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ABSTRACT

Identification of brain regions related to the specific neuro-
logical disorders are of great importance for biomarker and
diagnostic studies. In this paper, we propose an interpretable
Graph Convolutional Network (GCN) framework for the
identification and classification of Alzheimer’s Disease (AD)
using multi-modality brain imaging data. Specifically, we ex-
tended the Gradient Class Activation Mapping (Grad-CAM)
technique to quantify the most discriminative features iden-
tified by GCN from brain connectivity patterns. We then
utilized them to find signature regions of interest (ROIs)
by detecting the difference of features between regions in
healthy control (HC), mild cognitive impairment (MCI), and
AD groups. We conducted the experiments on the ADNI
database with imaging data from three modalities, includ-
ing VBM-MRI, FDG-PET, and AV45-PET, and showed that
the ROI features learned by our method were effective for
enhancing the performances of both clinical score predic-
tion and disease status identification. It also successfully
identified biomarkers associated with AD and MCI.

Index Terms— Interpretation, graph convolutional net-
work, neuroimaging, multi-modality

1. INTRODUCTION

Neuroimaging pattern classification methods have demon-
strated recent advances in predicting Alzheimer’s disease
(AD) and mild cognitive impairment (MCI) from magnetic
resonance imaging (MRI) and positron emission tomography
(PET) scans [1, 2, 3]. Since the brain is an extremely com-
plex system, large improvements in understanding the brain’s
organization have been made by representing the brain as
a connectivity graph [4]. In this graph, nodes are defined
as brain regions of interest (ROIs) and edges are defined as
the connectivity between those ROIs. This representation
is highly compatible with Graph Convolutional Networks
(GCN), a deep learning method with demonstrated capabili-
ties for analyzing graph structure problems [5, 6, 7, 8].

In neuroimaging, GCN has been widely used to ana-
lyze the brain connectivity graph and discover neurological

biomarkers [9, 10]. In the graph classification problem, the
explainability of GCN predictions is crucial for helping to
identify and localize biomarkers that contribute to AD or
MCI. Several approaches have been proposed to explain the
GCN model (e.g., [11, 12, 13]). Most of them did not target
disease prediction. Generally, recent methods for interpreting
brain networks focused only on single modality data [9, 10].
Because we assume that the subjects having the same disease
may share the similar patterns in brain network, group-level
explanations are significant for identifying salient ROIs and
discovering biomarkers related to AD and MCI. Recent stud-
ies indicated that different imaging modalities can provide
essential complementary information that can improve accu-
racy in disease diagnosis [14]. Thus, we consider here the
gradient-weighted Class Activation Mapping method (Grad-
CAM) for multi-modality imaging data, which has been
demonstrated to produce explanations on graphs of moderate
size with high fidelity, contrastivity, and sparsity [15].

In this paper, we propose an interpretable GCN frame-
work for the identification and classification of Alzheimer’s
Disease (AD) using multi-modal brain imaging data. We
extended the Grad-CAM technique to interpret the salient
ROIs for each subject in HC, AD, and MCI categories. The
major contributions of this work include the adaptation of
Grad-CAM to the GCN model for interpreting salient ROIs,
the integration of three modalities of imaging data to con-
struct the brain connectivity graph, and the extension of the
GCN model to discover biomarkers in AD and MCI. In our
experimental results, our method exhibited high classification
performance, and our interpretation method revealed that sub-
jects in the same disease group share the similar patterns. We
also found that the putamen and pallidum biomarkers were
important for distinguishing HC, AD and MCI. The features
learned by our method have a high correlation with the clin-
ical test scores of Mini-Mental State Examination (MMSE)
and Alzheimer’s Disease Assessment Score 13 (ADAS13),
suggesting that our learned features could potentially predict
clinical test scores. These results point to applications for our
method in the interpretation of ROIs from imaging data in
multiple modalities and disease conditions.



2. METHODS
2.1. Data Acquisition and Preprocessing

In this work, we used the image data obtained from Alzheimer
Disease Neuroimaging Initiative (ADNI) [16]. The neu-
roimaging data were from 755 non-Hispanic Caucasian par-
ticipants, including 182 HC subjects, 476 MCI subjects, and
97 AD subjects, which consists of three modalities including
structural Magnetic Resonance Imaging (VBM-MRI), fluo-
rodeoxyglucose Positron Emission Tomography (FDG-PET),
and 18-F florbetapir PET (AV45-PET).

The multi-modality imaging data were aligned to each
participant’s same visit. The structural MRI scans were pre-
processed with voxel-based morphometry (VBM) using the
SPM software [17]. Generally, all scans were aligned to a T1-
weighted template image, segmented into gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF) maps,
normalized to the standard Montreal Neurological Institute
(MNI) space as 2 × 2 × 2 mm3 voxels, and were smoothed
with an 8 mm FWHM kernel. The FDG-PET and AV45-PET
scans were also registered to the same MNI space by SPM.
We subsampled the whole brain and obtained 90 ROIs (ex-
cluding the cerebellum and vermis) based on the AAL atlas
[18]. ROI-level measures were calculated by averaging all
the voxel-level measures within each ROI.

2.2. Brain Graph Construction

To construct the brain connectivity graph from the three
modalities, we concatenate all of three modalities into the
feature vector for each ROI. We use 90 ROIs for each sub-
ject. Each ROI in the image views as the node in the graph,
which can be represented as an undirected weighted graph
G = (V,E). The vertex set V = {vi, · · · , vn} consists of
ROIs in the brain and each edge inE is weighted by a connec-
tivity strength, where n is the number of ROIs. In our work,
we define G̃ = (V, Ẽ) based on the multi-modal information
of the region using K-Nearest Neighbor (KNN) graph [14].
The edges are weighted by the Gaussian similarity function
of Euclidean distances, i.e., e(vi, vj) = exp(−‖vi−vj‖

2

2σ2 ). We
identify Nj as the set of K-Nearest Neighbors of vertex vi,
and connect vi and vj if vi ∈ Nj or vj ∈ Ni. The weighted
adjacency matrix A ∈ RN×N represents the similarity be-
tween each ROI and its nearest similar neighbor ROIs. The
element of adjacency matrix A can be represented as follows:

ai,j =

{
e(vi, vj), if vi ∈ Nj or vj ∈ Ni
0, otherwise.

(1)

2.3. GCN Model

The classification of graphs can be achieved by embedding
node features into a low dimensional space, grouping nodes,
and summarizing them [6]. The summarized vector for each
graph is fed into a multilayer perceptron (MLP) classifier.

In this work, the whole architecture contains three types of
layers, including graph convolutional layers, a node pooling
layer, and a readout layer. The graph convolutional layer in-
ductively learns a node representation by recursively trans-
forming and aggregating the feature vectors of its neighboring
nodes.

We define a brain adjacency matrix A ∈ RN×N and node
feature matrix X ∈ RN×din , where N is the number of ROIs
and din is the dimension of multi-modality input feature. The
propagation of GCN model or the forward-pass update of
node representation is calculated as:

H l+1 = σ(D̃−
1
2 ÃD̃−

1
2H lW l) (2)

where H0 = X , H l ∈ RN×dl is the output of the lth graph
convolution layer, dl is the number of output channels of layer
l, Ã = A + I is the adjacency matrix of graph with self -
loops, I ∈ RN×N is the indentity matrix, W l ∈ Rdl×dl+1

are the learnable parameters, and D̃ is the diagonal degree
matrix with D̃i,i =

∑
j Ãi,j . We normalize the Ã by multi-

plying D̃−
1
2 in order to keep a fixed feature scale after graph

convolution. σ is the activation function.
The node pooling layer groups the nodes together to sum-

marize the features of whole graph. After we get the final
output HL of graph convolution layer, we will summarize
the whole feature matrix HL into a single vector, which is
fed into an MLP classifier with softmax activation function in
the final layer. We use the negative log-likelihood as the loss
function for graph classification.

2.4. Interpretability of GCN

We now present how we can use the above formulation for
explaining GNN predictions and identifying important ROIs.
Our idea draws inspiration from the recent work on GNN ex-
plainability using Gradient Class Activation Mapping (Grad-
CAM) [15], which was originally proposed for producing vi-
sual explanations for CNN models. We first define the kth

graph convolutional feature map at layer l as:

H l+1
k = σ(D̃−

1
2 ÃD̃−

1
2H lW l

k) (3)

where W l
k is the kth column of learnable matrix W l. Ac-

cording to this notation, we denote H l
k,n is the kth feature at

the lth layer for each node n. We denote L as the final GCN
layer. HL

k,n represents the feature map of the final convolu-
tional layer.

The kth average feature map after the final convolution
layer and the class score for each class c can be calculated as:

ek =
1

N

N∑
n=1

HL
k,n

yc =
∑
k

wckek

(4)



where the learnable wck encodes the kth feature importance
for predicting the class c, and yc is the class score. The class
specific weights βck of Grad-CAM for class c and feature k at
final layer L can be calculated as:

βck =
1

N

N∑
n=1

∂yc

∂HL
k,n

(5)

The Grad-CAM’s heat map can be calculated at the final
convolutional layer as:

Lcn = ReLU(
∑
k

βckH
L
k,n) (6)

where Lcn is the heat map of node n for class c at the final
GCN layer. We apply the equation (6) to get the node impor-
tance for each ROI in the brain connectivity graph.

3. RESULTS
3.1. Classification Performance

In our experiments, we separate the whole data into three
groups including HC vs AD, HC vs MCI, and MCI vs AD
to examine our classification results. We compare the classi-
fication performance of each group when using one, two or
three modalities. This experimental design measures the per-
formance of our method on different numbers of modalities,
since it is a multimodal method, and on different groups.

For the brain connectivity graphs, we used K = 10 to
build the KNN graph for each subject. After building the
graph data, we used the GCN + MLP to calculate the classi-
fication result with the following configuration: three graph
convolutional layers of size 10, 10, and 5, respectively, fol-
lowed by three fully-connected layers, a dropout layer, and a
softmax classifier. The models were trained for 100 epochs
using the ADAM optimizer with learning rate 0.005, β1 =
0.9, β2 = 0.999. The dropout rate is 0.5. We performed
5-fold cross validation and repeated the experiment for 10
times. The average classification accuracy, ROC-AUC, sensi-
tivity, specificity, and their standard deviations are reported.

Tables 1, 2 and 3 show the classification result by using
one, two and three modalities, respectively, where ± repre-
sents the standard deviation of evaluation scores in 5 folds.
We compared our method with SVM (RBF kernel). The best
classification performance was achieved by our method when
using all three modalities. In testing, we concatenated the pre-
dicted possibilities and the labels of testing data in 5 folds to
build the ROC curve by calculating the true positive rate and
false positive rate. The ROC curve, using all three modalities,
is plotted in Fig. 1. Based on these findings, all three modali-
ties were used to evaluate the interpretability of our model.

3.2. Interpretation of Salient ROIs

After training models for the ADNI datasets, to summarize
the salient ROIs, we apply the Grad-CAM method on all sub-

Table 1. One Modality. Classification results of different
groups with VBM-MRI only.

Method Group Accuracy ROC-AUC Sensitivity Specificity

SVM
HC vs AD .795 ±.049 .847 ±.024 .761 ±.039 .853 ±.078
HC vs MCI .644 ±.035 .699 ±.046 .673 ±.080 .602 ±.084
MCI vs AD .732 ±.051 .715 ±.112 .134 ±.101 .947 ±.049

Ours
HC vs AD .849 ±.024 .851 ±.041 .803 ±.071 .895 ±.053
HC vs MCI .703 ±.046 .701 ±.034 .757 ±.052 .635 ±.032
MCI vs AD .771 ±.081 .713 ±.090 .635 ±.163 .807 ±.064

Table 2. Two Modalities. Classification results of different
groups with VBM-MRI and FDG-PET.

Method Group Accuracy ROC-AUC Sensitivity Specificity

SVM
HC vs AD .824 ±.048 .838 ±.053 .782 ±.135 .846 ±.031
HC vs MCI .632 ±.052 .689 ±.054 .710 ±.093 .531 ±.076
MCI vs AD .783 ±.035 .794 ±.057 .282 ±.127 .963 ±.039

Ours
HC vs AD .863 ±.051 .868 ±.042 .788 ±.103 .932 ±.017
HC vs MCI .717 ±.021 .702 ±.034 .754 ±.068 .669 ±.115
MCI vs AD .848 ±.036 .804 ±.109 .620 ±.186 .926 ±.047

Table 3. Three Modalities. Classification results of different
groups with three modalities.

Method Group Accuracy ROC-AUC Sensitivity Specificity

SVM
HC vs AD .831 ±.065 .858 ±.044 .792 ±.059 .845 ±.095
HC vs MCI .638 ±.071 .689 ±.039 .705 ±.125 .522 ±.091
MCI vs AD .790 ±.023 .818 ±.042 .396 ±.080 .931 ±.054

Ours
HC vs AD .871 ±.025 .884 ±.048 .825 ±.092 .901 ±.027
HC vs MCI .723 ±.046 .714 ±.047 .723 ±.106 .706 ±.110
MCI vs AD .861 ±.079 .849 ±.099 .773 ±.109 .887 ±.095

HC vs AD

HC vs MCI

MCI vs AD

False Positive Rate0.0
0.0

1.0

1.0

Fig. 1. ROC Curve of different groups with three modalities.

jects for each class and obtain a set of scalar scores for each
ROI, which is the heatmap. For the heatmap of each subject,
we rank the scores in descending order and only keep the top
20 salient ROIs. We used the BrainNet Viewer [19] to plot
those salient ROIs on the brain surface.

Fig. 2(a-c) illustrates the lateral, medial, and ventral
view of brain surface for two subjects selected from the HC,
AD, and MCI groups. We named the selected ROIs as the
biomarkers for identifying each group: node importance val-
ues were encoded as the color of regions on brain surface.
In Fig. 2(a), putamen, pallidum, Superior parietal gyrus, and
gyrus rectus were selected for HC; In Fig. 2(b), putamen, pal-
lidum, Superior occipital and parietal gyrus were selected for
MCI; In Fig. 2(c), putamen, pallidum, thalamus, Caudate nu-
cleus, Superior occipital and Lingual gyrus were selected for
AD. Putamen and pallidum were important for each group.

Given that each ROI represents a node in the graph, after
we computed the node importance of each subject, we aver-
age those node importance in HC, AD, and MCI group sep-
arately. Then we calculate the Euclidean distance between
ROIs based on the average node importance for three groups.



(a) HC Subject

(b) MCI Subject

(c) AD Subject

Fig. 2. Interpreting top 20 selected salient ROIs of two differ-
ent individuals in HC, MCI, and AD group respectively. The
color bar ranges from 0.2 to 1.0. The bright-yellow color indi-
cates a high score, while dark-red color indicates a low score.
The common detected salient ROIs across different subjects
inside MCI and AD are circled in blue.
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Fig. 3. The Euclidean distance between ROIs by averaging
node importance of subjects inside each group.

In Fig. 3, we plot the distance matrices between ROIs. The
average node importance of HC, AD, and MCI groups were
substantially different from each other, suggesting that the
salient ROIs are different in each group.

3.3. Prediction Score

In this subsection, we collected the cognitive test scores in-
cluding the MMSE and ADAS13 from ADNI dataset. We
used the learned features of ROIs in the last GCN layer to
predict the cognitive tests scores of HC, AD, and MCI sub-
jects. We normalized the learned features as the mean of 0
and the standard deviation of 1. The linear regression model

HC Subject
MCI Subject
AD Subject
Regression

True Value

70

0
0 70 True Value0 70

70

0

HC Subject
MCI Subject
AD Subject
Regression

Fig. 4. Regression between the predicted and true values for
ADAS13 and MMSE test scores. The HC, AD, and MCI sub-
jects are plotted as the blue, orange, and green color respec-
tively. The red line is the fitted regression line.

Table 4. The reported value of evaluation metrics between
the predicted and true scores of ADAS13 and MMSE.

Evaluation Metrics ADAS13 MMSE
Pearson Correlation Coefficient 0.941 0.942
Mean Absolute Error 2.682 0.848
Root Mean Squared Error 3.527 1.084
R Squared 0.886 0.887

can be calculated to fit the relationship between the learned
features and the cognitive test scores.

In Fig. 4, we show the regression measures between the
predicted and true values for ADAS13 and MMSE test scores.
It provides a visual perception of how accurate the prediction
is for the given test. Based on the fit of the regression line,
we can infer that there is substantial correlation between the
prediction and ground truth.

In Table 4, we show the numeric performance of the re-
gression results for all of HC, AD, and MCI subjects. It con-
tains the value of Pearson correlation coefficient, mean abso-
lute error, root mean squared error (RMSE), and R-squared
measure for the ADAS13 and MMSE test scores. From the
results of table, the correlation measures of these two cogni-
tive test are higher than 0.9 and the R-squared measures are
also very high.

4. CONCLUSIONS
In this paper, we proposed an interpretable Graph Convo-
lutional Network (GCN) framework for the identification
and classification of Alzheimer’s Disease (AD) using multi-
modality brain imaging data. We applied the interpretable
Gradient Class Activation Mapping (Grad-CAM) technique
to interpret the salient ROIs and found that the putamen and
pallidum biomakers were very important to identify the HC,
AD and MCI. We extended the current explanation method
of GCN model to discover the neurological biomakers for
multi-modal brain imaging analysis. Besides the promising
classification performance, our interpretation of salient ROIs
demonstrated the individual- and group-level patterns in HC,
AD, and MCI groups respectively. This suggests that our
method can be applied to interpret the salient ROIs for much
more modalities imaging data.



5. COMPLIANCE WITH ETHICAL STANDARDS
This research study was conducted retrospectively using hu-
man subject data made available in open access by ADNI
[16]. Ethical approval was not required as confirmed by the
license attached with the open access data.
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