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Abstract

Flexible representations of protein structures can enable structure comparison algorithms to find
remotely homologous proteins, even when they have been crystallized in different conformations. By
compensating for large spatial variations, these representations can enable these algorithms to better
detect remote similarities in the space of protein structures. Subtle variations in protein structures
can also have a substantial impact structure comparison. For example, the motion of a single side
chain into a binding cavity can make the cavity appear totally dissimilar to identical binding sites, even
though, in reality, the presence of the side chain does not affect binding. To address the impact of
subtle conformational variations, this paper describes FAVA (Flexible Aggregate Volumetric Analysis),
an algorithm that enables comparisons of ligand binding sites while compensating for subtle, localized
flexibility.

FAVA integrates hundreds of conformational samples, sourced from any molecular simulation software
that provides all-atom detail, to characterize the geometry of ligand binding sites as they frequently
appear. This representation enables rare conformations, as defined by the user, to be excluded from
the structural comparison. In our results, on three families of serine proteases and three families of
enolases, we show that despite substantial binding site variations, FAVA is able to correctly classify
families with different binding preferences. We also demonstrate that FAVA can examine the motion
of individual amino acids to identify those that influence ligand binding specificity. Together, these
capabilities demonstrate that comparison errors associated with small conformational variations, which
can substantially alter the geometry of ligand binding sites and other local features, can be mitigated by
an analysis of many conformational samples.

1 Introduction

Algorithms that compare protein structures have generally focused on the identification of proteins with
similar functions at great evolutionary distances. Aiming to reveal the topology of the space of protein
structures [35, 38, 25, 57|, many algorithms specialize in identifying proteins with backbone similarities that
can point to shared evolutionary origins even when similarity is not apparent from amino acid sequences
alone [37, 39, 26, 43, 49, 59]. In such cases, proteins that have been crystalized in different conformations can
be overlooked, because the spatial relationships between their constituent parts can appear quite different.
To compensate for conformational variations, some methods employ flexible representations of proteins as
collections of rigid components with flexible linkers. These representations employ hinges [47, 20|, graph
structures [58, 29], fragments [34], and dynamic programming [56, 7, 32] to avoid discarding similar proteins
in alternate conformations.

Comparisons of smaller elements of protein structure, such as ligand binding cavities [43, 6, 10, 8], are
also affected by small conformational variations. While large changes, such as backbone motions, still disrupt
the comparison of ligand binding cavities [17, 18], smaller variations, such as the motion of individual side
chains, also cause similar binding cavities to appear very different. This second source of error disrupts the
search for proteins with similar binding sites at great evolutionary distances [11, 54, 15, 8], and also the
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Figure 1: An overview of the FAVA method. A) CSG operations used by FAVA with input regions (green,
dotted outline) and output regions (solid outhne). B,C) Input proteins X (blue) and Y (green) with ligand
binding sites x (light green) and y (yellow). D,E)  and y in different conformational samples. F,G) All
conformational samples of = (transparent green) and y (transparent yellow), superposed, with black outlines.
Considerable variations in cavity shape are apparent. H) Using CSG, the intersection of all cavity regions in
both proteins is too small to accommodate ligands. They are also identical, revealing little about different
binding preferences. I) Using CSG, FAVA approximates frequent regions, where every point is inside at least
two thirds of all samples of  (green) and y (yellow). J) The intersection of frequent regions indicates regions
that might accommodate similar molecular fragments (red). K) The difference between frequent regions
(yellow) indicates a region where Y might often accommodate a ligand that X cannot, causing a difference
in specificity.

identification of binding site variations that cause differences in ligand binding specificity [12, 22, 21]. While
flexible representations can compensate for large variations in backbone geometry, existing methods do not
compensate for the large space of smaller motions that disrupt local comparisons.

To address this problem, we describe a method for reducing comparison errors due to small variations in
protein structure called FAVA (Flexible Aggregate Volumetric Analysis). FAVA integrates structural data



from many conformational samples to create a volumetric representation of binding cavity regions (frequent
regions) that are frequently accessible to solvent. In our results we will show that comparisons of frequent
regions can reveal differences between binding cavities that explain different binding preferences, even though
many conformational variations can obscure this trend. We will also demonstrate that comparisons of many
conformations of individual amino acids with the binding cavities of other proteins can precisely reveal amino
acids that have a steric influence on ligand binding specificity, even though many amino acids occasionally
interfere with binding cavity shape. FAVA demonstrates that an aggregate analysis of many conformational
samples can yield insights into conformational trends for localized comparison.

Sampled conformations exhibit a novel advantage. All-atom samples provide a more detailed represen-
tation of molecular motion than that provided by existing methods. In each sample, the position of every
atom is affected by energy functions that enforce biophysical constraints. Each relevant atom can thus be
used for constructing a semi-realistic representation of binding site geometry. In constrast, existing methods
approximate rigidity in some places and flexibility in others. While the same biophysical constraints are
not in effect, the computational expense of molecular simulation is also not necessary in existing methods.
Detailed biophysical semi-realism is thus achieved in exchange for the substantial computational cost of con-
formational sampling. This tradeoff specializes FAVA for the detailed comparison of ligand binding cavities,
where the motion of every atom is critical, whereas the detection of similar proteins with large conforma-
tional variations, which would be expensive to simulate anyway, is best suited for the rigid components and
flexible linkers used in existing work.

Frequent regions are generated using boolean operations from Constructive Solid Geometry (CSG) [12],
such as union, intersection and difference (Fig. la). CSG operations are also used to compare binding
cavities and identify potentially influential amino acids. CSG intersections between frequent regions identify
conserved frequent regions, which describe regions in the binding cavities of two structurally aligned pro-
teins that are frequently solvent accessible in both proteins. These regions might accommodate molecular
fragments common to substrates that bind both proteins. CSG differences between frequent regions identify
unconserved frequent regions, which represent regions in aligned binding cavities that are frequently solvent
accessible in one protein but not the other. Unconserved frequent regions might therefore accommodate
ligands in one protein that cannot bind in another and thereby have a steric influence on specificity. Finally,
CSG operations permit the identification of amino acids that frequently alter cavity shape, and thus have
a steric influence on specificity. Together, these techniques create a conformationally general approach for
examining closely related proteins in search of influences on binding specificity.

In earlier work [22], we demonstrated that comparisons of frequent regions generated with FAVA could
reveal patterns of subtle differences in binding cavities that relate to ligand binding preferences. We also
showed examples demonstrating that amino acids that frequently alter cavity shape have a steric influence
on specificity. This paper summarizes the methods employed by FAVA and extends our earlier examples,
providing a comprehensive study of the conformational variation of all amino acids within a sequentially
nonredundant set of serine proteases.

2 Methods

Below, we paraphase methods associated with FAVA that we described earlier [22]. FAVA defines frequent
regions as regions in space that are solvent accessible in more than k/N samples, where k, the overlap
threshold, is provided as input, and NV is the number of samples. By setting k, the user defines how frequently
a region in space must be solvent accessible in order to be part of the frequent region. Unusual gaps and
clefts that occur less frequently than k/N will thus not be reflected in the shape of the frequent region. We
first describe how frequent regions are computed using CSG operations, employing the symbols U, N, and
— to represent CSG unions, intersections and differences, respectively. Implementation of individual CSG
operations has been described earlier [12]. Next, we describe how frequent regions from multiple proteins
are compared using CSG operations. Finally, we explain how we use sampled conformations of individual
amino acids to assess their steric impingement on nearby binding cavities.
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Figure 2: Generating frequent regions. A) Conformational samples Ag, A1,... Ay of protein A, shown as
molecular surfaces (teal, black outlines). B) Ligand ! (red dots) bound to protein A (green). C) Aligning
each A; to A permits ! to mark the ligand binding site in A;. D) Spheres that define the neighborhood around
the atoms of [ (transparent blue, black outlines). E) CSG union of the spheres, S; (blue). F) CSG difference
Al that removes the region within the molecular surface of each A; (dotted outline) from copies of S;. G)
Envelope surfaces (yellow, black lines) and molecular surfaces (dotted lines) of all A;. H) Envelope surfaces
aligned. Outlines of all envelopes are shown in black. I) The global envelope region, E(A), generated with
CSG intersections (yellow, heavy black outline). J) CSG intersection between each A}, shown in blue, and
E(A) (transparent yellow, black outline). K) Cavities a; defined on each conformational sample. L) Cavity
borders superposed (black outlines). M) frequent region that overlaps at least 3 cavities (red). N) CSG
intersections between several pairs of a;. O) The CSG union of intersections in N: af, the approximated
frequent region (teal) overlapping at least 2 cavities.

2.1 Computing frequent regions

To generate a frequent region, we begin with the overlap threshold k, N conformational samples of a protein
structure A, and a ligand [ bound to the structure of A (Fig. 2b). We use Ag, A1,...An to refer to
conformational samples of A, which could be provided from any source that specifies all atom positions.
It is asssumed that enough samples have been gathered so that the range of short timescale motions, such
as sidechain movements, are represented in the samples. Beginning with this data, we follow two steps to
generate frequent regions: First, we define the ligand binding cavity in every sample, and second, we analyze
these cavities to determine the shape of the frequent region.

We begin by superimposing every sample A; onto A by computing a backbone superposition. Sophisti-
cated algorithms designed to detect remote homologs (e.g. [37, 39, 26, 49, 59]) are not necessary, because
the proteins in A; are identical to A, except in their conformation. For this reason, we compute a superpo-
sition that minimizes the root mean squared distance between identical atoms [55]. Next, we generate the
molecular surface m(A4;) of every conformational sample 4;, using GRASP2 [41] (Fig. 2a). GRASP2 uses
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Figure 3: A comparison of frequent regions. A,B) Frequent regions oj (teal) and S (light blue). C)
Conserved frequent region, FC(A, B) (yellow). D,E) unconserved frequent regions (teal, light blue).

the classical rolling probe algorithm [13] and the standard probe size of 1.4A.

Now, since every A; has been superposed onto A, the binding cavity of A is now approximately superposed
with itself in every sample, so we use the ligand [, as bound in A, to represent the neighborhood of the binding
site in every surface m(A;) (Fig. 2¢). Specifically, we define a sphere of radius 5 A | centered at every atom
in | (Fig. 2d), and compute the CSG union of all these spheres. This neighborhood, S; (Fig. 2e), defines
the vicinity of the ligand binding cavity in every sample.

Next, we use S to define the binding cavity in every sample. First, we make a copy of S for every A; and
compute the CSG difference, A, = S; — m(4;), revealing part of the cavity 2f). We also make an envelope
surface, e(A;), for every sample. Here, we again use GRASP2, which uses the same rolling probe method
except that the probe radius is changed to 5.0A (Fig. 2g). This larger probe is 10 A in diameter so it does
not roll into small clefts and cavities. For this reason, we use the resulting surface e(4;) to define a logical
exterior boundary between the cavity and the solvent. Since e(A;) can vary significantly between different
conformational samples, especially because of solvent-facing side chains (Fig. 2g) unrelated to cavity shape,
we mitigate these differences by computing their intersection (Fig. 2h,i),

B(A) = e(A). 1)
Vi

As the intersection of the envelopes from all conformational samples, we refer to E(A) as the global
envelope region. Note here that because our samples are generated at a medium timescale, and thus exclude
large backbone motions, the shape of E(A) is not strongly influenced by backbone motion. Next, for every
i, we compute the CSG intersection of A, and E(A) (Fig. 2j). The result is the binding cavity in every
conformational sample, which we call a; (Fig. 2k).

Once we have determined the shape of the binding cavity in each conformational sample, we then use
all a; to approximate the frequent region ay. Here, it is crucial to note that oy is not practical to compute
explicitly on a protein with many sampled conformations. Consider, for example, the simple case of k = 30.
The region «gg includes the CSG intersection of ag, a1, as,...,asy, because any point inside all of these
regions is inside at least 30 a;, and thus inside asg. The same is true for any thirty member subset of
{ag,a1,...,an}, so asg is the union of all intersections of thirty distinct sample cavities: (3{\6) intersections.
Where N is several hundred samples and k is nontrivial, the exponential size of the calculation is clearly
impractical, given the number of combinations.

Even though an explicit computation of aj would be impractical, it can still be rapidly approximated.
For any k, we select 500 random and distinct subsets of {ag,a1,...,an} of size k. Next, we compute the
intersection of the binding cavities in each subset, and then the union of all such intersections. We call this
region «f. Fig. 2n illustrates a small example of this process on a random selection). We tried random
selections of different sizes [22] and found that frequent regions approximated from random subsets of 500 had
consistent volumes, and therefore deemed 500 sampled subsets to be sufficient for accurate representations.

2.2 Comparing frequent regions

To compare frequent regions representing the binding cavities of two proteins, A and B, we begin by aligning
B onto A using ska [57]. Next, we superpose every snapshot A; onto A and every snapshot of B; onto B
by minimizing the root mean squared distance between identical atoms [55]. If more than two proteins were
being considered, they would also be aligned to A first. Ultimately, every snapshot is aligned to A and B,



which were first aligned onto each other. Using these alignments, we compute the frequent regions of A and
B, using the method above.

Once the frequent regions o and 8 are computed, we use aj and 5} to compute conserved frequent
regions. We define the conserved frequent region FC(A4, B) = af N 85 (Fig. 3c). We use the intersection
because it approximates a region in both binding cavities that is solvent accessible in both proteins for more
than k conformational samples. We quantify the difference between o} and §; using the volumetric distance

FC(A,B
o .

where |z| denotes the volume inside region x. We measure volume using the Surveyor’s formula [44],
which we described earlier [12].

Unconserved frequent regions are treated in a similar manner. With the samples of A and B, we refer
to the unconserved frequent region as FV(A,B) = af — B (Fig. 3f,g), and quantify the difference as
|FV (A, B)]|.

Finally, a comparison of cavities a; and b; from individual conformational samples of two different proteins
is also possible. We evaluate their volumetric distance as

D(A,B)=1-

|aiﬁbj|

d(ai,b;)=1— .
(a J) |aiUbj|

(3)

2.3 Influential amino acids

Given two proteins A and B, if the cavity of A is frequently different from B, then some set of amino acids is
responsible for making these cavities different on a frequent basis. We identify such amino acids with FAVA.

At the level of individual samples, consider two samples of A and B, called A; and Bj, and an amino acid
rin A. We say that » makes the cavity a; different from the cavity b; if the intersection of the molecular
surface of r in A;, called m(r;), has a nonempty intersection with b;. If so, then m(r;) occupies a region that
is not solvent accessible in a; but solvent accessible in b;. Between these two samples r; is thus one cause
for the difference between a; and b;.

To evaluate how frequently r, an amino acid of A, creates differences between the cavities of A and B,
we compute INT, (A, B), the median volume of intersection |m(r;) Nb;|, for all pairs of samples A; and B;.
When INT,.(A, B) is large, then r frequently makes the cavity of A different from B; small values indicate
that it rarely does.

2.4 Data set construction

The purpose of our experimentation is to demonstrate that FAVA can distinguish proteins with different
binding preferences, even though conformational flexibility can make binding sites with different binding
preferences seem erroneously similar. To test this hypothesis, we selected two superfamilies of proteins, the
serine proteases and the enolases. Within each superfamily, we selected three distinct families with different
binding preferences (Figure 2.4). Among the serine proteases, we selected the trypsin, chymotrypsin, and
elastase subfamilies, and among the enolases, we selected the enolase, mandelate racemase, and muconate
lactonizing enzyme families.

Serine proteases selectively cleave peptide bonds using a nucleophilic serine residue. Preferences for
hydrolyzing a specific scissile bond are achieved by recognizing amino acids on both sides of the bond, most
notably the P1 residue immediately before the bond. The S1 specificity pocket, which recognizes P1, is
large and hydrophobic in chymotrypsins and prefers to bind large hydrophobic residues [33]. In trypsins, S1
stabilizes positively charged amino acids, complementing its notable negative charge [19]. Enolases exhibit
a small hydrophobic S1 cavity that binds small hydrophobic amino acids [4].

Members of the enolase superfamily exhibit a TIM-barrel fold and an N-terminal “capping domain”
[42]. Using amino acids at the C-terminal ends of beta sheets in the TIM-barrel, superfamily members
achieve a range of different functions that generally abstract a proton from a carbon adjacent to a carboxylic
acid [1]. The enolase family catalyzes the dehydration of 2-phospho-D-glycerate to phosphoenolpyruvate
[30], mandelate racemases convert (R)-mandelate to and from (S)-mandelate [45], and muconate lactonizing
enzyme catalyze the reciprocal cycloisomerization of cis,cis-muconate and muconolactone.



Serine Protease Superfamily:
Chymotrypsins: lex3

Elastases: 1b0e, lelt

Trypsins: 1a0j, lane, 1aq7, 1bzx, 1fn8, 1h4w,
1trn, 2eek, 2f91

Enolase Superfamily:

Enolases: liyx, lebh, 1te6, 3otr

Mandelate Racemase: 1mdr, 2o0x4
Muconate Lactonizing Enzyme: 2pgw

Figure 4: PDB codes of structures used.

The structures of serine protease and enolase proteins were selected from the Protein Data Bank (PDB)
[5] on 6.21.2011. Using Enzyme Commission classifications (EC number), we found 676 serine protease and 66
enolase structures among the families selected for our data set. From this group of structures, proteins with
mutations, disordered regions, or enolases in closed or partially closed (and thus inactive) conformations
were removed. From the remaining set, a set of sequentially nonredundant representatives were selected
such that no representative had greater than 90% sequence identity to any other representative. Technical
problems with simulation prevented 8gch, laks, and 2zad from being included in this set. From each of the
remaining structures we removed waters, ions, hydrogens, and other non-protein atoms.

We superposed all serine protease steructures against bovine chymotrypsin (pdb: 8gch), and all enolases
against mandelate racemase from pseudomonas putida (pdb: 1mdr). We selected these structures because
they were crystallized in complex with a ligand. As mentioned in Section 2.1, we use the position of the
ligand to define the binding cavity in all conformational samples.

2.5 Gathering sampled conformations

FAVA is agnostic to the source of conformational samples, as long as each conformational sample is pro-
vided with full atomic detail. Naturally, the accuracy of FAVA relies on the accuracy of the underlying
sampling technique, and we acknowledge the ongoing debate on the topic [27], but many techniques, in-
cluding GROMAS [24], used here, have demonstrated considerable successes for some time. With unlimited
computational resources, we would have examined multiple sources of conformational samples, but such a
study was impractical with available tools.

For each data set structure, we computed conformational samples using GROMACS 4.5.4 [24]. Before
the simulation, a cubic waterbox was created, and the protein was centered in the box. Waterbox size was
set to contain the solute protein structure and a 1.0 nanometer margin between the protein and the nearest
point on the box. Next, the waterbox was populated using SPC/E, an equilibrated 3-point solvent model [3].
Throughout the equilibration and simulation steps, fully periodic boundary conditions were used. Charge
balanced sodium and potassium ions were then added to the solvent at a low concentration (< 0.1% salinity).

We then performed an energy minimization of the entire system using a steepest descent algorithm. In
four 250 picosecond steps, we performed isothermal-isobaric (NPT) equilibrations to allow the solvent to
equilibrate temperature and pressure prior to the primary simulation. Starting at 1000 k.J/(mol x nm), each
step reduced the position restraint force by 250 k.J/(mol « nm) over the 1 nanosecond minimization period.
Backbone position restraints were released for the primary NPT simulation.

System energies were generated at the start of the equilibration phase. Initial temperature was 300 Kelvin
and initial pressure was 1 bar. The Nosé-Hoover thermostat [3] was used for temperature coupling. The
P-LINCS [23] bond constraint algorithm was used to update bonds. Electrostatic interaction energies were
calculated by particle mesh Ewald summation (PME) [24]. The Parrinello-Rahman algorithm was used for
pressure coupling [40, 36]. All temperature and pressure scaling was performed isotropically.

Finally, the atomic positions and velocities of the final equilibration state were used to start the primary
simulation. The simulation was sustained for 100 nanoseconds, in 1 femtosecond timesteps. P-LINCS and
PME were chosen for their parallel efficiency. OpenMPI was used for inter-process and network communi-
cation. Simulations were run on multiple nodes with 16 cores each, with PME distribution automatically
selected by GROMACS.
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Figure 5: Conformational samples of the ligand binding cavity in yeast enolase (pdb: lebh). A) The position
of the cavity (teal) within the tertiary structure of enolase (blue cartoon). B) The ligand binding cavity
in the original crystal structure. C-F) Binding cavities from other conformational samples of yeast enolase.
All panels illustrate the cavity from the same perspective, generated with the global envelope surface, as
described earlier.

After completing each simulation, the trajectory file was converted into individual timesteps in the
PDB file format, with waterbox atoms removed. Each timestep was then rigidly superposed onto the
original structure by minimizing RMSD between identical atoms [55]. From these timesteps, we selected
600 conformational samples at uniform intervals, and used them to compute frequent regions.

2.6 Clustering frequent regions by volumetric distance

Once the volumetric distance between two frequent regions can be measured, using the method described in
Section 2.2, we can visualize the pattern of similarities and differences between multiple frequent regions using
a clustering algorithm. To perform this visualization, we first generated frequent regions from our dataset
with an overlap threshold of 50. Then, we measured volumetric distance between all pairs of frequent regions
in the same superfamily. Finally, we used the neighbor tool from the Phylogeny inference package Phylip
[16] to perform UPGMA clustering (Unweighted Pair Group Method with Arithmetic mean) [51] based on
volumetric distance.

To evaluate how well frequent regions avoid inaccuracies that may be caused by unusual conformational
samples, we also computed 10 UPGMA clusterings of binding cavities from individual conformational samples

selected randomly from each simulation. We visualized these all clusterings using Newick Utilities version
1.6 [28].
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Figure 6: Volume of cavity sizes observed in conformational samples of serine proteases (A) and enolases
(B), shown in red bars. Lines plot the quantity and spatial volume of cavities sampled for specific families.

2.7 Comparing FAVA against statistical models for rigid comparison

In earlier work, we developed VASP-S [9], a statistical model of volumetric variations between ligand binding
cavities with identical binding preferences. Once trained, VASP-S can identify variations in binding cavity
shape that are too large to be consistent with identical specificity, indicating that the cavities compared
exhibit different binding preferences. We hypothesize that the variations that occur between different con-
formational samples from the same binding cavity are so substantial that VASP-E would incorrectly label
some conformational samples as having different binding preferences, while FAVA would not make the same
mistakes. These predictions would demonstrate that FAVA enables accurate comparisons of binding cavities
in the flexible context.

2.8 Implementation Details

FAVA is a high-level procedure that uses CSG operations from VASP [12]. Running time is proportional to
the volume of the inputs. CSG operations involving amino acids and binding cavities complete in fractions
of a second, while operations on molecular surfaces require approximately 10 seconds. All computations
were run on a cluster of 16 core machines equipped with AMD Opteron 6128 processors and 32 gigabytes of
system memory. Figure 5 was generated with custom software and Pymol [14].

3 Results

3.1 Sampled conformations vary significantly

Figure 5 illustrates conformational samples of the ligand binding cavity of yeast enolase (pdb: lebh). Each
sample was aligned against the original PDB structure, and is shown from the same orientation. It is evident
that smaller backbone and sidechain motions created substantial variations that changed the geometry of
the cavity. The degree of variation exhibited in Figure 5 was not the most variable, relative to other cavities
in the data set, nor was it the most conserved. Binding cavities in some proteins, such as atlantic salmon
pancreatic elastase (pdb: lelt), varied much more, while others varied less.

To further illustrate the degree of structural variation between ligand binding cavities, we plotted the
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Figure 7: Comparison of clusterings of frequent regions and of individual cavities from serine protease
structures. A) Clustering of frequent regions. B) Clustering of cavities from individual conformational
samples. In both trees, topology is calculated based on volumetric distance. Coloring, which is independent
of clustering topology, indicates the ligand binding preference of the protein.

volume of binding cavities in conformational samples of the entire dataset in Figure 6. The volume of trypsin
cavities ranged from 248 A3 to 692 A3, the volume of chymotrypsin cavities ranged from 276 A® to 568 A3,
and elastase cavities ranged from 126 A3 to 552 A3, despite the general principle that chymotrypsin S1
cavities are larger to accommodate aromatic sidechains, and elastase cavities are smaller to accommodate
amino acids like alanine or valine. The binding cavities of the enolase superfamily also exhibited substantial
variation: Conformational samples of enolase cavities ranged from 90 A3 to 507 A3, mandelate racemases
ranged from 225 A3 to 673 A3, and cavities sampled from muconate lactonizing enzyme were between 89
A3 and 343 A3. The substantial variation that can be observed between cavities illustrates the fundamental
difficulty of accurately comparing binding site geometry in the presence of flexibility. Even though the
variations are very small from the perspective of whole proteins, their effect on binding cavity geometry is
substantial.

Using VASP-S [9], we trained a statistical model of structural variation between trypsin binding cavities
and a second model of variation between enolase binding cavities. Using these two models, we evaluated
the statistical significance of volumetric differences between pairs of trypsin cavities and between pairs of
enolase cavities. Over 65 percent of CSG differences were incorrectly classified by VASP-S as being so large
as to be consistent with different binding preferences.

These data indicate that conformational flexibility creates substantial variations between different con-
formational samples of the same protein. For this reason, it is apparent that similarities and variations in
individual conformational samples can mislead comparisons and that techniques like FAVA, which compen-
sate for conformational variation, are essential for cavity comparison.

3.2 UPGMA Clustering on frequent regions

A UPGMA clustering of frequent regions from the serine protease superfamily is plotted in Figure T7a.
Trypsins were clustered tightly together, and elastases were correctly separated from trypsins, but Atlantic
salmon elastase was placed as an outlier because it has zero volume. Chymotrypsin was separated, correctly,
from both trypsins and elastases. In comparison, figure 7b illustrates one example of a UPGMA clustering
generated from randomly selected conformational samples of each protein. While trypsins were correctly
clustered together, salmon elastase (pdb: 1lelt) was incorrectly classified as being more similar to the trypsins
than it was to porcine elastase (pdb: 1b0e), and porcine elastase was incorrectly clustered with chymotrypsin.

Figure 8a illustrates a UPGMA clustering of frequent regions derived from enolase binding cavities.
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Figure 8: Comparison of clusterings of frequent regions and of individual cavities from enolase structures.
A) Clustering of frequent regions. B) Clustering of cavities from individual conformational samples. In
both trees, topology is calculated based on volumetric distance. Coloring, which is independent of clustering
topology, indicates the ligand binding preference of the protein.

Frequent regions derived from muconate lactonizing enyzymes and enolases were separated correctly, as were
frequent regions from mandelate racemase, with one exception: Mandelate racemase from Pseudomonas
putida (pdb: 1mdr) was clustered with yeast enolase instead of with the other mandelate racemase from
Zymomonas mobilis (pdb: 20x4). A second UPGMA clustering, Fig 8b, was generated based on randomly
selected conformational samples of each enolase superfamily structure. Individual conformational samples
from the mandelate racemases in our dataset were distantly separated, indicating that their binding sites
were quite different in these samples. Substantial differences were also apparent in baker’s yeast enolase
(pdb: 1lebh), which was separated from the enolase structures. Together, these results demonstrate that
UPGMA clusterings of frequent regions represented similarities and differences in specificity. Overall, the
flexible representation of binding cavities generated by FAVA exhibits fewer classification errors caused by
conformational flexibility.

3.3 Influential amino acids

Differences in binding specificity can be caused by variations in the amino acids that surround the binding
cavity, but these crucial variations can be obscured by sidechain and backbone motions. We hypothesized
that amino acids that contribute to frequent differences between binding cavities, as opposed to those that
create infrequent differences as a result of incidental motion, might also be responsible for differences in
specificity. To evaluate this hypothesis, we computed the intersection volume between all residues r in all
elastase structures (A), and all non-elastase serine protease cavities (B).

For example, the left of Figure 9 plots the degree of intersection between all conformational samples of
all amino acids of porcine elastase (pdb: 1b0e) and binding cavities from conformational samples of salmon
trypsin (pdb: 1bzx). Naturally, the vast majority of amino acids exhibited zero or very small intersection with
the trypsin binding cavity because they are distant from the cavity when the two proteins are superposed.
Two notable exceptions stand out: Samples of valine 216 and threonine 226 exhibited a median intersection
volume of 45 A% and 29 A3, respectively, with the conformational samples of the trypsin cavities. These
amino acids are also known to block parts of the S1 pocket (inset, Figure 9), shortening it to accommodate
small hydrophobic residues [50]. In this example, FAVA identified sterically influential elastase residues that
have an established role in specificity.

We observed similar findings among the binding sites of the enolase superfamily (Figure 9, right). The
aggregate intersection of conformational samples of amino acids from pseudomonas putida mandelate race-
mase (pdb: 1mdr) and binding cavities of saccharomyces cerevisiae enolase (pdb: lebh) offer a representative
example: The vast majority of amino acids exhibited zero or very small intersection with the enolase binding
cavity, but three exceptions are apparent: Samples of lysine 166, asparagine 197 and leucine 319 exhibited
median intersection volumes of 14 A3, 13 A3, and 14 A3, respectively, with the conformational samples of
the enolase cavities. Lysine 166 is believed to deprotonate (S)-mandelate substrates [31], asparagine 197
stabilizes the transition state [52], and leucine 319 assists in applying steric constraints in a hydrophobic
pocket in the binding site [53]. Here, FAVA identified influential mandelate racemase residues that have an
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Figure 9: Left, a plot of the intersection volume of amino acids from conformational samples of porcine
pancreatic elastase (pdb: 1b0e) with cavities from conformational samples of salmon trypsin (pdb: 1bzx).
A) The trypsin cavity (teal). B) One snapshot of Val216 and Thr226 from 1bOe, relative to the cavity.
Right, a plot of the intersection volume of amino acids from conformational samples of pseudomonas putida
mandelate racemase (pdb: 1mdr) with cavities from conformational samples of saccharomyces cerevisiae
enolase (pdb: lebh). C) The enolase cavity (teal). D) One snapshot of Lys166, Aspl197, and Leu319 from
1lmdr, relative to the cavity.
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established role in function and specificity.

To calibrate the significance of these intersection volumes, we measured the volume of structural differ-
ences created by the motions of amino acids with binding cavities from the same protein. While side chain
motion creates small variations, aggregate differences were considerably smaller. For example, among amino
acids of porcine pancreatic elastase (pdb: 1b0e), the amino acid that most intersects the binding cavity of
1b0e is serine 195, the nucleophilic serine responsible for catalysis in all serine proteases [46]. It occupies an
median of 5 A3 inside samples of binding cavities in 1b0e. This result suggests that the motions observed in
the amino acids of the serine protease and enolase superfamilies create differences in binding site geometry
that were far more significant than those that occur normally.

4 Discussion

We have presented FAVA, a method for incorporating conformational variations into the geometric compar-
ison of protein binding cavities. Whereas existing representations describe large conformational changes in
order to discover remote homologs in different conformations, FAVA is designed for the detailed comparison
of local features, such as ligand binding cavities, in spite of interferance from small molecular motions, such
as side chain flexibility. Whereas existing methods explicitly represent flexible regions of molecular structure,
FAVA compiles volumetric representations of binding sites into frequent regions, which exclude infrequently
occurring conformations and allow local conformational trends to emerge.

These conformational trends reflected differences in ligand binding preferences that could be obscured
by conformational variation. A comparison of frequent regions generated from three subfamilies in each of
the serine protease superfamily and the enolase superfamily revealed consistent variations in conformational
trends that corresponded to differences in ligand binding preferences. If random conformational samples
were compared instead of frequent regions, the resulting classification of binding sites could differ from
actual binding preferences. Where conformational samples are selected arbitrarily, these results demonstrate
the potential for errors in binding site comparison. Instead, using FAVA, we can mitigate these issues by
classifying trends in a large sample of conformations.

Conformational trends also provided useful insights into the role of specific amino acids. We examined
the range of conformations adopted by an amino acid over 100 nanoseconds and observed how frequently
it would cause the binding site of a different protein to differ from its own. Amino acids that frequently
cause differences in binding cavities almost always played a steric role in achieving binding specificity. While
these influential residues occasionally move in ways that make different binding sites appear similar, their
typical shape trends towards differences in binding sites, as might be expected based on different binding
preferences. These results demonstrate that a detailed examination of many conformational samples can
reveal individual influences on specificity and not simply trends in binding cavity shape.

FAVA has considerable potential for wider applications. First, it can be used with many sources of
conformational samples, and as such it can provide insights into the patterns of conformational variations
generated by many existing methods. As our capability to simulate molecular conformations continues to
expand [48, 2], larger and more representative samples will enhance the accuracy of comaparisons made with
FAVA. Second, in many cases, efforts to create proteins with engineered binding preferences already involve
the simulation of protein structures. FAVA provides an analysis of the resulting simulation data that can
contribute insights into the roles of individual amino acids. By using conformational samples to examine the
detailed motions of ligand binding sites, sampled representations can offer important tools for the analysis
of ligand binding specificity.
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