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Abstract

In this paper, we target at four specific recommendation tasks in the aca-
demic environment: the recommendation for author coauthorships, paper ci-
tation recommendation for authors, paper citation recommendation for pa-
pers, and publishing venue recommendation for author-paper pairs. Differ-
ent from previous work which tackles each of these tasks separately while
neglecting their mutual effect and connection, we propose ajoint multi-
relational model that can exploit the latent correlation between relations and
solve several tasks in a unified way. Moreover, for better ranking purpose,
we extend the work maximizing MAP over one single tensor, andmake it
applicable to maximize MAP over multiple matrices and tensors. Experi-
ments conducted over two real world data sets demonstrate the effectiveness
of our model: 1) improved performance can be achieved with joint modeling
over multiple relations; 2) our model can outperform three state-of-the art
algorithms for several tasks.

Keywords: Recommender systems, matrix/tensor factorization, jointmodeling,
MAP, latent factor model

1 Introduction

People can conduct many activities in academic environment: publishing papers,
collaborating with other authors, or citing other papers/authors. Theses activities
are sometimes not easy to fulfill. For example, reading and therefore citing new
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published papers is one of the most important tasks that a researcher should conduct
for research, however, to find relevant and referential scientific literature from hun-
dreds of thousands of publications is a time-consuming and labor-intensive task
especially with the rapid development of Internet which makes published papers
easy to be accessed. To better facilitate such activities, information needs have
arisen for developing systems that can automatically help to predict or recommend
proper venues to submit, papers to cite, and authors to collaborate. In this paper, we
focus on the prediction task in academic environment, and particularly pay atten-
tion to the following four tasks: the prediction on publishing venues, collaborators,
cited papers for authors, and cited papers for papers.

Even though individual systems or algorithms have been proposed to tackle
each of the four tasks separately, which we will review in later sections, limita-
tions still remain. Most of the previous methods only focus on one single type of
relationship while neglect to explore the mutual interaction among different rela-
tionships. In a real complicated academic environment, which often consists of
heterogeneous nodes and links, each scientific factor can play different roles, and
participate in different activities. For example, individual researcher can work as
an author to write paper, as a collaborator to work with another researcher, or to be
cited by another researcher. The entire academic network iscomposed of multiple
relations that mutually affect each other.

To better model this multi-relational academic activitiesand to provide good
recommendations, several challenges remain:

• Coupled high order data: as mentioned above, there are multi-typed scien-
tific entities in the academic environment, playing different roles and partic-
ipating in different activities. These activities are often coupled. It is quite
natural for a paper that has a large number of citations from other papers to
be cited by more authors.

• Cold start problem: the cold start problem is a typical problem in recom-
mender systems. Take the task of citation recommendation for papers as
one example, some most recently published papers will hardly be cited since
they have never been cited before by other papers or authors,even though
they are highly relevant to a topic or may have great contribution in a certain
field.

• Personalization support for authors: Researchers play an important role in
many activities, and they may have different preferences inselecting which
paper to cite, or which venue to submit, even though those papers or venues
focus on similar topics.
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• Interest evolution for authors: The interest of researchers evolves over
time. Even though they keep on working in one research field, their research
focus and methods may change.

To tackle these challenges, we propose a joint multi-relational model referred
as the JMRM model which directly models several groups of coupled activities in
the academic environment and provide a more general framework that can solve
several prediction tasks simultaneously in a unified way.

Our model is fundamentally the latent factor collaborative-filtering(CF)-based
model, in which each relation can be represented as a matrix or higher-dimensional
matrix. However, the following three characteristics distinguish our model from
previous ones.Firstly, our model is composed of multiple matrices or tensors, each
of which indicate one relation in the academic environment,and are highly coupled
with each other.Secondly, we integrate the temporal information into the gener-
ation of several matrices to better reflect the involution over authors’ preferences;
Thirdly, we choose the objective function for solving the model as maximizing
the mean average precision (MAP) as compared to most of the previous work min-
imizing the predicting error (RMSE). MAP is a ranking-basedstandard IR measure
for which errors at top of the ranking list will lead to a higher penalty than errors at
lower places of the ranking list. This top-heavy biased property makes MAP par-
ticularly suitable to work as the objective function for recommender systems, since
most people will only pay attention to the top ranked resultsin the recommendation
list. For this reason, we choose to maximize MAP as our objective function.

To sum up, the main contribution of our work are as follows:

• we propose a joint multi-relational model which integratesseveral coupled
relations in an academic environment. This model is particularly designed
for four recommendations: the prediction task on paper submission for
venues, co-authorship prediction, paper citation prediction for authors, and
paper citation prediction for papers.

• we choose to maximize MAP as the objective function for solving the model,
and extend the tensor factorization approach optimizing MAP into a more
general framework that can maximize MAP for coupled multiple matrices
and tensors.

• experimental evaluation over two real world data sets demonstrate the capa-
bility of our model in four recommendation tasks, as they show improved
performance as compared to three state-of-the-art algorithms.
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2 Related Work

Recently, researchers have explored to enhance the traditional latent factor models
by incorporating additional features or content of participating entities. Typical
works include the ’Regression Based Factor Models’ [1], theCTR model [20],
and the ’feature-based matrix factorization’ [3] model. However, all of these three
models can only cope with the two-order data interactions, and cannot be model
higher-order data structures. ’Factorization Machine’ model proposed by Rendle
[12] combines latent factorization model with SVM. Compared with these work,
our model incorporate both features for papers and authors,making it capable to
model more than two-order data interactions.

The second direction of development for latent factor modelemphasizes on
joint modeling multi-relational relations. One typical work: the ’collective ma-
trix factorization’ model [17] however is only limited to betwo or three relations.
Most recently, Yin et al. [24] proposed a ’Bayesian probabilistic relational-data
Analysis’ (BPRA) model which extends the BPMF and BPTF modelby making it
applicable to arbitrary order of coupled multi-relationaldata structures. However,
the model isbased upon point-wise RMSE optimization, different from our targeted
ranking-based optimization.

Several ranking-based optimization models have been proposed to replace op-
timizing point-wise measures, such as RMSE or MSE. One typical work: the
’Bayesian Personalized Ranking’ (BPR) model [13] minimizes the AUC metric
by using a smooth version of the hinge loss.The method that ismost similar to
our work is the TFMAP model [15], which proposes a method to approximate and
optimize the MAP measure. However, their model is for user-item-context recom-
mendation, and is only able to deal with one single tensor relation, which are both
different from our work in this paper.

We then summarize some relevant work with each specific recommendation
task considered in this paper. Future paper citation recommendation is the most
widely explored problem. We categorized existing works into three groups. In the
first group, neighborhood based CF models along with graph-based link prediction
approaches are widely used to tackle the citation recommendations for a given au-
thor or paper with a partial list of initial citations provided, typical works in this
category include [11], [26], [18] and more. In the second group of approach, proba-
bilistic topic modeling is used for citation list generation.In the third group, citation
context (the text around citation mentions) is utilized. Typical work includes the
context-award citation recommendation work and its extensions proposed by He
et al. [7, 6] Despite of these existing work, few work has be developed using CF
latent factor models for recommendation, excluding the CTRmodel.

Coauthor-ship recommendation is mostly tackled by using graph-based link
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prediction approach. The most representative work is proposed by Liben-Nowell
[10], which measures the performance on using several graph-based metrics. The
work on predicting future conference(venue) submission isseldom explored. Yang
et al. [21] proposed an extended version of the neighborhoodCF model to solve
this problem recently. In their model, they incorporate stylometric features of pa-
pers and further distinguish the importance of four different types of neighboring
papers via parameter tuning and optimization. Similar to the paper citation work,
few existing work applies the latent factor model based CF approach, which is
different from the work in this paper.

3 Preliminary Experiments

In this section, we conducted some simple experiments on tworeal world data
sets: theACM data set andArnetMiner data set to analyze the characteristics of
activities and relationships among scientific factors in the academic environments.

3.1 Data sets

The ACM data set is a subset of theACM Digital Library, from which we
crawled one descriptive web page for each 172,890 distinct papers having both
title and abstract information. For each published paper, we extracted the informa-
tion about its authors and references. Due to possible author names’ ambiguity, we
represent each candidate author name by a concatenation of the first name and last
name, while removing all the middle names. We then use exact match to merge
candidate author names. Finally, we obtain 170,897 distinct authors, and 2097
venues.

The ArnetMiner data set is the data set ‘DBLP-Citation-network V5’ pro-
vided by Tsinghua University for their ArnetMiner academicsearch engine [19].
It is the crawling result from the ArnetMiner search engine on Feb 21st, 2011 and
further combined with the citation information from ACM. The original data set is
reported to have 1,572,277 papers and to include 2,084,019 citation-relationships.
After carrying out the same data processing method as we did for the ACM data
set, we find 1,558,415 papers, 795,385 authors and 6010 venues.

3.2 Coupled Relations

We are first interested in finding out whether multiple relations in an academic en-
vironment are coupled. As a simple test example, we compute for each author in
both data sets his/her total number of publications, citations and coauthors, and
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Figure 1: Correlation between Number of Publications and Coauthors

Figure 2: Correlation between Number of Publications and Citations

evaluate the correlation between these three factors. Figure 1 and 2 show our re-
sults.

As we can see, there exists an obvious linear positive correlation between num-
ber of publications and coauthors, indicating that under most circumstances, the
more coauthors you have, the more publications you can achieve. This observation
is compatible with our common sense. However, the correlation between publi-
cation number and citation number is not so obvious. As shownin Figure 2, we
have many data points scattered in the lower-left corner of the figure, indicating
that some authors who do not publish many papers can also achieve high citation.

3.3 Cold Start Problem

We evaluate the changes in papers’ ability in attracting citation to demonstrate the
existence of cold start problem in the academic environment. We average the num-
ber of citations each paper retrieves in both data sets on a yearly basis. This simple
statistical result, as shown in Table 1, indicates that averagely a newly published
paper begins to retrieve citations 2 more years later than its publication. However,
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Table 1: Statistics on Papers’ Citations
Data set No. of Papers First Citation Avg. Citation

after publication Frequency
ACM 55392 2.0350 0.9693
Arnet 315831 2.7599 0.8528
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Figure 3: Average number of citations change over time

after that, it just costs around 0.97 years and 0.85 years forpapers in ACM and Ar-
netMiner data set to retrieve one new citation. Another simple statistics, as shown
in Figure 3, indicates that papers on average can achieve most of their citations
in the following year of its publication, and that number gradually drops as time
evolves.

3.4 Interests evolution

We evaluate the evolution of authors’ research interests bychecking the changes in
their publishing venues. For ACM data set, we collect for each author the publish-
ing venues of his papers published before 2003 and after 2003(including 2003) as
two sets, and adopt the Jaccard Similarity method to detect the similarity/difference
between these two sets. For ArnetMiner data set, we set the year point as 2006. We
choose the year point by guaranteeing that the average number of distinct venues
of authors in each separate data set is equivalent before andafter that year point.
Table 2 shows the results.

As indicated, the average Jaccard values for both data sets are pretty small,
indicating that authors have a diversified publishing venuelist. Authors chose dif-
ferent venues to submit, indicating that their research focus may evolve over time.
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Table 2: Statistics on Changes of Publishing Venues
ACM ArnetMiner
(Y = 2003) (Y = 2006)

No. of Authors 23358 188143
Avg No.Venues before Y 2.73 5.14
Avg No.Venues after Y 2.75 5.09
Avg Jaccard Similarity 0.0946 0.1188

Table 3: Notations
K Number of entity types(K = 6)
a, p, pc, v, w, af represents author, citing paper

cited paper, venue, word
and feature entity type respectively.

ai entity of typea with indexi
k entity type.k ∈ a, p, pc, v, w, af

Nk Number of entities of typek in data corpus
D Dimension for latent vector
V Number of relations(V = 6)
θk Latent matrix for entities of typek
θkt

Latent feature vector fortth entity of typek

4 Joint Multi-Relational Model (JMRM): Model Design
and Generation

Inspired by the information needs for developing recommender systems in the
academic environment and in order to fulfill the challenges,we propose a joint
multi-relation model. Our model is designed for four particular recommendation
tasks in the academic environment, each of which representsone academic activ-
ity, and induces one relation. Therefore, we have four main relations in the model:
the author-paper-venue relation (represented as the APV-tensor), author-author-
collaboration relation (AA-matrix), author-paper-citation relation (AP-matrix), and
paper-paper-citation relation (PP-matrix). Figure 4 shows the framework of the
model. In order to deal with the cold start problem and bettersupport authors’
personalization, we further incorporate additional features for papers and authors.
In the current work, we only consider the pure paper content as paper features, and
we use the PW-matrix to represent it. We model authors and their features as the
AF-matrix, and will introduce more detailed features for authors in the following
section.

We formally describe as follows the four recommendation/prediction tasks and
introduce how the corresponding relation is constructed.
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Figure 4: Coupled Matrices and Tensor

Figure 5: Graphical Model Representation

Task 1 Publishing venue prediction: this task involves predicting the publishing
venuevk for a given author-paper pair(ai, pj) such that paperpj written by author
ai is published in venuevk.
Corresponding relation APV-tensor: the author-paper-venue relation This
three-order relation consisting of triples<author-paper-venue> indicates
the publishing venue selection for papers with known authors.we have:
APV (ai, pj , vk) = 1 if paperpj written by authorai is published in venuevk;
Otherwise,APV (ai, pj , vk) = 0.

Task 2 Recommend paper citations for authors: this task involves recommend
a set of papersp for a given authorai such that each paperpj (pj ∈ p) is cited at
least once by authorai.
Corresponding relation AP-matrix: the author-paper-citation relation The AP
matrix models the citation relationship between authors and papers. An author
may cite a paper multiple times at different times, and the preference of the author
over papers may also change over time. In order to model this temporal evolution
property, we first generate a three-order tensor incorporating the temporal factor
as the third dimension, and then collapse the tensor into a two-dimensional ma-
trix by aggregating the number of citations at different years with a time decay
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function. Given an authorai, and a paperpj cited byai, the number of timespj

is cited byai on yeartk (the value for entry< ai, pj, tk >) can be retrieved as:
E(ai, pj , tk) =

∑
pai∈pai

δ(y(pai) = tk ∧ pj ∈ cpai
) wherepai is any paper pub-

lished byai, pai is the publication set ofai. cpai
is the set of all cited papers ofpai.

Functiony(pai) retrieves the publication year ofpai, andδ(c) is a function which
returns 1 if conditionc is satisfied and 0 otherwise. We aggregate the citations at
different time points based upon the hypothesis that authors’ interests decay over
time, and therefore more recent citation contribute more heavily than older citation.
We penalize the old citations by introducing an exponentialdecay kernel function.
The entry< ai, pj > for the collapsed author-paper matrix can thus be defined as:
EAP (ai, pj) =

∑T2

tk=T1
e−β(T2−tk) · E(ai, pj, tk) whereT1 andT2 are the earliest

and last year for paper publication in the data set, andβ is the decay rate.

Task 3 Recommend coauthors for authors: this task involves recommend a set
of authorsa for a given authorai such that for each authoraj ∈ a, there exists a
coauthorship betweenai andaj .
Corresponding relation AA-matrix: the author-author-collaboration relation
The AA-matrix indicates the collaboration, an important social interactions be-
tween pairs of authors. Similar to the changing interests’ of authors over pa-
pers, researchers may also change to work with others researchers in different
time periods. We follow the same procedure as introduced forthe AP-matrix
generation by first constructing the author-author-time tensor, and then collapse
it into author-author matrix. The entry for< ai, aj > can thus be determined by:
EAA(ai, aj) =

∑T2

tk=T1
e−β(T2−tk)·E(ai, aj , tk) whereE(ai, aj , tk) is the number

of times authorai collaborates withaj on yeartk.

Task 4 Recommend paper citations for papers: this task involves recommend a
set of papersp for a given paperpi such that each paperpj (pj ∈ p) is cited at least
once by paperpi.
Corresponding relation PP-matrix: the paper-paper-citation relation The gen-
eration of the PP-matrix is different from that of the AP-matrix or AA-matrix, since
each paper can only cite another paper once. However, there also exists temporal
influence, as a paper may cite a paper published long time ago,or a more recent
one. Suppose we have three papersp1, p2 andp3, published iny1, y2 andy3 re-
spectively (y1 ≤ y2 ≤ y3), and we have paperp3 citesp2 andp1. In our work, we
assume thatp2 will have a greater contribution in presenting the topic interests or
preferences forp3 thanp1, since in publishing papers, we often need to review and
compare with those most recently published and state-of-the-art papers. With this
assumption, we have for each entry< pi, pj > indicating that paperpi citespj in
the PP-matrix as:EPP (pi, pj) = e−β(y(pi)−y(pj)), wherey(pi) andy(pj) returns
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the publishing year forpi andpj respectively.

PW-matrix: the paper-word relation PW-matrix indicates the features of papers.
In current work, we only consider the pure content of papers,and therefore we
collect the top returned words in the data set with higher frequency. Each entry of
< pi, wj > indicates the term frequency of wordwj in paperpi.
AF-matrix: the author-feature relation We identify 20 distinctive features for
authors listed in Table 4 to represent the personalized property of an author from
three aspects.

Table 4: Author Features
Feature Category Feature
Simple bibliographic total publicationNo ; total citationNo ; H-index [8];

G-index [4]; Rational H-index distance [14];
Rational H-index X [14]; E-index [25]; Individual H-index [2];
Normalized individual H-index [5]

Network-based PageRank score on coauthor network;
PageRank score on citation network

Temporal-based CareerTime [23]; LastRestTime [23];
PubInterval [23]; Citation Influence Ratio [23];
Contemporary H-index [16]; AR-index [9]
AWCR-index [5]; Avg Publication number; avg Citation number

5 Joint Multi-Relational Model: Algorithm

5.1 Preliminary Notations

As shown in Figure 4, our joint multi-relational model consists of six relations
generated by authors, papers, venues, words and features entities. It is noticeable
to mention that we distinguish the ‘paper’ entity into two different entities types:
the citing papers and cited papers, and therefore we altogether have six entity types.

The joint multi-relational model is a further extension andgeneralization of
the classical matrix or tensor factorization, in which eachentity in the interactions
can be represented by a latent feature vector inR

D, whereD is typically a small
number. By doing this, each tensor or matrix can be factorized into lower rank
approximations. Figure 5 shows the graphical model for the data factorization
associated with our model. The lower-dimensional latent vectors are denoted by
θ = (θ1, . . . , θK) (K = 6), where for eachk ∈ K θk = (θk1, . . . ,θkNk

) ∈
RNk×D.
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5.2 Model Factorization maximizing MAP

5.2.1 Computing MAP

We choose to maximize MAP as our objective function due to itstop-heavy bias
property. Two questions remain for incorporating MAP into matrix/tensor factor-
ization: how to represent the ‘rank’ of the entities and therefore compute the MAP
scores based upon the latent feature vectors. We follow the same idea proposed in
paper [15] to smoothly approximate MAP, and make it appropriate to be used for
both tensors and matrices. Since our model contains one tensor and five matrices,
for better illustration, we choose to take the APV-tensor and AP-matrix as two ex-
amples to show how to compute the MAP scores. The same method can be applied
to the other four matrices.

In a tensor like APV-tensor, the predicted value for each entry < ai, pj , vm >

can be computed as:̂faipjvm = 〈θai
, θpj

, θvm〉 =
∑D

d=1 θaidθpjdθvmd whereD is
the dimension for latent vector.

Similarly, In a matrix like AP-matrix, the predicted value for each entry<
ai, pj > can be computed as:

f̂aipj
= 〈θai

, θpj
〉 =

∑D
d=1 θaidθpjd

Under these schemes, supposevm in triple < ai, pj, vm > is the entity that
needs to be ranked, andpj in tuple< ai, pj > is the entity that needs to be ranked,
then we can directly approximate1/raipjvm for vm and1/raipj

for pj by:
1

raipjvm
≈ g(f̂aipjvm) = g(〈θai

, θpj
, θvm〉)

1
raipj

≈ g(f̂aipj
) = g(〈θai

, θpj
〉)

where functiong(·) is the sigmoid function satisfyingg(x) = 1
1+e−x .

Correspondingly, the loss function in terms of the MAP values for APV-tensor
and AP-matrix can be computed as in equation 1:
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Lapv = MAPapv =
1

NaNp

Na∑

i=1

Np∑

j=1

1
∑Nv

t=1
fAPVaipjvm

×

Nv∑

t1=1

fAPVaipjvt1
g(〈θai

, θpj
, θvt1〉)

×

Nv∑

t2=1

fAPVaipjvk2
g(〈θai

, (θvt2 − θvt1), θpj
〉) (1)

Lap = MAPap =
1

Na

Na∑

i=1

1
∑Np

j=1
fAPaipj

×

Np∑

t1=1

fAPaipt1
g(〈θai

, θpt1〉)

×

Np∑

t2=1

fAPaipt2
g(〈θai

, (θPt2 − θPt1)〉) (2)

To compute the loss function for matrix AA, PP, PW and AF, we can follow
the same way as we do for the AP matrix.

5.2.2 Optimization

We introduced the loss function for each individual matrix/tensor in the last section.
The overall loss function for this multi-relational model is therefore a summation
over all individual loss functions plus the regularizationterms to prevent over-
fitting, as shown in Equation 3. We useΩ to denote the regularization terms, where
‖ · ‖ indicates the Frobenius norms.

We choose to use gradient ascent to solve this optimization problem. For each
relation (matrix or tensor) in the model, we alternatively perform gradient ascent
on the latent feature vector for one entity at each step, while keep the other latent
vectors unchanged. The gradients for the same entity acrossdifferent relations will
be merged. The same process will be repeated for a certain number of times, or
until it finally converges with no further updates on all latent feature vectors. To
better illustrate, we list below the gradients for the author, paper and venue entity in
the APV-tensor, and author and paper entity in the AP-matrix. Similar process can
be applied into other entities in other relations. We leave the generalized updating
forms for a model withK N × M matrices for future’s work.
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L = LAPV + LAA + LAP + LPP + LPW + LAF + Ω

Ω =
∑

k∈a,p,pc,v,w,af

λθk

2
‖ θk ‖2 (3)

For one particular authorai, paperpj and venuevm in the APV-tensor, the
gradients for updating their corresponding latent vectorθai

, θpj
andθvm can be

computed as follows. For notation convenience, we adopt thefollowing substitu-
tions:

f̂APVaipjvm
= 〈θai

, θpj
, θvm

〉

f̂APVaipj(vt2
−vt1

)
= 〈θai

, θpj
, (θvt1

− θvt1
)〉

∂LAPV

∂θai

=

Np∑

s=1

1
∑Nv

t=1
fAPVaipsvt

Nv∑

t1=1

fAPVaipsvt1

× [δ1(θps
⊙ θvt1

) + g(f̂APVaipsvt1
)

×

Nv∑

t2=1

fAPVaipsvt2
g′(f̂APVaips(vt2

−vt1
)
)

× (θps
⊙ θvt2

)] − λθai

∂LAPV

∂θpj

=

Na∑

s=1

1
∑Nv

t=1
fAPVaspjvt

Nv∑

t1=1

fAPVaspjvt1

× [δ1(θas
⊙ θvt1

) + g(f̂APVaspjvt1
)

×

Nv∑

t2=1

fAPVaspjvt2
g′(f̂APVaspj(vt2

−vt1
)
)

× (θas
⊙ θvt2

)] − λθpj

∂LAPV

∂θvm

=

Na∑

s=1

Np∑

d=1

fAPVaspdvm
(θas

⊙ θpd
)

∑Nv

t1=1
fAPVaspdvt1

×

Nv∑

t2=1

fAPVaspdvt2
[g′(f̂APVaspdvm

)

× g(f̂APVaspd(vt2
−vm)

) + (g(f̂APVaspdvt2
)

− g(f̂APVaspdvm
))g′(f̂APVaspd(vt2

−vm)
)]

− λθvm
(4)
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where

δ1 = g′(f̂APVaipjvm
)

Nv∑

t1=1

fAPVaipjvt1
g(f̂APVaipj(vt1

−vm)
) (5)

− g(f̂APVaipjvm
)

Nv∑

t1=1

fAPVaipjvt1
g′(f̂APVaipj(vt1

−vm)
)

For one authorai and paperpj in the AP-matrix:

∂LAP

∂θai

=
1

∑Np

t=1
fAPaipt

Np∑

t1=1

fAPaipt1
[δ2(θpt1

)

+ g(f̂APaipt1
)

Np∑

t2=1

fAPaipt2
g′(f̂APai(pt2

−pt1
)
)(θpt2

)]

− λθai

∂LAP

∂θpj

=

Na∑

s=1

fAPaspj
(θas

)
∑Np

t1=1
fAPaspt1

×

Np∑

t2=1

fAPaspt2
[g′(f̂APaspj

)

× g(f̂APas(pt2
−pj)

) + (g(f̂APaspt2
)

− g(f̂APaspj
))g′(f̂APas(pt2

−pj)
)]

− λθpj
(6)

where

δ2 = g′(f̂APaipj
)

Np∑

t1=1

fAPaipt1
g(f̂APai(pt1

−pj)
)

− g(f̂APaipj
)

Np∑

t1=1

fAPaipt1
g′(f̂APai(pt1

−pj)
) (7)

whereg′(x) is the derivative ofg(x) and⊙ denotes element-wise product, and
λ is the regularization parameter.

5.3 Recommendation by Factor Matrices

After retrieving the latent matrix for each entity type, it is straightforward to gen-
erate the ranking list based upon the recommendation task and the design of ma-
trix/tensor. Take the prediction task for the author-papercitation as one example,
given one authorai, we can achieve the relevance score of each paperpj in the
candidate set by computing1

raipj
≈ g(f̂aipj

) = g(〈θai
, θpj

〉), and rank all papers

in descending order. The same process can be applied to all other recommendation
tasks considered in our model.
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Table 5: data set statistics
data set authors papers venues APV AA AP PP

records records records records
ACM 24,764 18,121 846 47,810 112,456 366,201 71,396
ArnetMiner 49,298 47,794 1,682 132,186 361,794 1,675,564 237,531

6 Experimental Evaluation

We report in this section the experimental evaluation results for our model, and
compare it with several existing state-of-the-art algorithms.

6.1 Data Preprocessing

We conduct our experiments on a subset of the ACM and ArnetMiner data set
introduced in section 3. For papers in each data set separately, we collect the pa-
pers with complete information (authors, abstract, publishing venue and publishing
year) and have been cited at least 5 times in the ACM data set and 10 times in the
ArnetMiner data set. Based on these papers, we further collect all their authors and
publishing venues.

We construct the tensor and matrices as introduced in section 3 for each data
set. Theβ parameter in AA, AP and PP matrix is set to be 0.5. The PW-relation and
AF-relation are constructed for all valid authors and papers. Table 5 shows a brief
data statistics for both data sets, and the total number of records for each relation.
Five-fold cross validation is conducted over the APV-relation, AA-relation, AP-
relation and PP-relation to get the averaged predicting results. In the APV-relation,
since each paper can have multiple authors but just one publishing venue, in order
to avoid to have overlapped records in the training and testing set, we split the APV-
relation into five folds by guaranteeing that one particularpaper with all its authors
(and the associated records) would appear in either the training or the testing set.

We adopted MAP as our evaluation metric, as the model is specially designed
for maximizing MAP. Since the data in each relation is quite sparse (as shown in
Table 6), we cannot treat all entries with no observed data asnegative samples
(consider the situation that papera should also cite paperb, but unfortunately it
did not.), in which case the recommendation results would bedeteriorated. To
avoid this, we randomly select 200 negative samples (much higher than the average
node degree in each relation) for each entity in the testing set. The performance
is therefore measured based on the recommendation list thatcontains the known
positive samples and 200 randomly selected negative samples.

In all experiments, we set the latent dimensionalityD = 10, the regularization
parameterλ = 0.001 and the learning-rate as 0.001.
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Table 6: data set statistics
Avg. node degree

data set APV AA AP PP
ACM 1 10.28 17.51 4.71
ArnetMiner 1 18.40 42.03 7.81

Table 7: Performance comparison over different combinations of relations

Combinations
ACM

APV AA AP PP
C0 0.0329 0.0487* 0.0456* 0.0389
C1 0.0263* 0.0560 0.0455* 0.0325*
C2 0.0282* 0.0462* 0.0458* 0.0338*
C3 0.0307* 0.0460* 0.0455* 0.0329*
C4 0.0279* NA NA NA
C5 NA 0.0560 NA NA
C6 NA NA 0.0465 NA
C7 NA NA NA 0.0395
C8 NA 0.0468* 0.0453* 0.0325*

6.2 Co-effects analysis of multiple relations

In this part of experiments, we work on totally eight different kinds of multi-
relational combinations, and evaluate the performance over four tasks respectively.
Table 7 and 8 shows the results.

In Table 7 and 8,c0 indicates the single relation respectively.c1 =
{apv, aa, ap, pp, pw, af}, c2 = {apv, aa, ap, pp, pw}, c3 = {apv, aa, ap, pp},
c4 = {apv, pw, af}, c5 = {a, af}, c6 = {ap, pw, af}, c7 = {pp, pw}, and
c8 = {aa, ap, pp}.

Several observations can be drawn from the results. 1) Underalmost all situ-
ations, jointly modeling multiple relations can indeed improve the prediction per-
formance. For the four tasks over two data sets (just except the publishing venue
prediction (APV) on ACM data set), the best performance is always achieved when
some relations are jointly modeled. 2) There is no clear trend that the more rela-
tions we jointly modeled, the better performance we can achieve. For some pre-
diction task, i.e., the paper-paper citation prediction onACM data set, best per-
formance is obtained when only paper-paper-citation and paper-word relation are
incorporated. However, for the ArnetMiner data set, three out of four tasks have
the best performance with all relations incorporated.

For each relation in both of the two data sets, we conducted the students’t test
between the best performance result with others. Statistically significant improve-
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Table 8: Performance comparison over different combinations of relations

Combinations
ArnetMiner

APV AA AP PP
C0 0.0277* 0.0534* 0.0782* 0.0342*
C1 0.0289* 0.0566 0.0788 0.0357
C2 0.0317 0.0541* 0.0786 0.0353
C3 0.0285* 0.0538* 0.0784 0.0353
C4 0.0316 NA NA NA
C5 NA 0.0565 NA NA
C6 NA NA 0.0786 NA
C7 NA NA NA 0.0348*
C8 NA 0.0543* 0.0787 0.0349*

Table 9: Performance Comparison

Approaches
ACM

APV AA AP PP
JMRM 0.0329* 0.0560 0.0465* 0.0395
FM 0.2127 0.0434* 0.0388* 0.0053*
CTR 0.0374* 0.0513 0.0341*
BPRA 0.0161* 0.0558 0.0360* 0.0216*

ments (paired-basedp ≤ 0.05) are labeled with a∗ in Table 7 and 8.

6.3 Comparison with existing methods

We report the performance comparison with three state-of-the-art approaches: the
Factorization Machines (short as FM) [12], the Collaborative Topic Regression
(short as CTR) [20] and the Bayesian probabilistic relational-data Analysis [24]
approach.

Factorization machines are a generic approach which can effectively combine
the generality of feature engineering with the high-prediction accuracy superior-
ity of factorization models. It therefore can mimic most factorization models by
simple feature engineering.

CTR model combines traditional collaborative filtering with topic modeling.
BPRA jointly models coupled matrices and tensors but optimizes the model by
minimizing RMSE.

For FM, CTR and BPRA models, we feed the same training and testing set
we used for JMRM, and evaluate the prediction performance oneach individual
relations separately. For JMRM, the reported results are the best results selected
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Table 10: Performance Comparison

Approaches
ArnetMiner

APV AA AP PP
JMRM 0.0317* 0.0566 0.0788 0.0357*
FM 0.1595 0.0402* 0.0613* 0.0047*
CTR 0.0395* 0.0756* 0.0375
BPRA 0.0176* 0.0359* 0.0794 0.0286*

from different combinations of multiple relations (as shown in Table 7). For using
FM method, we regard the tasks as ‘regression’ tasks; The dimensionality of the
factorization machine is set to be ‘1,1,8’, indicating thatthe global bias, one-way
interactions and pairwise interactions are all used, and that the number of factors
used for pairwise interactions is set to be 8. Stochastic gradient descent (SGD) is
chosen to used as the learning method. For CTR method, we construct paper pro-
files by their abstracts, and author profiles by concatenating all their publications.
The basic LDA is used to retrieve the topic proportion and distribution vectors. The
dimension for latent factor is set to be 10, and the number of latent topics is set to
20. Since CTR is only proposed for factorizing two types of entities, we did not
adopt it to the task of publishing venue prediction (the APV-relation). Note that
both FM and CTR are implemented using publicly available software. We also set
the dimension for latent factor in BPRA as 10.

Table 9 and 10 show the results. As indicated, we found that our JMRM mode
can outperform FM and CTR in several cases which demonstrates the effectiveness
of our model. FM can achieve significantly better results than JMRM in predict-
ing publishing venue, but has a very poor performance in predicting paper-paper
citation. Our model shows the best overall performance, since out of 8 cases (four
recommendation tasks over two data sets), our model ranks first for three cases,
and the second for the other five cases, demonstrating its superiority in providing
recommendations for four tasks simultaneously.

7 Conclusions

We proposed an extended latent factor model that can jointlymodel several rela-
tions in an academic environment. The model is specially designed for our recom-
mendation tasks, and is proposed based upon the assumption that several academic
activities are highly coupled, and that by joint modeling, we can not only solve
the cold start problem but also help in achieving more coherent and accurate la-
tent feature vectors. Moreover, to facilitate ranking, we extend an existing work
which directly maximizes MAP over one single tensor into a more generalize form
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and is therefore able to maximize MAP over several matrices and tensors. Exper-
iments carried out over two real world data sets demonstratethe effectiveness of
our model.
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