
h e d i n g s 01 (he 2003 IEEElRSJ
Inn. Conference on Intelligent Robots and Systems
Las Vegas, Nevada ' October 2003

Multiple Query Probabilistic Roadmap Planning
using Single Query Planning Primitives

Kostas E. Bekris, Brian Y . Chen, Andrew M. Ladd, Erion Plaku, and Lydia E. Kavraki

Department of Computer Science
Rice University

Houston TX, 77005
{ bekris,brianyc,aladd,plakue,kavraki }@cs.rice.edu

Abstract

We propose a combination of techniques that solve
multiple queries for motion planning problems m t h
single query planners. OUT implementation uses
Q probabilistic roadmap method (PRM) with bidirec-
tional rapidly ezploring random trees (BI-RRT) as
the local planner. With small modifications to the
standard algorithms, we obtain a multiple query plan-
ner which is significantly faster and more reliable
than its component parts. OUT method provides a
smooth spectrum between the PRM and BI-RRT tech-
niques and obtains the advantages of both. W e ob-
served that the performance differences are most no-
table en planning instances weth several r igid non-
wnvez robots in a scene with narrow passages. OUT
work is in the spirit of non-uniform sampling and
refinement techniques used in earlier work on PRM.

1 Introduction

Multiple query motion planning is important for a p
plications where the robot operates in the same en-
vironment for a long period of time. In these cases,
a data structure is built in a preprocessing phase in
order for many queries to be answered quickly. For
applications in where changing the environment or
where the robot only sees a local window, a motion
planner has to efficiently explore the space in order
to solve a query without preprocessing information.
In this paper we use a single query motion planning
algorithm as a subroutine for a multiple query plan-
ner. By combining these two approaches, a planner
that uses the strengths of both is obtained.

The probabilistic roadmap method (PRM) approach
to motion planning is efficient, easily implemented
and applicable to a large variety of motion plan-
ning instances 112, 71. It is a multiple query plan-
ner which constructs a roadmap by sampling points
in the space and connecting them with a primitive

0-7803-78601/03/$17.00 Q 2003 IEEE

Figure 1: A dificult example of the multiple moue,'
problem in 30 that OUT planner has solved. Them, .
are eight moving objects (48 degrees of freedom) and C.
a wall with a narrow passage. All of the robots have '
to switch sides.

planner. Many implementations use a variation of
the straight line planner as the primitive local plan-
ner. However, PRM is generic and probabilistically
complete as long as the chosen local planner always
returns the same path between two configurations
1131. At query time, a sufficiently good roadmap
captures the structure and connectivity of the con-
figuration space (C-space) well enough to resolve the
query quickly.

Single query planning can be achieved with poten-
tial fields [4] and more recently has also been solved
by growing trees in the C-space 19, 16, 201. Using
a potential field planner as a local planner for PRM
has been attempted [IO]. There axe also approaches
that incrementally construct a roadmap by merging
rapidly exploring random trees (RRT) that are pro-
duced as queries are resolved [IQ].
In this work, we examine the applicability of RRTs
[16] as a local planner for a PRN. We are primar-
ily interested in obtaining a planner that is effec-
tive for high-dimensional problems 1141 as those aris-
ing in planning with flexible robots [15], reconfig-

656

mailto:cs.rice.edu

urable robots 1211, complex planning instances [ZO]
and computational biology search problems [3, 21.
Our implementation focuses on the multiple mover
problem in three dimensions (Figure 1) by modifying
the originally stated RRT and PRM formulations so as
to efficiently explore the C-space. We have tested our
planner on a variety of benchmarks and we noticed
significant improvement on run time and roadmap

of the robot in the workspace. This construction is
used for each robot to obtain a point in Euclidean
6N-D. Distance is measured in the usual way for
these points. A straight line between two conlign-
rations (sz,s3) = (p , ,qn ,p3 ,q l) is defined as a lin-
ear interpolation between the two translation points
@ , , p 3) and a spherical interpolation for the quater-
nion representations of the rotation (qt, q,).

quality compared to the PRM or BI-RRT planners. Our implementation uses SWIFT++ [6] for calli-
sion detection. Equally spaced points along the
straight line between two configurations are tested
for collision usinn intersection checks. The order of

We report the results of our experiments and discuss
how to vary the input parameters to obtain good
performance.

2 Method and Implementation

Heterogenous Two-Tiered Planning The main
contribution of this paper is to propose the combina-
tion of PRM and RRT methods in order to solve mnl-
tiple query planning problems more efficiently. The
general principle behind this work is to increase the
power of the local planner in order to reduce the
number of operations needed by the PRM and to ob-
tain a more robust planner. This latter idea bas been
explored in the past [l, 101 but in this paper it is ex-
plored further so as to better integrate with the PRM
formulation.

We use BI-RRT 1181 as a local planner for a PRM plan-
ner. RRTs are grown at each milestone, and connec-
tions between milestones are computed by BI-RRT.
The RRTs rooted at the milestones and the paths be-
tween them are stored for use in queries. The use of
RRT is akin to a refinement phase used in some PREl
implementations, 1121 and the extra power of BI-RRT

-
the checks is done by bisection, which increases the
chances of quick rejection of paths in collision.

PRM Implementation We use a general implemen-
tation of PRM [12]. Our interpretation of the algo-
rithm follows.

Algorithm 1 BUILD ROADhfAP(n,k)
1. Generate n wnfieurations in free SDNP 5'. -
2: Let G = 0, the empty graph on S.
3 for each configuration s i E S do
4 Find k neighbors for si, Nk(si) .
5: for each configuration sj E Nk(si) do
6

7
8:
9: endif

if j > i and the local planner can find a collision-free
path from si to sj then

add an edge (i ,j) in G.
annotate (2 , j) with the distance between i and j.

1 0 endfor
11: end for
12: return the graph G and the set S.

. .
allows for fewer milestones in the toplevel roadmap.

C-space The class of problems we considered for the
purposes of our experiments with this general plan-
ning framework consisted of multiple non-convex,
rigid bodies moving freely in a three dimensional
workspace with rigid, non-convex static obstacles.
This allowed us to obtain high dimensional problems
with narrow passages, which have traditionally been
difficult for PRM and RRT planners. As with other
motion planners, obvious generalizations to many
other kinematic planning problems are straightfor-
ward, and the use of RRTs as subroutine provides a
natural way to extend the planner to kinodynamic
planning instances [E, 171.

In our implementation, we represent the conligura-
tion of a single robot with a point and a quaternion
(p, q). N robots operating in the workspace are r e p
resented by a tuple { (p I , q ,) , ..., (p ~ , Q N) } . The di-
mensionality of the configuration space in this case
is 6N. To obtain an embedding of a single robot into
Euclidean &D, we catenate two points from opposite
corners of the bounding box of a given configuration

AlF-"-'ithm 2 MT(% so)
1: Add so BS the mot of the tree, T.

As the graph is being built, the number of connected
components can be maintained by using a fast union-
find data structure. By limiting the number of intra-
component local planner checks by a small constant,
roadmaps can be constructed more quickly. This
pass is similar to approaches used in other PRM im-
plementations [Il l .

RRT Implementation The toplevel implementa-
tion of the RRT algorithm [18] is as follows:

2: for i ranges from 1 to n do
3 Generate a free configuration from a random distribu-

tion, starget.
4 Find the closest point in the tree T, sj.
5: Set s i to INCP€M€NTAL-PLANNER(~~,S~.,~~).
6 Add si to the tree, T , 88 a child of s j .

7 Annotate the edge in the tree with the cost from s j to

8: end for
Si.

657

We use the following implementation of B I - RRT.

Aleori thm 3 BI-RRT(n. TI. T z) , . ~. ~, -
1: for i ranges from 1 to n do
2:

3:

4:
5:
6 end if

8:
9:

Generate a free configuration from a random distrihu-
tion, starget.
Find the closest points in each tree, sj and st respec-
tively.
if the local planner can connect s1 to s i then

return the path from s t to SE :ia sj and s i .

7: set to INCREMENTAL-PLANNEF(S~, starget).
if the local planner can connect st to s i then

return the path from s t to SE via st and s i .
10: endi f
11: Swap 7'1 and T2.
12: end for
1 3 return no path was found.

Adapting RRT for use with PRM Each milestone
in the PRN graph is an RRT. When generating the
milestones, we begin with a random configuration
for the root and grow the RRT by a fixed number of
iterations. Each RRT can be viewed as a set of con-
figurations, the embeddings we describe earlier are
used to obtain a set of points in 6N-D. The centroid
of this point set is computed and is used as the C(F

ordinates for that RRT. In Algorithm 1, the neighbor
query uses these coordinates.

The local planner for the PRM is Algorithm 3. Before
running the BI-RRT, we 6rst compute k close pairs
between the two sets of configurations and try to use
a straight line planner to connect them. In Alg-
rithm 3, the local planner is taken to be a straight
line planner.

In the case of multi-robot motion planning the gen-
eration of the RRT nodes is faster if it is done incre-
mentally. We first choose a random order to generate
the robots in and then embed the robots in this or-
der. If the embedding fails at any point, we re-embed
the robot that failed until it succeeds. This leads to
a significant reduction in the number of attempts re-
quired compared to re-embedding them all.

The incremental planner that we use checks collisions
by bisection and bas been adapted for multi-robot
planning instances. Each robot is moved simulta
neously towards the goal configuration. The path
is checked for collisions incrementally by adding one
robot a t a time to the path and checking for collisions
with the environment and with the previous robots.
If a collision is found, then a new target configuration
for the robot being added is generated. Although
this local planner is more expensive than checking
all robots simultaneously, we found that it is consid-
erably more effective in practice. The configuration

returned by the call to the incremental planner is the
final goal that computed. In the case where no robot
can move, no configuration is returned and the outer
loop repeats without incrementing.

k-nearest neighbors The k neighbor queries are
answered using a combination of k-nearest neighbors
and a random selection. The use of random selection
offsets problems with the metric we observed in nar-
row areas of the space.

The k-nearest neighbor queries were implemented us-
ing 6N-D tree [5] . In our experience, the efficiency
of this query in practice is significantly better than
the worst case O(n%) if some care is taken during
the query. The tree is traversed greedily towards the
query point. When walking up the tree, if the worst
point in the partial k-NN is further than the clos-
est point of the incrementally constructed bounding
box around the point set on the other branch, then
that branch is taken. Also, a small performance im-
provement can be gained by not splitting point sets
of cardinality smaller than some threshold, experi-
mentally around 25 to 80.

Since the configurations in the RRT are added incre-
mentally and in a spatially local way, the invariant
that. the tree be fairly well balanced is maintained.
The ratio of the point sets on the left and right side
cannot be too small or too large. When this occurs
at some suhtree, the whole tree is collapsed and re-
built as a balanced tree. In our experiments, this is
necessary but happens sufficiently infrequently that
it amortizes to a nearly neglible cost. Not split-
ting leaves with small point sets greatly reduces the
amount of time spent rebalancing trees.

Queries Queries are handled by connecting the two
query configurations with the RRTs of the roadmap
and proceeding by graph search. We find the k-
nearest milestones for each configuration and alter-
nately try to connect them using the BI-RRT algo-
rithm. These edge connections continue until both
query configurations lie in the same connected com-
ponent, we cease computation and return the path.
We applied some simple path smoothing to the re-
sulting path to improve the quality of the output.

3 Methodology and Results

The PRN of RRTs has several parameters which we
will now describe: N , the number of robots, n, the
number of milestones used in the PRM layer, m, the
number of RRT iterations per milestone, k, the num-
ber of iterations that BI-RRT is run for, CNN, the
number of nearest neighbor milestones to use for PRM,
+, the number of random neighbor milestones to use
for PRM, and ccp, the number of close pairs to check

.

658

(%) Types of robots (b) Random (c) Fence

Figure 2: Robots and scenes for the experiments

before running BI-RRT.

In our experiments, we measure time and accuracy.
Time is measured for the preprocessing phase (pp
time) and for average time to respond to a query
(aq time). We also record the number of SWIFT++
collision detection calls for preprocessing (pp coll.)
and per query (aq coll.). Accuracy is measured by
taking some number of non-trivial random queries
and counting the fraction solved positively.

The experiments were carried out on dual Athlon
1900MPs with one gigabyte of RAM. Computation
was monolithic, sequential and made no use of virtual
memory or disk.

We tested against a variety of benchmarks (Figure 3).
The empty environments (“empty6”, “empty8”) do
not have any obstacles. The narrow environments
(“narrow2”, “narrow4”, “narrow6”, “narrow8”) have
a wall with a narrow passage (see Figure 1). Fi-
nally, we ran experiments on an environment with a
fence (“fencel”, “fence%”, Figure Z(c)) and one with
random polyhedra (“random3”,Figure 2(h)). The
robots we used are illustrated in Figure 2(a). Prob-
lem “fencel” uses one robot of type C and problems
“fence2” and “narrow2” use two copies of C. Problem
“random3” uses one A, one C and one D. Problem
“narrowl” uses one B, two C and one D and we have
added one A and one C for “narrow6” and “empty6.
Finally, problems “narrow8” and “emptyd also in-
clude one B and one D.

In Figure 3, we compare three different motion plan-
ners. A standard PRM, a BI-RRT, and the PRM of
RRTs. Each planner uses the same code base and
corresponds to different parameter settings. A PRH
is obtained by setting m = 0, k = 0 and ccp = 1. A
BI-RRT is obtained by setting n = 0 and ccp = 0. In
setting the remaining parameters, we tried a variety

of values and chose good tradeof& for each with an
emphasis on accuracy.

4 Discussion

In Figure 3, we summarize our results for the VW-
ious benchmarks. The most important difference
that we note is a significant increase in reliability
over PRH and over BI-RRT. In some examples (e.g.
“narrow6”, “fencel”, “fence2”) we increased the reli-
ability from 0.2-0.3 to 0.9. In our implementation,
PRM of RRTs generally outperforms PRM for multiple
query problems. Moreover, for the cost of two or
three BI-RRT queries, we can preprocess the space
with PRM of RRTs to obtain a structure that answers
queries more robustly and more quickly than BI-RRT.
The differences between the methods were more pro-
nounced in the examples with more complex scenes
and with more robots. We use fairly standard im-
plementations of RRT and PRN. We think it is likely
that improvements t o either subroutine would be an
improvement for our planner.
The method we present has common attributes with
other reiinement and non-uniform sampling tech-
niques used in PRM planning. RRTs have a tendency
to grow towards obstacles. This tends to throw more
configurations near obstacles which resembles the
technique of OBPRH 111. The rejection sampling and
local improvement of RRT is similar to the enhance-
ment phase of early PRI(planners [ll, 121.

Both RRT and PRM are well-known to be extremely
sensitive to the interplay between the metric and the
incremental planner [IS]. We also made this obser-
vation in our implementation. In environments with
thin features, in particular the fence environment,
BI-RRT tended to produce many configurations that
were stuck near obstacles. BI-RRT also makes use

659

PRM I pp time(s)
emutv 6 I 3.75
em& 8
narrow 2
narrow 4
narrow 6
narrow 8
random 3

fence 1
fence 2

507.09
452.8
467.79
1426.32
10544.89
2657.21
200.83
1147

BI-RRT
empty 6
empty 8
narrow 2
narrow 4
narrow 6
narrow 8
random 3

fence 1
fence 2

PRM of RRT
empty 6
empty 8
narrow 2
narrow 4
narrow 6
narrow 8
random 3

fence 1
fence 2

pp coll. aq time(ms)
45202 23.03

1179373 232.19
1030952 307.67
830600 217.1
2040998 269.58
60554186 375.81
3945703 452.63
1671408 503.46
2654280 356.52

aq coll. accuracy
217 0.952

484.8 0.882
137 0.991

148.91 1
1105 0.242
710.4 0

1130.31 0.544
9559 0.597
1836 0.12125

154297
23250.72
208022
1073393
9493.96
4484.52
254954

pp time(s)
0.5489
5.984
96.17
84.42
421.43
7302.14
25.58
186.46
220.63

pp coll.
15016
103528

8062836
3889115
11947585
10822951
253330

6713599
8789764

aq time(ms)
116.1

1296.75
7.426

46
941.696
10327
7186
56.42
143.92

aq coll.
9607
75917

1954355
695309
316989

10900158
94367
213279
344255

aq coll.
3200

22261.58
393.27
2128.45
26003
16362
70816

2666.38
5828

Figwe 3: Comparison of Planning Algorithms

of locality and is capable of answering easier queries
while avoiding difficult and irrelevant parts of the
space. In environments with a single narrow feature,
the BI-RRT is forced to do a similar amount of work
to the PRM or PRM of RRTs preprocessing phases to
answer a single query. This phenomena also accounts
for the better performance of BI-RRT on the random
example compared to other examples where resolv-
ing a query can be often be done without considering
the whole space. Finally, we believe that the effi-
ciency of the PRM of RRTs derives in part from offer-
ing the BI-RRT calls easier queries as they come from
the nearest neighbor clustering and the fact that the
global sampling property of PRM is retained so that
expansion heuristics, such as RRT, do not get stuck.

The algorithms we use are designed to have several
opportunities for early exit as a speed enhancement.

accuracy
0.978
0.995
0.418
0.357
0.54
0.25
0.804
0.0133

0.0

accuracy
0.985
0.97

1
0.999
0.941
0.68
0.961

1
0.875

In collision detection, bisection checking on a path
allows for early exit for paths with many collisions
In the PRM layer, only checking edges between dif-
ferent components and halting when all components
were determined produced better raults. Finally,
the BI-RRT algorithm can make an early exit by
quickly checking k close edges before beginning or
once a path between the roots has been found. Tc-
gether these early exit opportunities allow for per-
formance improvement without a loss in reliability.

In some of experiments, run time frir PRM of RRTs
was far superior to PRM even though fewer collision
checks occurred in the second method. This occurs
for several reasons. Using bisection for collision d e
tection quickly rejects had edges, however a large
number of edge checks are initiated. The incremen-
tal planner will continue checking an edge once a

660

failure occurs. PRM of RRTs checks fewer edges but
works harder for each edge. This is reflected in the
running time. Also, the nearest neighbor queries
lead to super-linear growth in the running time. On
more difficult examples, PRM needs many milestones
to succeed and the k-D tree has many points in it.
As the number of points in the tree grows, this cost
begins to dominate the running time since it is the
only super-linear cost in the implementation. The hi-
erarchical representation of PRM of RRT yields much
smaller trees and this problem does not manifest as
seriously.

The results we present were for good parameter se-
lection for each method. In a new example, select-
ing the correct parameters can be difficult, partic-
ularily for PRM of RRTs since the tradeoff between
the number of milestones and number of BI-RRT
iterations is more sensitive. In general, generat-
ing no more than several hundred initial milestones
and using dense PRM seemed to be the best setting.
Once this amount is k e d , varying the number of
BI-RRT iterations generates a tradeoff between accu-
racy and time. The incremental planner, metrics and
Cspace representation can be varied to optimize per-
formance as with other motion planners using similar
frameworks. We showed how to provide parameters
that yield a smooth spectrum between the PRM and
BI-RRT approaches. The planner we obtained was
effective for high degree of freedom problems o b
tained by putting multiple non-convex rigid robots
in various scenes. In many cases the advantages of
this technique were striking. Although further exper-
imentation is needed to better understand parameter
sensitivity, we believe the framework we describe is
useful as we attempt to solve increasingly difficult
planning problems.

Acknowledgements Work on this paper by K. Bekris,
B. Chen, A. Ladd, E. Plaku and L. Kavraki has been partially
supported by NSF 9702288, NSF 020567, a Whitaker Grant,
and a Sloan Fellowship to L. Kavraki. A. Ladd is also partially
supported by an FCAR grant.

References

[l] N. Amato, B. Bayazit, L. Dale, C. Jones, and
D. Vallejo. Obprm: An obstaclebased prm for 3d
workspaces. In P. Agarwal, L. Kavraki, and M. Ma-
son, editors, WAFR, pages 156-168. 1998.

[2] N. Amato, K. Dill, and G. Song. Using motion plan-
ning to map protein folding landscapes and analyze
folding kinetics of known native structures. In RE-
COMB, pages 2-11, April 2002.

[3] M. Apaydin, D. Brutlag, C. Guestrin, D. Hsu, and
J. Latombe. Stochastic roadmap simulation: An
efficient representation and algorithm for analyzing
molecular motion. In RECOMB, April 2002.

[4] J. Barraquand and J. Latombe. Robot motion plan-
ning: A distributed representation approach. IJRR,
10628449, 1991.

[5] M. de Berg, M. van Kreveld, and M. Overmars. Com-
putational Geometry: Algorithms and Applications.
Springer, Berlin, 1997.

[6] S. Ehmann and M. Lin. Accurate and fast proximity
queries between polyhedra using surface decomposi-
tion. Computer Gmphics Forum (Proc. of Eumgmph-

[7] R. Geraerts and M. Overmars. A comparitive study
of probabilistic roadmap planners. In Proc. WAFR,
2002.

[8j D. Hsu, R. Kindel, J. Latombe, and S. Rock. Ran-
domized kinodynamic motion planning with moving
obstacles. IJRR, 2001.

[9] D. Hsu, J. C. Latombe, and R. Motwani. Path plan-
ning in expansive configuration spaces. In ICRA,
pages 271S2726, 1997.

Constructing probabilistic roadmaps with
powerful local planning and path optimization. In
IROS, 2002.

[ll] L. Kavraki. Random Networks in Configumtion Space
for Fast Path Planning. PhD thesis, Stanford Univer-
sity, 1995.

[12] L. E. Kavraki, P. Svestlra, J.-C. Latombe, and M. H.
Overmars. Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces. TRA,
12(4):566-580, June 1996.

1131 A. Ladd and L. Kavraki. A measure theoretic analysis
of prm. In ICRA, May 2002.

[14] A. Ladd and L. Kavraki. Motion planning for knot
untangling. In WAFR, 2003.

[15] F. Lamiraux and L. Kavraki. Planning paths for elas
tic objects under manipulation constraints. IJRR,
20(3):188-208, 2001.

1161 S. LaValle and J. Kuffner. Rapidly-exploring random
trees: Progress and prospects. In WAFR, 2000.

[17) S. LaValle and J. Kuffner. Randomized kinodynamic
planning. IJRR, 5348400, May 2001.

[18] S. LaValle and J. Kuffner. Rapidly exploring ran-
dom trees: Progress and prospects. In B. Donald,
K. Lynch, and D.Rus, editors, WAFR, pages 293-
308. A.K. Peters, 2001.

[19] T.-Y. Lie and Y.-C. Shie. An incremental approach

ics), 2001.

[lo1 P. Isto.

to motion planning with roadmap management. In
ICRA, 2002.

[ZO] G. Sanchb and J .4 . Latombe. On delaying collision
checking in prm planning - application to multi-robot
coordination. IJRR, 21(1):5-16, 2002.

[21] M. Yim. Locomotion with a Unit-Modular Recon&-
zlmble Robot. PhD thesis, Stanford Univ., December
1994. Stanford Technical Report STAN-CS-941536.

661

