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Abstract—Algorithms for comparing protein structures are
widely used to identify proteins with similar functions and
to examine the mechanisms of binding specificity. In order
to make accurate comparisons, two structures must first be
superposed, so that differences in position and orientation do not
create misleading dissimilarities. Most algorithms generate these
superpositions by aligning atoms of the peptide backbone. This
approach is rapid, but it may not reflect similarities or differences
in all mechanisms that proteins use to bind other molecules.
Electric fields, for example, play a large role in recognition and
their substantial range can interact with other molecules long
before backbone contacts occur. To compare proteins based on
their electric fields, we have developed the first algorithm designed
to superpose protein structures using electric fields alone. Our
method works by searching rotational and translational space for
a superposition that maximizes the overlapping volume between
electrostatic isopotentials. Applying this method to compare the
serine protease and enolase superfamilies, our results demonstrate
that our electrostatic superposition algorithm can distinguish very
similar proteins with different binding preferences.

I. INTRODUCTION

Atom coordinates are widely used to represent the ge-
ometry of proteins in structure comparison algorithms. Some
algorithms detect large sets of alpha carbons with similar
interatomic distances [1]–[5]. These methods can identify
proteins with similar folds [6], [7] and find remote evolutionary
relationships [8]. A second class of methods finds clusters
of similar atoms that can reveal proteins that catalyze the
same reactions [8]–[17]. Whether the atoms are detected by
graph analysis [6], [18], dynamic programming [2], [19], by
proximity to binding cavities [20] or through evolutionary
analyses [10], [14], most approaches reported to date use atom
coordinates to superpose protein structures before comparison.
This approach, with many proven successes, exploits the fact
that atoms define protein folds as well as the pattern of steric
hindrance that is imposed on potential binders, so they are
a logical choice for comparative analysis. Nonetheless, when
considering all influences on molecular recognition, longer
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distance electrostatic effects can have a selective influence
on binding partners even before they come into contact with
the molecular surface. In such cases, a superposition of
electrostatic potentials may reveal information about binding
preferences that are not encoded in the geometry of atoms.

The problem we address in this paper concerns the case
where positive and negative electrostatic isopotentials from
two protein structures have been computed, and it is of inter-
est to geometrically superpose those isopotentials so regions
with similar potentials overlap as much as possible. To find
the superposition with maximum overlap, we use Derivative
Free Optimization (DFO) [21], a mathematical optimization
technique. DFO operates by strategically evaluating dozens
of individual superpositions, which are not based on atomic
alignments, in a search for one with maximal overlapping
volume. To evaluate overlapping volume, DFO calls on VASP-
E [22]. VASP-E uses techniques from constructive solid geom-
etry (CSG) to measure the volume of regions of intersection
between two molecular solids. In each iteration, VASP-E
measures the overlapping volume between the two positive
isopotentials and separately between the two negative isopo-
tentials, returning the sum of the intersection volumes to DFO.

The superposition technique presented in this paper dif-
fers fundamentally from existing superposition algorithms. By
ignoring the positions of atoms in both proteins, the superposi-
tions generated exclusively reflect similarities and differences
in the electric fields experienced by potential binding part-
ners. Because of the evolutionary pressure on these proteins
to reliably interact with their intended binding partners, we
hypothesize that similar fields, exhibited by larger intersection
volumes, should occur between proteins that prefer to bind
the same partners. Likewise, we expect that different fields,
as identified by smaller volumes of intersection, should be
a marker for proteins that prefer to bind different binding
partners. We will evaluate these hypotheses on two families
of proteins with diversified binding preferences in our experi-
mental results.

This paper provides the first proof of concept that an
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Fig. 1. An overview of our method. A) The protein structure A (rectangle in yellow). B) The protein structure B (rectangle in green). C, D) The positive
potential (black outline in blue zone) that is larger than |k| kT/e and the negative potential (black outline in red zone) that is smaller than −|k| kT/e. E, F) The
selected isopotentials of structures A and B. G) The comparison of positive or negative isopotentials using VASP-E. H) DFO tests a variety of superpositions
in search of one superposition where the isopotentials have the largest overlapping volume.

exclusively electrostatic superposition of protein structures is
possible. Superpositions of this kind create a new analytical
capability for the study of binding preferences: By superposing
protein structures in a way that maximizes electrostatic simi-
larities, we can examine what role the remaining differences
play in binding specificity. We will examine these capabilities
with applications to the serine proteases and the enolase
superfamily.

II. RELATED WORK

Comparisons of protein structures are essential to infer
protein function. Most methods use points in three dimensions
to describe whole protein structures [2], [3], [6]–[8], [19], [23]
or functionally related active sites [9], [11], [14], [24]–[27] to
minimize Root Mean Squred Distance (RMSD). This capacity
enables structure comparison algorithms to efficiently detect
similar proteins with maximal geometrical and biochemical
similarity. Another kind of comparison method uses molecular
surfaces which are the specification of protein structure at finer
resolution [28], [29]. However, sometimes proteins perform
their function because of the electrostatic interactions between
typical protein components before binding partners contact
with the molecular surface, and superposition of protein elec-
trostatic potentials may exhibit preferences on protein binding
specificity.

Some efforts have been made to analyze molecular electro-
static potentials that reveals protein function. These methods
quantify charge distribution over the whole protein structure
[30], [31] or localized region such as protein domains [32], ac-
tive sites [33] protein-protein binding interfaces [34] or struc-
tural motifs [35]. Few more methods compared electrostatic
potentials of proteins directly by computing a similarity index
[36] or constructing tree-based structures [37]. Kinoshita et al.
compared the electrostatic potentials on molecular surfaces to
infer protein function [38], [39]. However, protein charges are
unevenly distributed and the electrostatic potentials of any two
points on the protein molecular surface could be essentially
different. The comparison of isosurface of protein electrostatic
potentials is an alternative direction.

This paper examines an electrostatic comparison of protein
structures without depending on the molecular surface or on

A)

B)

Fig. 2. A) electrostatic isopotential surfaces of the Atlantic salmon trypsin
(pdb:1a0j). The red surface indicates the negative isopotential generated at
−5.0 kT/e and blue indicates the positive isopotential generated at 5.0 kT/e.
The surfaces are highly convoluted and pass very closely to each other, but
do not come in contact. B) The cartoon visualization of 1a0j structure.

atomic positions. Rather than using atoms for superpostion, we
begin with an arbitrary starting superposition. Using DFO, we
search for superpositions that better overlap the electrostatic
isopotentials. DFO has been successfully applied to super-
pose protein binding cavities [40]. This paper evaluates the
hypothesis that it can also be used to superpose electrostatic
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A) Input B) Intersec�on

Fig. 3. A diagram of CSG intersection. A) input regions (green) defined by
isopotential surfaces (dotted). B) input regions (green) isopotential surfaces
(dotted), output intersection region (solid line).

isopotentials.

III. METHODS

Beginning with the electrostatic isopotentials of two pro-
teins as input, DFO searches for the superposition that max-
imizes overlapping volume by systematically testing a range
of superpositions. For every intermediate superposition over-
lapping volume is calculated by VASP-E, which is called
as a subalgorithm. To explain these calculations, we first
describe how solid representations of electrostatic isopotentials
are generated from protein structures. We then explain how
we compare isopotentials in a given superposition by com-
puting the sum of overlapping isopotential volumes. Finally,
we explain how derivative free optimization searches for an
optimal superposition. An overview of our method is illustrated
in Figure 1 and is detailed in the following sections.

A. Solid representation of protein electrostatic isopotentials

As input, VASP-E requires the protein structure A, the elec-
trostatic field AE , the isopotential threshold k kT/e. When k is
positive, VASP-E represents regions with electrostatic potential
greater than k within a solid region, and when k is negative,
regions with potential less than k are represented. This rule
prevents the generation of infinitely large isopotential solids,
which lead to degenerate comparisons and superpositions (Fig.
1C,1D).

To generate the electrostatic field, we first remove all hy-
drogens and then protonate the structure using the reduce tool
of the MolProbity package [41] and the protonated structure
is given as input to DelPhi [42] to compute a numerical
solution to the Poisson-Boltzmann Equation (PBE). DelPhi
approximates the electrostatic field AE within a bounding box
that covers the protein structure. As output, VASP-E generates
electrostatic isopotentials as solid 3D objects.

The resulting isopotential solids can have highly convoluted
shape. While isopotentials at different thresholds never overlap,
they can be formed in close proximity to each other, as can
be seen in Figure 2.

B. Electrostatic isopotential comparison

As input, VASP-E takes the desired resolution r, and
solid representations of two electrostatic isopotentials A and
B. VASP-E is a lattice based approximation algorithm that
evaluates isopotential similarity by measuring the volume of
intersection.

The intersection is computed using a method described
earlier [43] but paraphrased here. First, a lattice of cubes
is formed to completely surround both input isopotentials.
For the corner of every cube, VASP-E determines whether
the corner is inside or outside both input isopotentials. If a
corner is inside both input isopotentials, it must be inside the
output intersection region, but if it is outside any isopotential,
then it must be outside the output intersection region. After
identifying which corners are inside and outside the output
region, the set of cubes that must contain the surface of the
intersection region are found. The surface approximating the
intersection region is approximated inside each cube, based
on the points at which the cube intersects each input region.
The volume of the intersection region is computed using the
Surveyor’s Formula [44].

When comparing isopotentials from related proteins, we
say that larger intersection volume indicate greater similarity,
and smaller intersection volumes indicate less similarity.

C. Derivative free optimization

Derivative free optimization methods focus on the un-
constrained optimization problem. In such cases, the first
derivative of the objective function is not available and cannot
be approximated by traditional methods because the objective
function is computationally costly. The optimal superposition
of two isopotentials by maximizing intersection volume is one
such problem since the objective function does not have a
closed-form expression. Since we use VASP-E to approximate
the volume of intersection, it becomes our objective function.

DFO represents the relative positions of isopotentials in
a seven dimensional vector x = [Ax, Ay, Az, θ, Tx, Ty, Tz]
where [Ax, Ay, Az] specifies the axis of rotation, θ specifies
the rotation angle and [Tx, Ty, Tz] are the translation vector.
Our optimization problem can be formulated by the following
equation:

min{f(x) = f+(x) + f−(x),x ∈ Rn} (1)

where f+(x) denotes the overlapping volume between
two positive isopotentials and f−(x) denotes the overlapping
volume between two negative isopotentials. We adopt a trust-
region based DFO method described in [21]. The trust region
is the region around the current search point where model
function that sufficiently approximates the objective function
value is constructed. At each iteration, the model function
is then minimized in the trust region to search for the best
position for the next search point. More details about trust-
region methods can be found in [45]. In practice, DFO tends to
converge to a local optimizer and find a reasonable intersection
volume, but the global optimal solution cannot be guaranteed.
Hence, the choice of starting point may produce different
final results. In this work, we translate centroids of input
isopotentials to the origin before DFO as a trivial optimization
to prevent unnecessary searching in translational space.

D. Data set

We demonstrate our method on two protein superfamilies,
the serine proteases and the enolase superfamily. In the serine
protease superfamily, we selected the trypsin, chymotrypsin
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Serine Protease Superfamily:
Chymotrypsins: 1eq9, 8gch
Elastases: 1b0e, 1elt
Trypsins: 1a0j, 1aks, 1ane, 1aq7, 1bzx, 1fn8,
1h4w, 1trn, 2eek, 2f91
Enolase Superfamily:
Enolases: 1e9i, 1iyx, 1te6, 1pdy, 2pa6, 3otr
Mandelate Racemase: 1mdr, 2ox4
Muconate Lactonizing Enzyme: 2pgw, 2zad

Fig. 4. PDB codes used in the data set.

and elastase subfamilies and in the enolase superfamily we
selected the enolase, mandelate racemase and muconate lac-
tonizing enzyme subfamilies. Each subfamily contained at least
two nonredundant protein structures. Figure 4 lists all protein
structures by their Protein Data Bank [46] (PDB) code and
they are classified by similar ligand binding preferences.

The serine proteases are a family of enzymes that cleave
peptide bonds in proteins where serine functions as the nucle-
ophilic binding residue. Adjacent amino acids are recognized
at specificity subsites numbered S4, S3, S2, S1, S

′
1, S

′
2, S

′
3, S

′
4.

Each subsite preferentially binds one amino acid before or after
the S1 − S′

1 hydrolyzed bond. In this work, we focus on the
S1 subsite of serine proteases, which reveals three different
binding specificity: positively charged amino acid (lysine or
arginine) [47] in trypsin, large and hydrophobic amino acid
(tyrosine, phenylalanine or tryptophan) [48] in chymotrypsin
and small hydrophobics (alanine, glycine or valine) [49].

The enolase superfamily catalyzes reactions by the ab-
straction of a proton from a carbon adjacent to a carboxylic
acid with the help of a divalent metal ion [50]. These re-
actions occur near the C-terminal ends of beta sheets in
the conserved TIM-barrel structures. In this work, we fo-
cus on three specific catalysts: the enolase subfamily, which
converts 2-phosphoglycerate (2-PG) to phosphoenolpyruvate
(PEP) [51], the mandelate racemases, which convert between
(S)-mandelate and (R)-mandelate [52], and the muconate-
lactonizing enzymes, which catalyze the conversion of lignin-
derived aromatics, catechol and protocatechuate, to citric acid
cycle intermediates [50].

Protein Selection. Protein structures in serine proteases
and enolase superfamily were selected on 6.21.2011 with
676 serine proteases and 66 enolases. Protein structures with
mutations and disordered regions and enolases with closed or
partially closed structures were removed. Next, of member of
any pair of structures with more than 90% sequence identity
was removed, with preference for keeping structures with
publication descriptions. 14 serine proteases and 10 enolases
remained. Non protein atoms (ions, water etc.) and hydrogens
were removed for uniformity.

We compared our superpositions against Ska, an algorithm
for whole structure superpostion using alpha carbons [5]. To
generate these alignments, we aligned all serine proteases onto
8gch and all enolases onto 1mdr. These two structures were
chose because of the existence of bound ligand, indicating a
functional conformation. All structures in the same superfamily
exhibit identical protein folds so that the choice of structural
alignment algorithm creates little variation [43].
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Fig. 5. VASP-E trade-off plot between relative noise (blue plot) and runtime
(red plot) on a range of resolutions. The approximated noise-free resolution
r∗ is set to 0.25.

Superpositions generated with Ska can also be used as a
starting point for the DFO superposition search. We refer to
these superpositions as warm starts.
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superposition from pdb 1a0j between random starts and warm starts. The
isopotentials were generated at 10.0 kT/e. The boxplot illustrates the inter-
section volumes from LHS random starts with the mean value highlighted in
red line where the warm start volumes are shown in green line.

IV. EXPERIMENTAL RESULTS

In this section, we first calibrate the resolution to be used
by VASP-E. Then we demonstrate the performance of warm
start superpositions. Next, we perform superposition experi-
ments on the serine proteases and the enolase superfamily, to
examine whether our superposition technique can distinguish
proteins with similar and different binding preferences. Finally,
we compare our electrostatic superposition method to atom-
based superpositions, to evaluate the difference between our
superpositions and atom-based superpositions.

A. Calibrating VASP-E

As resolution r decreases, VASP-E approximates the elec-
trostatic similarity using finer cubes, thus leading to more
accurate evaluation but taking substantially longer time. To
compute accuracy/time trade-offs, given the the resolution r
for any input x, the relative noise δr is defined as [53]:

δr =
f∗(x)− fr(x)

f∗(x)
(2)
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on serine proteases. Blue bars indicate the average overlapping volume between proteins with identical binding specificity while red bars indicate the average
overlapping volume between proteins with different binding specificities. The calculation comes from isopotentials generated at 10.0 (top left), 7.5 (top right),
5.0 (bottom left) and 2.5 (bottom right) kT/e.

where f∗(x) indicates the noise-free true function value
and fr(x) indicates the function value computed by VASP-
E with resolution r. Let r∗ be the smallest resolution that
is computational available, the true function value can be
approximted by f∗(x) = fr∗(x).

Figure 5 plots the relative noise estimation relative to
runtime with respect to resolution between electrostatic isopo-
tentials at 10.0 kT/e between 1a0j and 1b0e. 1a0j and
1b0e are selected as examples, and are representative of other
superpositions. It was observed that the runtime increases
superlinearly and relative noise decreases as r decreases. This
is expected because the number of lattice cubes used in
VASP-E grows at a superlinear rate as r decreases. Similar
patterns can also be found in other pairs and other isopotential
thresholds. In our experiments, the smaller relative noise level
is sufficient to obtain solution of acceptable accuracy, and the
resolution r was set to 1.0 on our large-scale experiments.

B. Atomic superposition as warm starts

Optimization algorithms cannot guarantee that they identify
a global optimum. However, in practice, we can evaluate how
frequently DFO arrives at a logical optimum that is comparable
to what can be found from existing methods. To perform
this comparison, for every pair of superposed proteins, we
generated 10 random starting superpositions, and searched
for the optimal superposition from each. We compared these
random start superpositions to the optimal superposition found
when starting from backbone alignment generated by Ska: a
warm start. Random starting vectors were generated by Latin
Hypercube Sampling (LHS) [54], a statistical technique for
calculating a distribution of initial starting vectors from a
multidimensional distribution.

Figure 6 compares the final intersection volume from ran-
dom starting vectors and from warm starting vectors between
Atlantic Salmon Trypsin (pdb: 1a0j) and other serine proteases
at 10.0 kT/e. In general, the final intersection volume from
random starts exhibited a dense concentration above the me-
dian and a few trailing superpositions well below the median.
In almost all cases, final intersection volume from warm starts
were between the median and the 75th percentile of the final
intersection volume from random starts (Figure 6).

This behavior illustrates that while some random starting
points yielded highly suboptimal superpositions, many random
starting points provide superpositions that are comparable to
that of warm started superpositions. Restarting DFO two or
three times can thereby guarantee a high quality superposition.

C. Electrostatic isopotential superposition reveals binding
specificities

To demonstrate that the superposition of electrostatic isopo-
tentials reflects ligand binding specificities, we computed the
average overlapping volume between one protein and the
others with the same binding specificity and also with different
binding specificities. Figures 7 and 8 report the average final
intersection volume between serine proteases and enolases
computed at isopotentials generated at 2.5, 5.0, 7.5 and 10.0
kT/e. Since we are computing overlapping volumes from
positive and negative isopotentials, these tests optimized the
superposition of the +2.5 kT/e and the −2.5 kT/e isopo-
tentials together, then the +5.0 kT/e and the −5.0 kT/e
isopotentials together, and so on.

At all four thresholds, the trypsin, elastase, enolase, and
mandelate racemase subfamilies exhibited greater similarity to
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Fig. 9. The single charge isopotential alignment could enhance the binding specificity comparisons. Blue bars indicate the average overlapping volume between
proteins with identical binding specificity while red bars indicate the average overlapping volume between proteins with different binding specificities. The
calculation comes from positive isopotential alignment generated at 10.0 kT/e on serine proteases (left) and the enolase superfamily (right).

proteins with similar binding preferences than to proteins with
different binding preferences, respectively. The chymotrypsin
and muconate lactonizing enzyme proteins exhibited similar or
slightly greater electrostatic similarity to proteins with different
binding preferences, indicating that electrostatic superposition
occasionally does not distinguish proteins with different bind-
ing preferences.

As a test, we also performed electrostatic superpositions
using only a single electrostatic isopotential, rather than sym-
metric positive and negative isopotentials. Figure 9 illustrates
the superposition of only the positive isopotential at 10.0

kT/e on two superfamilies. On serine proteases, two elastases
(1b0e and 1elt) exhibited significantly greater similarity than
when comparing both positive and negative isopotentials. A
similar effect was observed on the enolase subfamily. Also,
electrostatic similarity was slightly enhanced between chy-
motrypsins and muconate lactonizing enzymes. Repeating this
computational at different isopotential thresholds revealed a
similar pattern of enhanced similarities.

D. Structural deviations from isopotential superposition

Random starting vectors often yielded final superpositions
that exhibit overlapping volumes that are comparable to warm
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start superpositions. However, a large overlapping volume
is no guarantee that the superposition actually reflects basic
functional similarities, such as the superposition of similar
binding sites.

We verified our superpositions against superpositions gen-
erated by ska. We began with superposition vectors generated
by DFO from random starting points. Next, we rotated and
translated the atoms of the protein according to the super-
position vector as if they, and not the isopotentials, were
superposed. Finally, we computed the all atom RMSD between
the atoms of this rotated and translated structure and the protein
when it was aligned using Ska. Note that we are not finding a
new superposition by minimizing RMSD, we simply measure
the root mean squared deviation between the electrostatic and
ska-based superpositions.

Figure 10 illustrates a histogram of RMSDs generated in
this manner between all serine proteases aligned on 10.0 kT/e
isopotentials at 10 random starting positions. It is apparent
that almost all RMSDs exhibit very small values (< 1.0 Å).
This result indicates that even when starting at random starting
vectors, DFO frequently converges on a superposition that
closely resembles the ska alignment. A few very large RMSD
values (> 9.0 Å) also exist. Almost all of these results were
generated by suboptimal electrostatic isopotential alignment
and resulted in low volumes of isopotential intersection.
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Fig. 10. The RMSD histogram plot on all pairs of serine proteases using
electrostatic isopotential superposition at the threshold of 10.0 kT/e.

V. CONCLUSION

We have presented a computational method that adapts
DFO and VASP-E to find superpositions of electrostatic
isopotentials by maximizing their overlapping volume. Totally
different from existing tools, our method does not use the posi-
tions of atoms to generate superpositions. Instead, it superposes
isopotential surfaces the mathematical optimization method,
DFO.

We tested our method on sequentially nonredundant subsets
of two protein superfamilies: the serine proteases and the
enolase superfamily. Our experiments showed that superposed
isopotentials of proteins with identical binding preferences
almost always exhibited larger intersection volume than su-
perposed isopotentials from proteins with different binding
preferences. This result indicates that the volumetric similarity
between electrostatic potentials could be effective marker to
infer protein binding partners.

Our method has great potential for applications to the
comparison of electric fields. Representing electric fields as
geometric entities, our method can identify local regions with
similar potentials that are directly relevant to substrate binding.
By maintaining algorithmic independence from any atomic
structure, our method avoids biases that may be unavoidable
for atom-based methods. Such independence, when consider-
ing the effect of electric fields on partner molecules, could
yield useful insights into molecular design.
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