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Abstract—Protein structure comparison algorithms can be
used to identify distantly related proteins or to categorize differ-
ences in binding specificities. When they are presented in different
conformations, distantly related proteins can go unrecognized
unless flexible representations of whole protein structures are
used. Such representations offer a sophisticated description of
backbone motion, but they do not incorporate the potential
motion of every atom. Thus, existing representations, both rigid
and flexible, cannot compensate for atomic motions that can make
binding sites with similar binding preferences appear different.
To bridge this gap, this paper presents a tool for comparing
protein binding sites despite conformational changes in the
binding site. Our method employs ensemble clustering techniques
to incorporate the diversity of binding site variations observed
in conformational samples of binding site motion. We applied
the method on protein conformations of serine proteases and
enolase superfamilies. Our results demonstrate that this approach
can distinguish proteins with similar binding preferences in the
presence of considerable binding site flexibility.

I. INTRODUCTION

Conformational flexibility is significant complication for
the accurate the comparison of protein structures. Many
algorithms perform efficiently because they apply rigid
transformations to superpose atoms from different structures
without considering alternative conformations. With this
simplifying assumption, existing methods can rapidly
align backbone carbon atoms [1]–[7], distance matrices
[8], graphical topologies [9]–[11] and geometric surfaces
[12]–[15] to detect structural similarities between remote
homologs. The rigidity assumption also enables methods
to rapidly discover structural variations between closely
related proteins with different binding specificities [16], [17].
However, without the simplification of rigidity, the structural
comparisons would be more difficult because all protein
conformations must be considered.

A recent class of algorithms use rigid secondary structural
elements with flexible linkers to represent protein structures
via hinges [18], [19], graphs [20], [21], fragments [22]
and dynamic programming [23]–[25]. Most approaches
are designed to identify remote homologs that could be
overlooked from conformations of each protein. But flexible
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linkers do not describe smaller atomic motions inside binding
cavities, and they thus have limited applications to categorize
flexible binding sites with subtly different binding preferences.

This paper presents an algorithm for categorizing protein
structures based on ligand binding preferences, despite
the presence of structural variations. Beginning with
conformational samples of several proteins, our method
clusters binding sites found in randomly selected samples of
each protein. Integrating many randomly generated clusterings
yields an average categorization of the structural similarities
and variations between the binding sites. This approach
reflects all-atom motions in each protein that are represented
by the conformational samples, whereas existing methods
generally employ artifically rigid and artificially flexible
regions. In our results, we demonstrate how this method
performs for categorizing conformational samples of serine
protease and enolase superfamily binding sites.

In the recent years, we have reported new methods that ana-
lyze structural flexibility within binding cavities. One method
[26] detected clusters of cavity conformations from the same
protein. These clusters assisted in predicting influential amino
acids that can affect specificity. However, this method did not
provide direct comparison between conformations of different
proteins. A second method, FAVA [27], defined the three
dimensional region that is accessible to most conformational
cavities of one protein as the frequent region. Frequent regions
could be clustered to produce categorizations of ligand binding
cavities, but because the frequent region does not necessarily
exist in highly flexible binding sites, we examine methods here
based on atomic comparisons.

II. METHODS

Overall, as input, our method begins with conformational
samples of one family of protein structures defined by EC
classification [28] for comparison. Our method outputs protein
clusters that predict ligand binding specificities. First, we
designate one protein structure as the template and explain
how to compute the template motif: the positions of amino
acids that are adjacent to the ligand surface. The motif is
considered to be close to the binding cavity and its motion
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may alter the shape of the binding site. Second, we describe
how we compute the structural matches of the template motif
to identify similar substructures in other protein structures,
generating the propagated motifs for each family member.

Given one sampled conformation of each protein, we
compute the all-against-all least root mean square distance
(LRMSD) similarities between propagated motifs. These
similarities create geometric feature vectors that correspond
to high dimensional points in the geometric feature space.
We continue to build a hierarchical clustering from geometric
features and the clustering outputs a cluster label for each
family member.

Due to the nondeterministic nature of protein conformation
sampling, the clustering could be highly unstable and no single
clustering is guaranteed to be reliable across all conformational
samples of all protein structures. Therefore, we applied en-
semble clustering techniques. Given a set of base clusterings,
ensemble methods output a consensus clustering that shares
as much information as possible with all base clusterings
[29]. Finally, we discuss how to compute such a consensus
clustering to predict ligand binding specificity.

A. Structural motif construction

Formally, within a family of proteins, we select one structure
T as the template and refer to its conformational samples as
{T1,T2,...,Tn}. We define the shape of each sampled ligand
binding cavity as {t1,t2,...,tn} using VASP [17]. Following
our earlier work [27], we compute the average intersection
volume of each amino acid r between the sampled amino
acid ri of Ti and the sampled ligand binding cavity tj for
all pairs of samples i and j. The large average intersection
volume indicates that r frequently changes the shape of the
binding cavity. In this work, we rank all the amino acids by
their average intersection volume and return the top k as the
template motif S = {S1, S2, ..., Sk} where Sx is the sequence
number for the xth top amino acid. The positions of motif S
characterize the shape and structure of the binding site. It is
noted that our method is independent of intersection volume

Input: Data set G = {g1, ...,gm};
Base UPGMA clusters Ω(q), q = 1, ..., r;
The consensus UPGMA cluster Ω;

Process:
1. For q = 1, ..., r :
2. λ(q) = Ω(q)(G);
3. Form an m × m base similarity matrix M(q)

from λ(q) using Equation (1);
4. End
5. M = 1

r

∑r
q=1 M

(q);
6. λ∗ = Ω(M);
Output: Ensemble clustering vector λ∗.

Fig. 1. CSPA Ensemble Clustering Algorithm.

calculation and adapting other reasonable motif generation
methods could also be successful.

B. Motif propagation

The computed template motif S is matched against a family
of protein structures F = {f1, f2, ..., fm}, yielding a set of
matches MS→F = {MS→f1 ,MS→f2 , ...,MS→fm}. In this
work, FATCAT [21] is used between the template structure T
and each protein structure fi to identify substructure matches
by searching every residue in motif S and returning the
matched residue in fi. FATCAT is selected because of the
availability and compatibility to flexible structure comparisons.
Every substructure match MS→fi is a mapping between S and
a substructure of fi, and all the amino acids in the substructure
are returned as a propagated motif, Sfi . If any arbitrary amino
acid Si in S is aligned to a gap, Si will be removed from the
template motif.

C. Base clustering generation

To create a base clustering, we take a random sampling
of protein conformations F ′ = {f1i , f2i′ , ..., fmi′′ } as input
where fxy

indicates the yth conformation of the structure fx.
All these conformations are superposed onto one selected
structure fx by minimizing the overall root mean square
distance (RMSD). We write the pairwise LRMSD between
two propagated motifs as L(Sfj , Sfk). The LRMSD is
obtained by computing Cα atom RMSD of all amino acids in
propagated motifs on F ′. The geometric feature gj for protein
fj is a vector defined as gj = {L(Sfj , Sf1), ..., L(Sfj , Sfm)}.
The geometric feature space of all-against-all LRMSD
alignment within a protein family can be represented by a
matrix G = {g1, ...,gm}. Each gj is a point in the feature
space. We hypothesize that proteins with identical binding
specificity should be nearby in the feature space and be
clustered into the same group.

To test our hypothesis, we use the UPGMA (Unweighed
Pair Group Method with Arithmetic mean) [30], an agglom-
erative hierarchical clustering method with average linkage,
to generate a base clustering using geometric features. The
UPGMA outputs one base clustering as a label vector λ
by specifying the number of clusters where the ith element
λi ∈ {1, 2..., c} indicates the cluster assignment for each
feature gi.

Serine Protease Superfamily:
Chymotrypsins: 1ex3
Elastases: 1b0e, 1elt
Trypsins: 1a0j, 1ane, 1aq7, 1bzx, 1fn8, 1h4w, 1trn,
2eek, 2f91
Enolase Superfamily:
Enolases: 1ebh, 1iyx, 1te6, 3otr
Mandelate Racemase: 1mdr, 2ox4
Muconate Lactonizing Enzyme: 2pgw

Fig. 2. PDB codes used in the data set.
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D. Ensemble clustering

In this step, we have r base clustering vectors
{λ(1), λ(2), ..., λ(r)} using conformation sampling with
replacement. In order to ensemble all the base clusterings,
we need a combination function Γ to create a consensus
clustering λ∗ = Γ({λ(1), λ(2), ..., λ(r)}). Given m protein
structures and n conformations of each structure, the number
of all possible samplings is nm, and the exponential size
of combination is impractical even for very small n and m.
Therefore, the brute force search over all possible samplings
is infeasible and a heuristic strategy is needed.

Here, we adopt a cluster-based similarity partitioning algo-
rithm (CSPA) to compute a consensus clustering. Essentially,
if two objects are in the same cluster, they are considered to
be fully similar, and if not they are fully dissimilar. To achieve
this, we convert a base clustering vector λ(q) of size m to an
m×m base similarity matrix M(q) by:

M
(q)
(i,j) =

{
0 if λ(q)

i = λ
(q)
j

1 otherwise
(1)

we average all the base similarity matrices, yielding an
averaged similarity matrix M. Here, the less M(i,j) is, the
more possibility that the ith object and the jth object will be
grouped into the same cluster. Finally, we form a consensus
UPGMA clustering based on the averaged similarity matrix.
The general process of CSPA is illustrated in Figure 1. For
more details about ensemble clusterings and CSPA, see [29],
[31].

E. Data set

We test our method on two protein superfamilies, the serine
protease and the enolase superfamily. In the serine protease,
the trypsin, chymotrypsin and elastase subfamilies were
selected. In the enolase superfamily, the enolase, mandelate
racemase and muconate lactonizing enzyme subfamilies were
selected.

The serine proteases hydrolyze peptide bonds by
recognizing a set of adjacent amino acids with specificity
subsites that are numbered S4, S3, S2, S1, S

′
1, S

′
2, S

′
3, S

′
4. Each

subsite has binding preferences on one amino acid before or
after the S1 − S′

1 hydrolyzed bond. In this work, we focus
on three different binding specificities of the S1 subsite:
positively charged amino acid [32] for trypsins, large and
hydrophobic amino acid [33] for chymotrypsins and small
hydrophobics [34] for elastases.

The enolase superfamily proteins catalyze reactions by
abstracting a proton from a carbon adjacent to a carboxylic
acid [35] near the C-terminal domain of beta sheets of the
conserved TIM-barrel structures. In this work, we study
three different catalysts. The enolase subfamily converts 2-
phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP) [36],
the mandelate racemases convert between (S)-mandelate and

(R)-mandelate [37] and the muconate-lactonizing enzymes
convert lignin-derived aromatics, catechol and protocatechuate
to citric acid cycle intermediates [35].

Protein Selection. 676 serine protease structures and 66
enolase superfamily structures were selected from the Protein
Data Bank (PDB) [38] on 06.21.2011. Protein structures
with mutation, disordered regions or closed regions were
removed. Then, structures were filtered to keep less than 90%
pairwise sequence identity with preference for maintaining
structures with literature description. Several structures (8gch,
1aks etc.) were removed because of technical problems of
protein simulation. On the remaining 12 serine proteases and
7 enolases, non protein atoms, such as ions and water, and
hydrogens were removed. All the structures are shown in
Figure 2 by their PDB code and are classified into subfamilies
by their binding specificities.

When generating one base clustering from one sampling
of protein conformations, we superposed all the sampled
conformations using Ska, an whole structure alignment algo-
rithm [39]. We aligned all serine protease conformations onto
8gch and all enolase superfamily conformations onto 1mdr.
These two structures were selected because of the existence of
ligand bound. All the structures in the same superfamily have
identical protein folds and the choice of alignment methods is
of little difference [17].

F. Protein structure simulation

The conformational samples of each protein structure were
simulated using GROMACS 4.5.4 [41]. The input structure
was centered inside a cubic waterbox using a 3-point solvent
model SPC/E [42]. The waterbox was set so that there is at
least 10 Å between the protein and the nearest part of the
box. Charge balanced sodium and potassium were then added
at a low concentration (< 0.1% salinity). Steepest descent
was used to minimize energy on the entire simulation sys-
tem. Isothermal-Isobaric (NPT) equilibration was performed
in four 250 picoseconds steps for temperature and pressure
equilibration before the primary simulation. Over the four
250 picosecond minimization period, at 1000 kJ/(mol∗nm),
each equilibration step reduced the position restraint force
by 250 kJ/(mol ∗ nm). Backbone positions constraints were
released during the NPT simulation and system energies
were computed in the beginning of the equilibration phase.
Temperature was set to 300 Kelvin and pressure was set to 1
bar. Temperature coupling was computed using Nosé-Hoover
thermostat [42] and pressure coupling was computed using the
Parrinello-Rahman algorithm [43], [44]. The simulation used

TABLE I
THE TEMPLATE MOTIF

PDB Motifs
1a0j S190 G193 S195 V213 W215 G216 K224 P225
1ebh D246 C247 Q295 D320 K345 H373 R374 K396

1241



1a0j 1ane 1aq7 1bzx 1fn8 1h4w 1trn 2eek 2f91 1b0e 1elt 1ex3 1ebh 1iyx 1te6 3otr 1mdr 2ox4 2pgw
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Fig. 3. Aggregate variations in sampled cavity volume in our whole data set. All protein cavity samples varied considerably.

P-LINCS [45] to update bonds and used particle mesh Ewald
summation (PME) [41] to calculate electrostatic interaction
energies. The primary MD simulation was started using the
atomic positions and velocities of the final equilibrium state.
The simulation was maintained for 100 nanoseconds with
1 femtosecond timesteps on multiple 16 core nodes of the
Lehigh corona server where OpenMPI was used for parallel
communications. The trajectory file was convert to the PDB
format with only atomic positions. 600 samples were selected
of each protein structure at uniform intervals.

III. EXPERIMENTAL RESULTS

First, we show that conformational binding cavities vary
considerably over all protein simulations, and these variations
can be taken as evidence that weakens the rigidity assumption
for protein structure comparisons. Then, we demonstrate the
template motif on two families and continue to visualize
the propagated motif of other proteins. Finally, we show the
ensemble clustering to predict ligand binding specificity and
compare with some previous works.

A. Considerable variation of conformational binding cavities

Figure 3 illustrates variations of protein binding cavity
volumes over all conformations in our whole data set and we
observe all proteins cavities varied considerably. Specifically,
trypsin cavity volumes ranged from 249 Å3 to 693 Å3,
chymotrypsin cavity volumes ranged from 127 Å3 to 553
Å3 and elastase cavity volumes ranged from 277 Å3 to
569 Å3. The significant volume variations can also be
detected in the enolase superfamily. Enolase cavity volumes
ranged between 90 Å3 to 508 Å3, mandelate racemase
volumes ranged between 225 Å3 to 673 Å3 and muconate
lactonizing enzyme volumes ranged between 90 Å3 to 344 Å3.

All these observations demonstrate considerable variations
of binding cavities of the same protein. The cavity variations
create errors for flexible structure comparisons, preventing
accurate predictions of ligand binding specificity when pro-
tein conformational samples are considered [27]. The protein
binding cavity varied because of the motion of adjacent amino
acids, leading to the motivation to identify structural motifs for
binding specificity prediction.

B. Motif definition and propagation

We selected 1a0j as the template structure for the serine
protease and 1ebh as the template structure for the enolase
superfamily. We ranked all the amino acids of two protein
structures and added the top 8 residues into the template
motif. In table I, we show all amino acids of the template
motif. Figure 4 illustrates 3D structure of the motif in
one conformational sample of 1a0j and 1ebh. We observe
that both motifs are close to the binding cavity, and their
motions may enlarge, shrink or even separate binding cavities.

Three amino acids, {C247, R374,K396}, in the template
motif of enolases were removed during motif propagation
because they were aligned to the gap. Figure 5 shows the
superposition of the propagated motifs of all proteins in
our data set. The motifs of proteins with the same binding
preference tend to form closely-located substructure clusters,
leading to cluster analysis to predict ligand binding specificity.

C. Protein ensemble clustering

Figure 6B demonstrates the ensemble UPGMA clustering
of propagated motifs on serine protease structures. Proteins
in the same subfamily are correctly clustered into the same
group. Figure 6C demonstrates the UPGMA clustering of
frequent regions using FAVA. We observe that the only
chymotrypsin protein, 1ex3, was misclassified into the
trypsin cluster and two elastases were separated into different
clusters. Moreover, Figure 6B exhibits a greater similarity
between trypsins than Figure 6C. This indicates that structural
motifs may be better markers to distinguish proteins with
different binding preferences.

Figure 7B shows the ensemble clustering of propagated
motifs on enolase superfamily structures. Three subfamilies
are all correctly clustered by their binding specificities. Figure
7C shows the clustering using FAVA. We can see that two
mandelate racemases were separated and one of them, 1mdr,
was misclassified into the enolase cluster. Similarly, greater
similarities between the enolases and between mandelate
racemases was detected using the ensemble clustering.
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A)

B)

Fig. 4. The 3D structure of the template motif in A) 1a0j and B) 1ebh
shown in the black stick. The protein structure is shown in grey. This figure
is generated with Pymol [40].

Overall, UPGMA clusterings on serine proteases and eno-
lases reveal that our ensemble clustering method improves the
prediction of protein-ligand binding preferences. It could be a
robust tool for flexible protein structure comparisons despite
conformational flexibilities of different proteins.

IV. CONCLUSION

We have presented a computational method to compare
conformational protein structures based on the ensemble
clustering. Unlike existing methods with rigidity assumption
of protein structures or secondary structure elements, our
method extracts propagated motifs of protein conformations to
characterize the motion of protein binding sites. This capacity
enables a novel representation of molecular flexibility of
binding cavities using conformational samples.

We applied our method on conformational samples
of sequentially nonredundant structures of two protein

D246

Q295

D320K345

H373

V213

S195

G193
G216

W215

K224

P225

S190

A)

B)

Fig. 5. Superposition of sampled propagated motifs of all proteins in A)
serine proteases and B) the enolases where each protein is shown in 5 sampled
propagated motifs. The color of each aligned substructure indicates the ligand
binding specificity of the protein. It can be seen that propagated motifs of
proteins with identical binding specificity are nearby to each other. This figure
is generated with Pymol [40].

superfamilies: the serine protease and the enolase superfamily.
The proteins in both superfamilies revealed considerable
structural variations in binding cavities. Despite these
flexibilities, our method correctly classified all protein
structures of both superfamilies according to their substrate
binding preferences. This result indicates that atomic
comparisons of highly similar proteins can exhibit subtle
differences that affect specificities when conformationally
structural flexibilities are considered.

Our method has great application potentials for comparisons
of proteins with identical folds but different ligand binding
preferences. In such cases, our method generates propagated
motifs to represent shape of protein binding cavities, pointing
to the local structure that is relevant to substrate binding.
Using ensemble clustering techniques, our method mitigates
the prediction errors from conformational flexibilities. These
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Fig. 6. Comparison of UPGMA clustering of the ensemble method and
of FAVA from serine protease structures. A) The ground-truth (EC number)
clustering of each subfamily (dotted box) indicates the ligand binding prefer-
ence of the protein. B) Clustering of the ensemble method using propagated
motifs. C) Clustering of frequent regions using FAVA. In both UPGMA trees,
the dotted blue line is used to specify the number of subfamilies to generate
the coloring of each structure as the prediction in the final clustering vector.
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Fig. 7. Comparison of UPGMA clustering of the ensemble method and
of FAVA from the enolse superfamily structures. A) The ground-truth (EC
number) clustering of each subfamily (dotted box) indicates the ligand
binding preference of the protein. B) Clustering of the ensemble method
using propagated motifs. C) Clustering of frequent regions using FAVA. In
both UPGMA trees, the dotted blue line is used to specify the number of
subfamilies to generate the coloring of each structure as the prediction in the
final clustering vector.

capacities provide an important tool for structure-based func-
tion annotation of molecular design.
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[20] J. Konc and D. Janežič, “Probis algorithm for detection of structurally
similar protein binding sites by local structural alignment,” Bioinformat-
ics, vol. 26, no. 9, pp. 1160–1168, 2010.

[21] Y. Ye and A. Godzik, “Multiple flexible structure alignment using partial
order graphs,” Bioinformatics, vol. 21, no. 10, pp. 2362–2369, 2005.

[22] R. Mosca and T. R. Schneider, “Rapido: a web server for the alignment
of protein structures in the presence of conformational changes,” Nucleic
acids research, vol. 36, no. suppl 2, pp. W42–W46, 2008.

1244



[23] F. Birzele, J. E. Gewehr, G. Csaba, and R. Zimmer, “Vorolign—fast
structural alignment using voronoi contacts,” Bioinformatics, vol. 23,
no. 2, pp. e205–e211, 2007.

[24] M. Menke, B. Berger, and L. Cowen, “Matt: local flexibility aids protein
multiple structure alignment,” PLoS computational biology, vol. 4, no. 1,
p. e10, 2008.

[25] J. Vesterstrøm and W. R. Taylor, “Flexible secondary structure based
protein structure comparison applied to the detection of circular permu-
tation,” Journal of Computational Biology, vol. 13, no. 1, pp. 43–63,
2006.

[26] Z. Guo and B. Y. Chen, “Variational bayesian clustering on protein cav-
ity conformations for detecting influential amino acids,” in Proceedings
of the 5th ACM Conference on Bioinformatics, Computational Biology,
and Health Informatics. ACM, 2014, pp. 703–710.

[27] Z. Guo, T. Kuhlengel, S. Stinson, S. Blumenthal, B. Y. Chen, and
S. Bandyopadhyay, “A flexible volumetric comparison of protein cavities
can reveal patterns in ligand binding specificity,” in Proceedings of the
5th ACM Conference on Bioinformatics, Computational Biology, and
Health Informatics. ACM, 2014, pp. 445–454.

[28] E. C. Webb et al., Enzyme nomenclature 1992. Recommendations of the
Nomenclature Committee of the International Union of Biochemistry and
Molecular Biology on the Nomenclature and Classification of Enzymes.
Academic Press, 1992, no. Ed. 6.

[29] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC
Press, 2012.

[30] P. H. Sneath and R. R. Sokal, “Numerical taxonomy,” Nature, vol. 193,
no. 4818, pp. 855–860, 1962.

[31] A. Strehl and J. Ghosh, “Cluster ensembles-a knowledge reuse frame-
work for combining partitionings,” in AAAI/IAAI, 2002, pp. 93–99.

[32] K. Morihara and H. Tsuzuki, “Comparison of the specificities of various
serine proteinases from microorganisms,” Archives of biochemistry and
biophysics, vol. 129, no. 2, pp. 620–634, 1969.
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