations

Combinations ACM

APV AA AP PP
Cco 0.0329 0.0487* 0.0456* 0.0389
Ci 0.0263* 0.0560 0.0455* 0.0325*
C2 0.0282* 0.0462* 0.0458* 0.0338f
C3 0.0307* 0.0460* 0.0455* 0.03297
C4 0.0279* NA NA NA
C5 NA 0.0560 NA NA
Cé6 NA NA 0.0465 NA
Cc7 NA NA NA 0.0395
C8 NA 0.0468* 0.0453* 0.0325*

6.2 Co-effectsanalysisof multiple relations

In this part of experiments, we work on totally eight diffetekinds of multi-
relational combinations, and evaluate the performancefoue tasks respectively.
Table 7 and 8 shows the results.

In Table 7 and 8,¢y indicates the single relation respectivelyc;
{apv, aa,ap, pp,pw,af}, co = {apv,aa,ap,pp,pw}, c3 = {apv,aa,ap,pp},
cs = {apv,pw,af}, cs = {a,af}, c¢ = {ap,pw,af}, ¢z = {pp,pw}, and
cg = {aa,ap,pp}.

Several observations can be drawn from the results. 1) Ualdeost all situ-
ations, jointly modeling multiple relations can indeed noye the prediction per-
formance. For the four tasks over two data sets (just extepptblishing venue
prediction (APV) on ACM data set), the best performancevsgbk achieved when
some relations are jointly modeled. 2) There is no cleardrrat the more rela-
tions we jointly modeled, the better performance we caneaghi For some pre-
diction task, i.e., the paper-paper citation predictionA®tM data set, best per-
formance is obtained when only paper-paper-citation ameépaord relation are
incorporated. However, for the ArnetMiner data set, thraead four tasks have
the best performance with all relations incorporated.

For each relation in both of the two data sets, we conductedttidentst test
between the best performance result with others. Statlitisignificant improve-
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Table 8: Performance comparison over different combimatiof relations

Combinations ArnetMiner
APV AA AP PP
Co 0.0277* 0.0534* 0.0782* 0.03427
C1 0.0289* 0.0566 0.0788  0.0357
c2 0.0317 0.0541* 0.0786 0.0353
C3 0.0285* 0.0538* 0.0784 0.0353
C4 0.0316 NA NA NA
C5 NA 0.0565 NA NA
C6 NA NA 0.0786 NA
Cc7 NA NA NA 0.0348*
C8 NA 0.0543* 0.0787  0.03494%
Table 9: Performance Comparison
Approaches ACM
APV AA AP PP
JMRM 0.0329* 0.0560 0.0465* 0.0395
FM 0.2127 0.0434* 0.0388* 0.0053%
CTR 0.0374* 0.0513 0.0341*
BPRA 0.0161* 0.0558 0.0360* 0.0216

ments (paired-based < 0.05) are labeled with & in Table 7 and 8.

6.3 Comparison with existing methods

We report the performance comparison with three statdefairt approaches: the
Factorization Machines (short as FM) [12], the CollabemtTopic Regression
(short as CTR) [20] and the Bayesian probabilistic relatlatata Analysis [24]
approach.

Factorization machines are a generic approach which cante#ly combine
the generality of feature engineering with the high-prédit accuracy superior-
ity of factorization models. It therefore can mimic mostttaization models by
simple feature engineering.

CTR model combines traditional collaborative filtering hvibpic modeling.
BPRA jointly models coupled matrices and tensors but ogi@sithe model by
minimizing RMSE.

For FM, CTR and BPRA models, we feed the same training anthgeset
we used for IMRM, and evaluate the prediction performanceamh individual
relations separately. For JIMRM, the reported results azebtkst results selected
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Table 10: Performance Comparison

Approaches ArnetMiner

APV AA AP PP
JMRM 0.0317* 0.0566 0.0788 0.0357*
FM 0.1595 0.0402* 0.0613* 0.0047%
CTR 0.0395* 0.0756* 0.0375
BPRA 0.0176* 0.0359* 0.0794 0.0286*

from different combinations of multiple relations (as shoiw Table 7). For using
FM method, we regard the tasks as ‘regression’ tasks; Therionality of the

factorization machine is set to be ‘1,1,8’, indicating tha global bias, one-way
interactions and pairwise interactions are all used, aatttie number of factors
used for pairwise interactions is set to be 8. Stochastidigna descent (SGD) is
chosen to used as the learning method. For CTR method, wé&wecngaper pro-

files by their abstracts, and author profiles by concategatihtheir publications.

The basic LDA is used to retrieve the topic proportion andrithigtion vectors. The

dimension for latent factor is set to be 10, and the numbeatefi topics is set to
20. Since CTR is only proposed for factorizing two types dit@s, we did not

adopt it to the task of publishing venue prediction (the Afe\ation). Note that

both FM and CTR are implemented using publicly availablévemfe. We also set
the dimension for latent factor in BPRA as 10.

Table 9 and 10 show the results. As indicated, we found thailiiRM mode
can outperform FM and CTR in several cases which demonsttiateeffectiveness
of our model. FM can achieve significantly better resultsitB®IRM in predict-
ing publishing venue, but has a very poor performance iniptied paper-paper
citation. Our model shows the best overall performancesesout of 8 cases (four
recommendation tasks over two data sets), our model rarsgtsfdir three cases,
and the second for the other five cases, demonstrating itgistipy in providing
recommendations for four tasks simultaneously.

7 Conclusions

We proposed an extended latent factor model that can jomndgel several rela-
tions in an academic environment. The model is specialljgdes for our recom-
mendation tasks, and is proposed based upon the assunt@ti@everal academic
activities are highly coupled, and that by joint modelingg wan not only solve
the cold start problem but also help in achieving more catteaad accurate la-
tent feature vectors. Moreover, to facilitate ranking, wéead an existing work
which directly maximizes MAP over one single tensor into aengeneralize form
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and is therefore able to maximize MAP over several matricestansors. Exper-
iments carried out over two real world data sets demonsttaeeffectiveness of
our model.

References

[1] D. Agarwal and B.-C. Chen. Regression-based latenbfanbdels. IrKDD, 2009.

[2] P.Batista, M. Campiteli, and O. Kinouchi. Is it possilbdbecompare researchers with
different scientific interests&cientometrics, 68:179-189, 2006.

[3] T.Chen, Z. Zheng, Q. Lu, W. Zhang, and Y. Yu. Feature-dasatrix factorization.
CoRR, abs/1109.2271, 2011.

[4] Egghe. Theory and practice of the g-indé&ientometrics, 69:131-152, 2006.
[5] A. Harzing. The publish or perish book. 2010.

[6] Q. He, D. Kifer, J. Pei, P. Mitra, and C. L. Giles. Citaticecommendation without
author supervision. IWWSDM, pages 755-764, 2011.

[7] Q. He, J. Pei, D. Kifer, P. Mitra, and L. Giles. Contextaw citation recommenda-
tion. In WMV, pages 421-430, 2010.

[8] J. Hirsch. An index to quantify an individual's scientifiresearch output.
Proc.Nat.Acad.Sci., 46:16569, 2005.

[9] B. Jin. The ar-index: Complementing the h-indertl. Socienty for Scientometrics
and Informetrics Newdletter, 2007.

[10] D. Liben-Nowell and J. Kleinberg. The link-predictipnoblem for social networks.
J. Am. Soc. Inf. Sci. Technol., 58(7), 2007.

[11] S. M. McNee, I. Albert, D. Cosley, P. Gopalkrishnan, Sllam, A. M. Rashid, J. A.
Konstan, and J. Riedl. On the recommending of citations deearch papers. In
CSCW, 2002.

[12] S. Rendle. Factorization machines with libf \CM Trans. Intell. Syst. Technal.,
3(3):57:1-57:22.

[13] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schifiii¢me. Bpr: Bayesian
personalized ranking from implicit feedback.UAl, UAI '09, pages 452—-461, 2009.

[14] F. Ruane and R. Tol. Rational (successive) h-indicesapplication to economics in
the republic of iremandScienctometrics, 2008.

[15] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, A. Haili¢, and N. Oliver. Tfmap:
optimizing map for top-n context-aware recommendatiorSI[BIR, pages 155-164,
2012.

[16] A. Sidiropoulos, D. Katsaros, and Y. Manolopoulos. @etlized hirsch h-index for
disclosing latent facts in citation networkScientometrics, 72:253-280, 2007.

20



[17] A. P. Singh and G. J. Gordon. Relational learning videsilve matrix factorization.
In KDD, 2008.

[18] T. Strohman, W. B. Croft, and D. Jensen. Recommenditagions for academic
papers. IMAGIR, 2007.

[19] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Akfieer: extraction and
mining of academic social network. KDD, 2008.

[20] C. Wang and D. M. Blei. Collaborative topic modeling fecommending scientific
articles. InKDD, 2011.

[21] Z. Yang and B. D. Davison. Venue recommendation: Sutimgityour paper with
style. InICMLA (1), pages 681-686, 2012.

[22] Z. Yang, D. Yin, and B. Davison. Recommendation in Acade a Joint Multi-
Relational Model. IPASONAM, 2014.

[23] Z.Yang, D. Yin, and B. D. Davison. Award prediction witmporal citation network
analysis. I'SIGIR, SIGIR '11, pages 1203-1204, 2011.

[24] D. Yin, S. Guo, B. Chidlovskii, B. D. Davison, C. Archaméu, and G. Bouchard.
Connecting comments and tags: improved modeling of soa@gihg systems. In
WSDM, pages 547-556, 2013.

[25] C. Zhang. The e-index, complementing the h-index faress citationsPLos One,
4(5):1-4, 2009.

[26] D. Zhou, S. Zhu, K. Yu, X. Song, B. L. Tseng, H. Zha, and Cdiles. Learning
multiple graphs for document recommendationsWwW\W, pages 141-150, 2008.

21



