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Abstract 

We propose a combination of techniques that solve 
multiple queries for motion planning problems m t h  
single query planners. OUT implementation uses 
Q probabilistic roadmap method (PRM) with bidirec- 
tional rapidly ezploring random trees (BI-RRT) as 
the local planner. With small modifications to the 
standard algorithms, we obtain a multiple query plan- 
ner which is significantly faster and more reliable 
than its component parts. OUT method provides a 
smooth spectrum between the PRM and BI-RRT tech- 
niques and obtains the advantages of both. W e  ob- 
served that the performance differences are most no- 
table en planning instances weth several r igid non- 
wnvez robots in a scene with narrow passages. OUT 
work is in the spirit of non-uniform sampling and 
refinement techniques used in earlier work on PRM. 

1 Introduction 

Multiple query motion planning is important for a p  
plications where the robot operates in the same en- 
vironment for a long period of time. In these cases, 
a data structure is built in a preprocessing phase in 
order for many queries to be answered quickly. For 
applications in where changing the environment or 
where the robot only sees a local window, a motion 
planner has to efficiently explore the space in order 
to solve a query without preprocessing information. 
In this paper we use a single query motion planning 
algorithm as a subroutine for a multiple query plan- 
ner. By combining these two approaches, a planner 
that uses the strengths of both is obtained. 

The probabilistic roadmap method (PRM) approach 
to motion planning is efficient, easily implemented 
and applicable to a large variety of motion plan- 
ning instances 112, 71. It is a multiple query plan- 
ner which constructs a roadmap by sampling points 
in the space and connecting them with a primitive 
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Figure 1: A dificult example of the multiple moue,' 
problem in 30 that OUT planner has solved. Them, .  
are eight moving objects (48 degrees of freedom) and C. 
a wall with a narrow passage. All of the robots have ' 
to switch sides. 

planner. Many implementations use a variation of 
the straight line planner as the primitive local plan- 
ner. However, PRM is generic and probabilistically 
complete as long as the chosen local planner always 
returns the same path between two configurations 
1131. At query time, a sufficiently good roadmap 
captures the structure and connectivity of the con- 
figuration space (C-space) well enough to resolve the 
query quickly. 

Single query planning can be achieved with poten- 
tial fields [4] and more recently has also been solved 
by growing trees in the C-space 19, 16, 201. Using 
a potential field planner as a local planner for PRM 
has been attempted [IO]. There axe also approaches 
that incrementally construct a roadmap by merging 
rapidly exploring random trees (RRT) that are pro- 
duced as queries are resolved [IQ]. 
In this work, we examine the applicability of RRTs 
[16] as a local planner for a PRN. We are primar- 
ily interested in obtaining a planner that is effec- 
tive for high-dimensional problems 1141 as those aris- 
ing in planning with flexible robots [15], reconfig- 
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urable robots 1211, complex planning instances [ZO] 
and computational biology search problems [3, 21. 
Our implementation focuses on the multiple mover 
problem in three dimensions (Figure 1) by modifying 
the originally stated RRT and PRM formulations so as 
to efficiently explore the C-space. We have tested our 
planner on a variety of benchmarks and we noticed 
significant improvement on run time and roadmap 

of the robot in the workspace. This construction is 
used for each robot to obtain a point in Euclidean 
6N-D. Distance is measured in the usual way for 
these points. A straight line between two conlign- 
rations (sz,s3) = (p , ,qn ,p3 ,q l )  is defined as a lin- 
ear interpolation between the two translation points 
@ , , p 3 )  and a spherical interpolation for the quater- 
nion representations of the rotation (qt,  q,). 

quality compared to the PRM or BI-RRT planners. Our implementation uses SWIFT++ [6] for calli- 
sion detection. Equally spaced points along the 
straight line between two configurations are tested 
for collision usinn intersection checks. The order of 

We report the results of our experiments and discuss 
how to vary the input parameters to obtain good 
performance. 

2 Method and Implementation 

Heterogenous Two-Tiered Planning The main 
contribution of this paper is to propose the combina- 
tion of PRM and RRT methods in order to solve mnl- 
tiple query planning problems more efficiently. The 
general principle behind this work is to increase the 
power of the local planner in order to reduce the 
number of operations needed by the PRM and to ob- 
tain a more robust planner. This latter idea bas been 
explored in the past [l, 101 but in this paper it is ex- 
plored further so as to better integrate with the PRM 
formulation. 

We use BI-RRT 1181 as a local planner for a PRM plan- 
ner. RRTs are grown at  each milestone, and connec- 
tions between milestones are computed by BI-RRT. 
The RRTs rooted at the milestones and the paths be- 
tween them are stored for use in queries. The use of 
RRT is akin to a refinement phase used in some PREl 
implementations, 1121 and the extra power of BI-RRT 

- 
the checks is done by bisection, which increases the 
chances of quick rejection of paths in collision. 

PRM Implementation We use a general implemen- 
tation of PRM [12]. Our interpretation of the algo- 
rithm follows. 

Algorithm 1 BUILD ROADhfAP(n,k) 
1. Generate n wnfieurations in free SDNP 5'. - 
2: Let G = 0, the empty graph on S. 
3 for each configuration s i  E S do 
4 Find k neighbors for si, Nk(si) .  
5:  for each configuration sj E Nk(si)  do 
6 

7 
8: 
9: endif 

if j > i and the local planner can find a collision-free 
path from si to sj  then 

add an edge (i ,j)  in G. 
annotate ( 2 ,  j) with the distance between i and j. 

1 0  endfor 
11: end for 
12: return the graph G and the set S. 

. .  
allows for fewer milestones in the toplevel roadmap. 

C-space The class of problems we considered for the 
purposes of our experiments with this general plan- 
ning framework consisted of multiple non-convex, 
rigid bodies moving freely in a three dimensional 
workspace with rigid, non-convex static obstacles. 
This allowed us to obtain high dimensional problems 
with narrow passages, which have traditionally been 
difficult for PRM and RRT planners. As with other 
motion planners, obvious generalizations to many 
other kinematic planning problems are straightfor- 
ward, and the use of RRTs as subroutine provides a 
natural way to extend the planner to kinodynamic 
planning instances [E, 171. 

In our implementation, we represent the conligura- 
tion of a single robot with a point and a quaternion 
(p, q). N robots operating in the workspace are r e p  
resented by a tuple { ( p I , q , ) ,  ..., ( p ~ ,  Q N ) } .  The di- 
mensionality of the configuration space in this case 
is 6N.  To obtain an embedding of a single robot into 
Euclidean &D, we catenate two points from opposite 
corners of the bounding box of a given configuration 

AlF-"-'ithm 2 MT(% so) 
1: Add so BS the mot of the tree, T.  

As the graph is being built, the number of connected 
components can be maintained by using a fast union- 
find data structure. By limiting the number of intra- 
component local planner checks by a small constant, 
roadmaps can be constructed more quickly. This 
pass is similar to approaches used in other PRM im- 
plementations [Il l .  

RRT Implementation The toplevel implementa- 
tion of the RRT algorithm [18] is as follows: 

2: for i ranges from 1 to n do 
3 Generate a free configuration from a random distribu- 

tion, starget. 
4 Find the closest point in the tree T, sj. 
5: Set s i  to INCP€M€NTAL-PLANNER(~~,S~.,~~). 
6 Add si to the tree, T ,  88 a child of s j .  

7 Annotate the edge in the tree with the cost from s j  to 

8: end for 
Si. 
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We use the following implementation of B I  - RRT. 

Aleori thm 3 BI-RRT(n. TI. T z )  , . ~. ~, - 
1: for i ranges from 1 to n do 
2: 

3: 

4: 
5: 
6 end if 

8: 
9: 

Generate a free configuration from a random distrihu- 
tion, starget. 
Find the closest points in each tree, sj and st respec- 
tively. 
if the local planner can connect s1 to s i  then 

return the path from s t  to SE :ia sj and s i .  

7: set to INCREMENTAL-PLANNEF(S~, starget). 
if the local planner can connect st to s i  then 

return the path from s t  to SE via st and s i .  
10: endi f  
11: Swap 7'1 and T2. 
12: end for 
1 3  return no path was found. 

Adapting RRT for use with PRM Each milestone 
in the PRN graph is an RRT. When generating the 
milestones, we begin with a random configuration 
for the root and grow the RRT by a fixed number of 
iterations. Each RRT can be viewed as a set of con- 
figurations, the embeddings we describe earlier are 
used to obtain a set of points in 6N-D. The centroid 
of this point set is computed and is used as the C(F 

ordinates for that RRT. In Algorithm 1, the neighbor 
query uses these coordinates. 

The local planner for the PRM is Algorithm 3. Before 
running the BI-RRT, we 6rst compute k close pairs 
between the two sets of configurations and try to use 
a straight line planner to connect them. In Alg- 
rithm 3, the local planner is taken to be a straight 
line planner. 

In the case of multi-robot motion planning the gen- 
eration of the RRT nodes is faster if it is done incre- 
mentally. We first choose a random order to generate 
the robots in and then embed the robots in this or- 
der. If the embedding fails at any point, we re-embed 
the robot that failed until it succeeds. This leads to 
a significant reduction in the number of attempts re- 
quired compared to re-embedding them all. 

The incremental planner that we use checks collisions 
by bisection and bas been adapted for multi-robot 
planning instances. Each robot is moved simulta 
neously towards the goal configuration. The path 
is checked for collisions incrementally by adding one 
robot a t  a time to the path and checking for collisions 
with the environment and with the previous robots. 
If a collision is found, then a new target configuration 
for the robot being added is generated. Although 
this local planner is more expensive than checking 
all robots simultaneously, we found that it is consid- 
erably more effective in practice. The configuration 

returned by the call to the incremental planner is the 
final goal that computed. In the case where no robot 
can move, no configuration is returned and the outer 
loop repeats without incrementing. 

k-nearest neighbors The k neighbor queries are 
answered using a combination of k-nearest neighbors 
and a random selection. The use of random selection 
offsets problems with the metric we observed in nar- 
row areas of the space. 

The k-nearest neighbor queries were implemented us- 
ing 6N-D tree [5] .  In our experience, the efficiency 
of this query in practice is significantly better than 
the worst case O(n%) if some care is taken during 
the query. The tree is traversed greedily towards the 
query point. When walking up the tree, if the worst 
point in the partial k-NN is further than the clos- 
est point of the incrementally constructed bounding 
box around the point set on the other branch, then 
that branch is taken. Also, a small performance im- 
provement can be gained by not splitting point sets 
of cardinality smaller than some threshold, experi- 
mentally around 25 to 80. 

Since the configurations in the RRT are added incre- 
mentally and in a spatially local way, the invariant 
that. the tree be fairly well balanced is maintained. 
The ratio of the point sets on the left and right side 
cannot be too small or too large. When this occurs 
at some suhtree, the whole tree is collapsed and re- 
built as a balanced tree. In our experiments, this is 
necessary but happens sufficiently infrequently that 
it amortizes to a nearly neglible cost. Not split- 
ting leaves with small point sets greatly reduces the 
amount of time spent rebalancing trees. 

Queries Queries are handled by connecting the two 
query configurations with the RRTs of the roadmap 
and proceeding by graph search. We find the k- 
nearest milestones for each configuration and alter- 
nately try to connect them using the BI-RRT algo- 
rithm. These edge connections continue until both 
query configurations lie in the same connected com- 
ponent, we cease computation and return the path. 
We applied some simple path smoothing to the re- 
sulting path to improve the quality of the output. 

3 Methodology and Results 

The PRN of RRTs has several parameters which we 
will now describe: N ,  the number of robots, n, the 
number of milestones used in the PRM layer, m, the 
number of RRT iterations per milestone, k, the num- 
ber of iterations that BI-RRT is run for, CNN, the 
number of nearest neighbor milestones to use for PRM, 
+, the number of random neighbor milestones to use 
for PRM, and ccp, the number of close pairs to check 

. 
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(%) Types of robots (b) Random (c) Fence 

Figure 2: Robots and scenes for the experiments 

before running BI-RRT. 

In our experiments, we measure time and accuracy. 
Time is measured for the preprocessing phase (pp 
time) and for average time to respond to  a query 
(aq time). We also record the number of SWIFT++ 
collision detection calls for preprocessing (pp coll.) 
and per query (aq coll.). Accuracy is measured by 
taking some number of non-trivial random queries 
and counting the fraction solved positively. 

The experiments were carried out on dual Athlon 
1900MPs with one gigabyte of RAM. Computation 
was monolithic, sequential and made no use of virtual 
memory or disk. 

We tested against a variety of benchmarks (Figure 3). 
The empty environments (“empty6”, “empty8”) do 
not have any obstacles. The narrow environments 
(“narrow2”, “narrow4”, “narrow6”, “narrow8”) have 
a wall with a narrow passage (see Figure 1). Fi- 
nally, we ran experiments on an environment with a 
fence (“fencel”, “fence%”, Figure Z(c)) and one with 
random polyhedra (“random3”,Figure 2(h)). The 
robots we used are illustrated in Figure 2(a). Prob- 
lem “fencel” uses one robot of type C and problems 
“fence2” and “narrow2” use two copies of C. Problem 
“random3” uses one A, one C and one D. Problem 
“narrowl” uses one B, two C and one D and we have 
added one A and one C for “narrow6” and “empty6. 
Finally, problems “narrow8” and “emptyd also in- 
clude one B and one D. 

In Figure 3, we compare three different motion plan- 
ners. A standard PRM, a BI-RRT, and the PRM of 
RRTs. Each planner uses the same code base and 
corresponds to different parameter settings. A PRH 
is obtained by setting m = 0, k = 0 and ccp = 1. A 
BI-RRT is obtained by setting n = 0 and ccp = 0. In 
setting the remaining parameters, we tried a variety 

of values and chose good tradeof& for each with an 
emphasis on accuracy. 

4 Discussion 

In Figure 3, we summarize our results for the VW- 
ious benchmarks. The most important difference 
that we note is a significant increase in reliability 
over PRH and over BI-RRT. In some examples (e.g. 
“narrow6”, “fencel”, “fence2”) we increased the reli- 
ability from 0.2-0.3 to 0.9. In our implementation, 
PRM of RRTs generally outperforms PRM for multiple 
query problems. Moreover, for the cost of two or 
three BI-RRT queries, we can preprocess the space 
with PRM of RRTs to obtain a structure that answers 
queries more robustly and more quickly than BI-RRT. 
The differences between the methods were more pro- 
nounced in the examples with more complex scenes 
and with more robots. We use fairly standard im- 
plementations of RRT and PRN. We think it is likely 
that improvements t o  either subroutine would be an 
improvement for our planner. 
The method we present has common attributes with 
other reiinement and non-uniform sampling tech- 
niques used in PRM planning. RRTs have a tendency 
to grow towards obstacles. This tends to throw more 
configurations near obstacles which resembles the 
technique of OBPRH 111. The rejection sampling and 
local improvement of RRT is similar to the enhance- 
ment phase of early PRI( planners [ll, 121. 

Both RRT and PRM are well-known to be extremely 
sensitive to the interplay between the metric and the 
incremental planner [IS]. We also made this obser- 
vation in our implementation. In environments with 
thin features, in particular the fence environment, 
BI-RRT tended to produce many configurations that 
were stuck near obstacles. BI-RRT also makes use 
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PRM I pp time(s) 
emutv 6 I 3.75 
em& 8 
narrow 2 
narrow 4 
narrow 6 
narrow 8 
random 3 

fence 1 
fence 2 

507.09 
452.8 
467.79 
1426.32 
10544.89 
2657.21 
200.83 
1147 

BI-RRT 
empty 6 
empty 8 
narrow 2 
narrow 4 
narrow 6 
narrow 8 
random 3 

fence 1 
fence 2 

PRM of RRT 
empty 6 
empty 8 
narrow 2 
narrow 4 
narrow 6 
narrow 8 
random 3 

fence 1 
fence 2 

pp coll. aq time(ms) 
45202 23.03 

1179373 232.19 
1030952 307.67 
830600 217.1 
2040998 269.58 
60554186 375.81 
3945703 452.63 
1671408 503.46 
2654280 356.52 

aq coll. accuracy 
217 0.952 

484.8 0.882 
137 0.991 

148.91 1 
1105 0.242 
710.4 0 

1130.31 0.544 
9559 0.597 
1836 0.12125 

154297 
23250.72 
208022 
1073393 
9493.96 
4484.52 
254954 

pp time(s) 
0.5489 
5.984 
96.17 
84.42 
421.43 
7302.14 
25.58 
186.46 
220.63 

pp coll. 
15016 
103528 

8062836 
3889115 
11947585 
10822951 
253330 

6713599 
8789764 

aq time(ms) 
116.1 

1296.75 
7.426 

46 
941.696 
10327 
7186 
56.42 
143.92 

aq coll. 
9607 
75917 

1954355 
695309 
316989 

10900158 
94367 
213279 
344255 

aq coll. 
3200 

22261.58 
393.27 
2128.45 
26003 
16362 
70816 

2666.38 
5828 

Figwe 3: Comparison of Planning Algorithms 

of locality and is capable of answering easier queries 
while avoiding difficult and irrelevant parts of the 
space. In environments with a single narrow feature, 
the BI-RRT is forced to do a similar amount of work 
to the PRM or PRM of RRTs preprocessing phases to 
answer a single query. This phenomena also accounts 
for the better performance of BI-RRT on the random 
example compared to other examples where resolv- 
ing a query can be often be done without considering 
the whole space. Finally, we believe that the effi- 
ciency of the PRM of RRTs derives in part from offer- 
ing the BI-RRT calls easier queries as they come from 
the nearest neighbor clustering and the fact that the 
global sampling property of PRM is retained so that 
expansion heuristics, such as RRT, do not get stuck. 

The algorithms we use are designed to have several 
opportunities for early exit as a speed enhancement. 

accuracy 
0.978 
0.995 
0.418 
0.357 
0.54 
0.25 
0.804 
0.0133 

0.0 

accuracy 
0.985 
0.97 

1 
0.999 
0.941 
0.68 
0.961 

1 
0.875 

In collision detection, bisection checking on a path 
allows for early exit for paths with many collisions 
In the PRM layer, only checking edges between dif- 
ferent components and halting when all components 
were determined produced better raults.  Finally, 
the BI-RRT algorithm can make an early exit by 
quickly checking k close edges before beginning or 
once a path between the roots has been found. Tc- 
gether these early exit opportunities allow for per- 
formance improvement without a loss in reliability. 

In some of experiments, run time frir PRM of RRTs 
was far superior to PRM even though fewer collision 
checks occurred in the second method. This occurs 
for several reasons. Using bisection for collision d e  
tection quickly rejects had edges, however a large 
number of edge checks are initiated. The incremen- 
tal planner will continue checking an edge once a 
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failure occurs. PRM of RRTs checks fewer edges but 
works harder for each edge. This is reflected in the 
running time. Also, the nearest neighbor queries 
lead to super-linear growth in the running time. On 
more difficult examples, PRM needs many milestones 
to succeed and the k-D tree has many points in it. 
As the number of points in the tree grows, this cost 
begins to dominate the running time since it is the 
only super-linear cost in the implementation. The hi- 
erarchical representation of PRM of RRT yields much 
smaller trees and this problem does not manifest as 
seriously. 

The results we present were for good parameter se- 
lection for each method. In a new example, select- 
ing the correct parameters can be difficult, partic- 
ularily for PRM of RRTs since the tradeoff between 
the number of milestones and number of BI-RRT 
iterations is more sensitive. In general, generat- 
ing no more than several hundred initial milestones 
and using dense PRM seemed to be the best setting. 
Once this amount is k e d ,  varying the number of 
BI-RRT iterations generates a tradeoff between accu- 
racy and time. The incremental planner, metrics and 
Cspace representation can be varied to optimize per- 
formance as with other motion planners using similar 
frameworks. We showed how to provide parameters 
that yield a smooth spectrum between the PRM and 
BI-RRT approaches. The planner we obtained was 
effective for high degree of freedom problems o b  
tained by putting multiple non-convex rigid robots 
in various scenes. In many cases the advantages of 
this technique were striking. Although further exper- 
imentation is needed to better understand parameter 
sensitivity, we believe the framework we describe is 
useful as we attempt to solve increasingly difficult 
planning problems. 
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