
A Map of Binding Cavity Conformations Reveals

Differences in Binding Specificity

Ziyi Guo and Brian Y. Chen∗

Dept. of Computer Science and Engineering

Lehigh University

Bethlehem, PA, USA

chen@cse.lehigh.edu

Abstract—Protein structure comparison algorithms are useful

for predicting aspects of protein function. Some algorithms

identify remote homologs, while others distinguish closely related

proteins that prefer different substrates. Most of these methods

assume that proteins are rigid in order to perform comparisons

more rapidly, while others compensate for flexibility by repre-

senting proteins as a connected group of rigid components. To

consider the motion of individual atoms, this paper presents a

method for generating a map of binding cavity conformations

based on conformational snapshots. We use clusters of protein

conformations to distinguish proteins that have different binding

preferences. Our results, on the serine proteases and enolase

superfamilies show that, despite structural flexibility in binding

sites, our methods correctly classify proteins with different

binding specificities both qualitatively and quantitatively.

I. INTRODUCTION

Conformational flexibility is a universal challenge in the

comparison of protein structures because flexibility interferes

with typical notions of geometric similarity. Most comparison

algorithms model proteins as rigid objects. This simplifying

assumption facilitates rapid comparison and it is most compat-

ible with the available data, because alternative conformations

are infrequently available from experimental sources. Rigid

representations of protein structure use carbon alpha coor-

dinates [1]–[7], distance matrices [8], graphs [9]–[11] and

geometric surfaces [12]–[15] to detect similarities between

remote homologs or to identify proteins with different binding

preferences [16]–[20]. A second class of comparison methods

use hinges [21], [22], graphs [23], [24], fragments [25] or

dynamic programming [26]–[28] to represent proteins as rigid

structural elements connected by flexible regions. Since these

representations do not compensate for structural motion within

binding sites, accurate classification of binding cavities, when

they appear with different conformations, can be a challenge.

The specific problem we are addressing is to distinguish

binding cavities with different binding specificities in the

presence of conformational flexibility. This paper presents

an algorithm for generating a map of binding cavity confor-

mations from multiple proteins. Our method happens to use

molecular dynamics trajectories to generate conformations, but

it is not simply a technique for analyzing molecular dynamics

trajectories. Other techniques for generating conformations,
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such as Monte Carlo sampling methods, would be equally

effective. Our method works by first selecting amino acids that

describe the binding site, called a motif. Cognate amino acids

are identified in all proteins being compared in a process we

call motif propagation. Finally, the coordinates of each amino

acid, represented by its alpha carbon location, are identified

in every conformation of every protein. These coordinates

are collected as a data points in a high dimensional space.

Finally, we use Principal Component Analysis (PCA) and

Non-negative Matrix Factorization (NMF) to project the data

points into a 3D space. We hypothesize that binding sites with

identical binding preferences will cluster together.

This approach contrasts from our earlier studies in repre-

senting all-atom motion at binding cavities. Our initial efforts

combined multiple conformational snapshots into a single ag-

gregate representation of the binding cavity, using conserved

3D regions [29], cavity clusters [30] or prediction ensembles

[31]. While these representations reflect detailed conforma-

tional data, our comparisons of aggregate representations only

produced single dimensional measures of similarity rather than

the nuanced picture of similarity at different conformations.

The mapping technique proposed here avoids generalizations

produced by aggregate representations.

Our approach is inspired in part by existing methods that

define protein structure space as either a discrete or continuous

geometric space of protein folds (e.g. [8], [32]–[34]). Protein

structure space leverages structure comparisons to provide a

comprehensive view on how protein structures are distributed,

which is significantly different from hierarchical classification

systems such as Structural Classification of Proteins (SCOP)

[35] and CATH [36]. One way to approach protein struc-

ture space understanding is to represent the space in lower

dimensional space, such as three dimensional maps. Several

efforts [33], [37]–[42] have been reported to construct maps

of protein structure space. These methods develop clever tech-

niques for computing structure similarities between all pairs of

conformations, and then use dimension reduction methods to

create lower-dimensional embeddings for visualization. Here,

we adapt these concepts to the comparison of binding sites

with varying binding preferences.

To our knowledge, our method is the first effort for an-

alyzing maps of binding cavity conformations to classify



proteins with different specificities. We tested our method

on sequentially nonredundant protein structures of serine pro-

teases and enolases. In both datasets, we observe that cavities

with the same binding preference form closely-located clusters

in the conformation map produced by our software. The

quantitative clustering evaluations show that our method can

distinguish proteins with different binding specificities despite

considerable variations of their binding cavities.

II. METHODS

Overall, our method accepts conformational samples of one

family of protein structures as input. These proteins exhibit

identical folds but reveal different binding specificities. Our

method outputs a conformation space map that models con-

formational flexibilities of binding cavities. First, we describe

how we define the template motif which is a collection of

residue positions of the template structure that are adjacent to

the ligand molecule, in the selected template structure. Each

amino acid in the template motif is close to the binding cavity

and its motion may affect the shape of the binding site. Second,

we explain how we perform whole structure alignment to

identify analogous substructures, thus propagating structural

motifs to other proteins. We extract three dimensional Carbon

alpha coordinates for each member in the structural motif

for all protein conformations. Therefore, the motif of each

conformation can be characterized with a feature vector. Since

motifs are propagated by detecting substructural matches,

some features could be highly similar. These features will

increase feature space dimensionality but are not necessarily

discriminative for different binding specificities, leading to

perform dimension reduction in step three. Here, we select

two effective reduction methods, Non-negative Matrix Factor-

ization (NMF) and Principal Component Analysis (PCA).

Each binding cavity conformation can then be represented

as a data point in the reduced feature space. It is hypoth-

esized that conformations of proteins with identical binding

specificity should be close to each other and be grouped into

the same cluster. Finally, we discuss how we perform data

clustering to test our hypothesis.

A. Template motif generation

Formally, from one family of protein structures, we select

one protein T as the template structure and its conformational

samples are referred as {T1,T2,...,TN}. The binding cavity

conformations, {t1,t2,...,tn}, can be generated using VASP

[16]. For each amino acid r of T , we compute the median

intersection volume between r of the conformation Ti and the

binding cavity conformation tj for all pairs of i and j. The non

trivial average intersection volume indicates that r frequently

overlaps with the binding cavity so it could change the shape

of the binding cavity substantially. We continue to rank all

amino acids by their average intersection volume, and add top

k into the template motif S = {S1, S2, ..., Sk}. The motif size

is defined as the number of selected amino acids.

B. Motif propagation

To identify similar motifs in proteins that are not template

structures, T is structurally aligned against a family of protein

structures F = {f1, f2, ..., fM}. Here, we run FATCAT [24]

between T and each protein structure to find substructural

match MS→fi by searching every residue in the template and

returning the matched residue in fi. FATCAT is used because

it is compatible and available to flexible structure comparisons.

MS→fi defines a structural match between the template motif

and a substructure in fi, and all the matched residues in this

substructure is called the propagated motif. If any residue in

the template motif is matched to a gap, it will be removed

from the motif. It is noted that our method is independent of

FATCAT alignment, other substructure matching algorithms,

such as LabelHash [43] and Match Augmentation [44], can

also work.

C. Dimension Reduction

Given propagated motifs, one binding cavity conformation

can be characterized as a geometric feature vector where each

value is the x or y or z direction coordinate of Cα atom.

All feature vectors will be normalized so that each data point

has unit norm. The feature matrix X = {x1, ..., xn} ∈ R
m×n

represents geometric features of all conformation samples of

all proteins where n is the total conformation number and m
is the feature dimensionality, and the matrix will be taken as

input for dimension reduction.

Non-negative matrix factorization (NMF) [45] is a matrix

decomposition algorithm for parts-based data representation of

matrices with non-negative elements. Given input matrix X ,

NMF aims to find two non-negative components W ∈ R
m×r

and H ∈ R
r×n to minimize the objective function where r is

the reduced feature dimensionality:

min
W,H

F = ||X −WH ||2

s.t. Wij ≥ 0, Hij ≥ 0 (1)

The objective is convex with respect to either W or H , but not

convex in both together so that the global optimal is difficult

to find. Starting from random initialization of W and H , Lee

Serine Protease Superfamily:

Chymotrypsins: 1ex3

Elastases: 1b0e, 1elt

Trypsins: 1a0j, 1ane, 1aq7, 1bzx, 1fn8, 1h4w, 1trn,

2eek, 2f91

Enolase Superfamily:

Enolases: 1ebh, 1iyx, 1te6, 3otr

Mandelate Racemase: 1mdr, 2ox4

Muconate Lactonizing Enzyme: 2pgw

Fig. 1. PDB codes used in the data set.



and Seung [46] presented an algorithm to iteratively update

W and H and a local minimum can be guaranteed:

Wij = Wij

(XHT )ij
(WHHT )ij

Hij = Hij

(WTX)ij
(WTWH)ij

(2)

Usually, we have r ≪ m and r ≪ n. Thus, NMF essentially

try to discover latent structures using very few dimensions as

a compressed representation. If there exists negative elements

in the matrix, we translate the matrix so that the non-negative

constraint is guaranteed.

Principal Component Analysis (PCA) [47] is one of the

most popular dimension reduction methods. PCA orthogonally

project a set of data points onto a lower r dimensional

principal subspace such that variances between projected data

are maximized. The projection vectors can be computed as a

set of eigenvectors with top r largest eigenvalues.

D. Cluster analysis

We perform the canonical K-means clustering to identify

data clusters. The performance is evaluated using clustering

accuracy (AC).

Given the predicted cluster label li and the ground truth gi,
AC is definted as:

AC =

∑n

i=1
δ(gi,map(li))

n
(3)

Where δ(·) is the delta function that equals to one for identical

comparison and equals to zero otherwise and map(·) is a

mapping function that permutes the predicted label set to

match the ground truth set as much as possible. This can be

done using the Hungarian method [48].

III. DATASET

A. Protein superfamily selection

We tested our method on sequentially nonredundant struc-

tures of two protein superfamilies: the serine protease and the

enolase superfamily. In serine proteases, trypsin, chymotrypsin

and elastase subfamilies were selected. In the enolase su-

perfamily, the enolase, mandelate racemase and muconate

lactonizing subfamilies were selected.

The serine protease is a family of enzyme proteins that

selectively cleaves peptide bonds where serine functions as the

nucleophilic amino acid at the binding site. The preferences for

hydrolyzing a specific scissile bond can be achieved by recog-

nizing amino acids on both sides of the bond. The most well-

known residue is the P1 just before the bond. The S1 binding

pocket, which recognizes P1, exhibits three different binding

specificities: positively charged amino acids for trypsins [49],

large hydrophobic amino acids for chymotrypsins [50] and

small amino acids for elastases [51].

The enolase superfamily proteins catalyze biochemical

reactions with an abstraction of a proton from a carbon that is

adjacent to a carboxylic acid and a requirement of a divalent

metal ion [52]. Here we focus on the specificities of three

catalysts. The enolase subfamily converts 2-phosphoglycerate

(2-PG) to phosphoenolpyruvate (PEP) [53], the mandelate

racemases convert between (S)-mandelate and (R)-mandelate

[54] and the muconate-lactonizing enzymes convert lignin-

derived aromatics, catechol and protocatechuate to citric acid

cycle intermediates [52].

B. Protein structure selection

We downloaded all protein structures of the serine protease

and the enolase superfamily from Protein Data Bank [55]. We

removed all the structures with mutation, disordered regions

or closed regions. We further kept one structure from any pair

of structures with more than 90% sequence similarity where

structures associated with publications were preferred. Few

structures, such as 8gch and 1aks, were removed because of

technical issues of MD simulation. In the end, we have 12
serine proteases and 7 enolase structures, and they are shown

in Figure 1 with classification into subfamilies by their binding

specificities.

We superposed all the conformational samples using ska

[56], a whole structure alignment tool. We superposed all

conformation structures of serine proteases onto 8gch and all

conformation structures of the enolases onto 1mdr. These two

structures were selected because of ligand bound existence.

C. Protein structure simulation

Conformational samples of all protein structures were sim-

ulated using GROMACS 4.5.4 [57]. The input protein was

centered inside a cubic waterbox using a 3-point solvent model

SPC/E [58] with at least 10 Å between the structure and

the neartest part of the waterbox. Charge balanced sodium

and potassium were added with lower than 0.1% salinity.

Isothermal-Isobaric (NPT) equilibration in four 250 picosec-

onds steps was run for temperature and pressure equilibration.

Each equilibration step reduced the position restraint force by

250 kJ/(mol∗nm) where backbone positions constraints were

released and system energies were computed. Temperature was

set to 300 Kelvin and pressure was set to 1 bar. Temperature

coupling was computed using Nosé-Hoover thermostat [58]

and pressure coupling was computed using the Parrinello-

Rahman algorithm [59], [60]. The simulation update bonds

using P-LINCS [61] and calculate electrostatic energies using

particle mesh Ewald summation (PME) [57]. The primary

MD simulation was perfomred for 100 nanoseconds with

1 femtosecond timesteps on multiple 16 core nodes of the

Lehigh corona server. The trajectory file was convert to the

PDB format with only atomic positions. For each protein

structure, 600 samples were selected at uniform intervals.

IV. RESULTS

In this section, we first demonstrate considerable variations

of binding cavity volumes in our data set, and these variations

could be sources of errors that weaken rigidity assumption for

protein structure comparisons. Second, we show 3D structures

of template motifs and propagated motifs where co-located
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Fig. 2. Aggregate variations in cavity volume in our whole data set. Cavity of almost all proteins varied considerably.

substructure clusters are observed that reveal specificities.

Finally, we evaluate clustering performance for predicting

binding specificity.

A. Binding cavity varies considerably

Considerable variations of protein cavity volumes can be de-

tected over all conformations in our data set as shown in Figure

2. To be specific, in serine proteases, trypsin volumes ranged

from 249 Å3 to 693 Å3, chymotrypsin cavity volumes ranged

from 127 Å3 to 553 Å3 and elastase cavity volumes ranged

from 277 Å3 to 569 Å3. Similarly, in the enolase superfamily,

enolase cavity volumes ranged between 90 Å3 to 508 Å3,

mandelate racemase cavity volumes ranged between 225 Å3

to 673 Å3 and muconate lactonizing enzyme cavity volumes

ranged between 90 Å3 to 344 Å3. All these observations reveal

structural variations of binding cavities in the same protein.

The cavity variations create errors for flexible binding cavity

comparison, preventing accurate specificity prediction when

protein conformational samples are used [29]. Protein cavities

varied because of motions of adjacent amino acids, and thus

we identify these amino acids for representing binding cavities.

B. Motif definition and propagation

We selected 1a0j as the template structure for serine

proteases and selected 1ebh as the template structure for

the enolases. All the proteins in the same superfamily have

identical folds and the choice of the template structure has little

influence in generating structural motifs. Figure 3 illustrates

1a0j 1ebh

Fig. 3. The 3D structure of template motifs in 1a0j (left) and 1ebh (right).
The whole protein structure is shown in blue cartoon, the template motif is
shown in green stick and the binding ligand is shown in red balls. This figure
is generated with Pymol [62].
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Fig. 4. Superposition of sampled template motifs and propagated motifs of
proteins in A) serine proteases and B) the enolases where 15 samples are
selected for each protein subfamily. The color of each aligned substructure
indicates the ligand binding specificity of the protein. It can be seen that
propagated motifs of proteins with identical binding specificity group into
structurally co-located clusters (dotted rectangle). This figure is generated
with Pymol [62].

the 3D structure of template motifs that have 6 residues of

1a0j and 1ebh. We observe that both two template motifs are

close to the binding ligand, and their variations may enlarge,

shrink or even separate binding cavities.

Figure 4 illustrates superposition of propagated motifs. The

superposition exhibits geometrical diversities and motifs struc-

tures in proteins with identical binding specificity tend to form

closely-located substructure clusters. We hypothesize that it is

the structural differences within the selected amino acids in the

structural motif that cause proteins in different subfamilies to

exhibit different binding specificities. We apply data clustering

on binding cavity conformation map to categorize different

clusters to predict binding specificity.
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Fig. 5. A binding cavity conformation space map of the enolase superfamily where the size of motif is set to be 8 and each protein is presented with 600

conformations. The left figure shows the NMF reduced space and the right figure shows the PCA reduced space. The coloring indicates the binding specificity
by EC number.

C. Clustering evaluation

The map of binding cavity conformation on the enolases is

illustrated in Figure 5. We observe that in both NMF and

PCA map space, conformations of proteins with the same

binding specificity are represented by spatially adjacent points.

A similar map can also be found on serine proteases. Such rep-

resentations reveal a high level organization for binding cavity

conformation classification. Adjacent points form specificity-

sensitive clusters that can be further evaluated when compared

with ground truth EC numbers.

We conducted evaluations with different size of structural

motifs. Figure 6 and Figure 7 report clustering results in

the original feature space (K-means), PCA reduced space

(PCA+K-means) and NMF reduced space (NMF+K-means)

on our date set. Clustering always take 3 as the number of

clusters because both serine proteases and the enolases exhibit

3 subfamilies. For each motif size k, 100 clustering runs

were conducted and 100 NMF runs were conducted for every

clustering since both K-means and NMF are dependent of

data initialization. The average performance is reported for K-

means and PCA+K-means, and NMF+K-means performance

is shown in boxplot.

These two figures reveal several insights. First, in the

original feature space, performance increases as more amino

acids are added into structural motifs but suddenly decreases

when the size of motif is larger than a threshold. The threshold

is about 13 on both superfamilies, indicating the maximal

number of amino acids that are relevant to binding. This means

that, if the motif size is too small, the binding cavity will be

under-represented because some other influential amino acids

are not included. If the motif size is too large, the binding

cavity will be over-represented with systematic noises because

these exist amino acids that are irrelevant to binding. Second,

in most cases (except when k ranged between 8 to 12 on serine

proteases), PCA+K-means achieve comparable or even better
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Fig. 6. Clustering accuracy with respect to the size of structural motif on
serine proteases.

performance to K-means in the original space. This suggests

PCA extracts most data variances that are sufficient enough to

distinguish protein conformations with different specificities.

Third, in average, NMF performs not as well as the other

two methods. This is because NMF is largely affected by data

initialization. However, if we only consider the best result,

NMF+K-means achieves better performances when k is larger

than 12 on serine proteases and for almost all k values on

enolases.

Overall, our conformation space map reveals high-level rep-

resentations of binding cavity motions. The clustering results

show that our method is able to correctly classify similar

proteins with different binding specificities. Therefore, our

method could be a robust tool for protein structure compar-

isons, despite great flexibility in the binding cavity.
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V. DISCUSSION

In this paper, we have presented a computational method to

build a map of binding cavity conformations. Our method is

essentially different from existing works. First, without rigidity

or partial rigidity simplification, we extract structural motifs to

model conformational flexibility of binding cavities. Second,

our conformation space map focuses on examining proteins

with similar folds but bind to different substrates, not proteins

that change conformations or proteins with different folds.

We tested our method on sequentially nonredundant struc-

tures of serine proteases and the enolases. Protein structures

in both superfamilies exhibited highly flexible binding sites.

Despite these structural variations, proteins with identical

binding specificity are represented as adjacent points in our

binding cavity conformation map. The clustering evaluations

show that our method predicts binding specificity with high

accuracy.

Applications of our method exist in comparisons of similar

proteins with different binding preferences. In such cases,

our conformation space map gives a comprehensive visual

distribution of protein cavity conformations with different

specificities, which is not restricted by hierarchical catego-

rizations of the EC number. Moreover, our method generates

structural motifs to represent conformational flexibilities of

protein cavities, pointing to individual residues that affect

binding. These characteristics can be useful for structure-based

function annotation of molecular design.
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