
Probabilistic Roadmaps of Trees for Parallel
Computation of Multiple Query Roadmaps

Mert Akinc, Kostas E. Bekris, Brian Y. Chen, Andrew M. Ladd, Erion Plaku, and
Lydia E. Kavraki

Rice University
Department of Computer Science
Houston, TX, 77005
{makinc,bekris,brianyc,aladd,plakue,kavraki}@cs.rice.edu

Abstract. We propose the combination of techniques that solve multiple queries for motion
planning problems with single query planners in a motion planning framework that can be
efficiently parallelized. In multiple query motion planning, a data structure is built during a
preprocessing phase in order to quickly respond to on-line queries. Alternatively, in single
query planning, there is no preprocessing phase and all computations occur during query
resolution. This paper shows how to effectively combine a powerful sample-based method
primarily designed for multiple query planning (the Probabilistic Roadmap Method - PRM)
with sample-based tree methods that were primarily designed for single query planning (such
as Expansive Space Trees, Rapidly Exploring Random Trees, and others). Our planner, which
we call the Probabilistic Roadmap of Trees (PRT), uses a tree algorithm as a subroutine for
PRM. The nodes of the PRM roadmap are now trees. We take advantage of the very powerful
sampling schemes of recent tree planners to populate our roadmaps. The combined sampling
scheme is in the spirit of the non-uniform sampling and refinement techniques employed in
earlier work on PRM. PRT not only achieves a smooth spectrum between multiple query and
single query planning but it combines advantages of both. We present experiments which
show that PRT is capable of solving problems that cannot be addressed efficiently with PRM
or single-query planners. A key advantage of PRT is that it is significantly more decoupled
than PRM and sample-based tree planners. Using this property, we designed and implemented
a parallel version of PRT. Our experiments show that PRT distributes well and can easily
solve high dimensional problems that exhaust resources available to single machines.

1 Introduction

Sample-based planners have been used extensively during the last decade for mul-
tiple query or single query motion planning [6,9,10,12,14,16]. In multiple query
motion planning, a data structure, typically a graph, is built during a preprocess-
ing phase in order to quickly respond to on-line queries [6,10,13]. Alternatively, in
single query planning, there is no preprocessing phase and all computations occur
during query resolution. Such planners typically explore the space using a single
or a bi-directional tree [4,9,14,16]. Recent papers (e.g., [9,14]) contain extensive
references to sample-based motion planners.

The Probabilistic Roadmap Method (PRM) is an efficient and easy to imple-
ment planner primarily designed for multiple query motion planning problems [10].

Akinc, Bekris, Chen, Ladd, Plaku, and Kavraki

Fig. 1: A scene from our benchmarks. In problem “narrow4h2” each robot must go through
two very narrow passages to the outer side of the opposite wall.

PRM operates by sampling “milestones” (configurations) in the free configuration
space and connecting them using a local planner. Although a typical implementa-
tion uses a very simple local planner and uniform pseudo-random sampling, it has
been shown that a variety of alternate approaches ranging in sophistication and cost
can be applied without sacrificing correctness in hopes of obtaining a faster planner
[8]. Indeed, two of the key and most studied issues in the context of PRM are the
power of the local planner and the way sampling is performed. For recent work see
[2,14].

In this paper we replace the local planner of PRM with a powerful single query
sample-based motion planner. We call our planner the Probabilistic Roadmap of
Trees (PRT) [5]. Among the single query planners that have been developed re-
cently, Expansive Space Trees (ESTs) [9] and Rapidly Exploring Random Trees
(RRTs) [14] have been very successful and are used in our work. However, other
sample-based tree planners can be used (e.g., [12]). Our work is important in many
respects. In particular, we obtain a planner which is faster than PRM and more ro-
bust than the tree planners that we used, namely ESTs and RRTs. Moreover, PRT
provides a smooth spectrum between single query and multiple query planning that
combines the advantages of both. Furthermore, we take advantage of recent very ef-
fective sampling methods employed by ESTs and RRTs and provide a new sampling
scheme for PRM. It should be noted that the proposed overall sampling of PRT is in
the spirit of non-uniform sampling and refinement techniques used in earlier work of
PRM. Last but not least, we obtain a planner which is significantly more decoupled
than PRM and tree planners such as ESTs and RRTs and can be parallelized effec-
tively. We designed and implemented a parallel version of PRT. Although many
subroutines of PRM can be run effectively in a highly distributed fashion, efficient
coordination of various processing resources requires significant additional algorith-
mic design. By increasing the power of the local planner and by using more complex
milestones, PRT distributes its computation almost evenly among processors, re-
quires little communication, and allows us to solve very high dimensional problems
and problems that exceed the resources available to the sequential implementation.

PRT for Parallel Computation of Multiple Query Roadmaps

This paper presents experiments with up to 36 degrees-of-freedom (DOF) where
PRT obtains a solution at a fraction of the running time needed by PRM, EST, or
RRT. Figure 1 shows an example. We were able to obtain nearly linear speedup for
parallel PRT.

Our long term goal is to study high-dimensional problems [12] such as those
arising in planning with flexible objects [13], reconfigurable robots [17], complex
planning instances [16], and computational biology search problems [1,3]. Such
problems test the limits of current planner implementations. One important avenue
of untapped potential is in making effective use of parallelism in motion planning.
Our work describes a robust planner, which provides a smooth transition from single
query to multiple query planners and can be used for problems that are beyond the
capabilities of current planners.

2 The PRT Planner

In this section, we describe the basic operation of the PRT algorithm [5]. PRT con-
structs a roadmap aiming at capturing the connectivity of the free configuration
space, Cfree. The nodes of the roadmap are not single configurations but trees, which
are referred to as milestones. Connections between milestones are computed by us-
ing sample-based tree planners. The tree planners that we have used are RRTs [14]
and ESTs [9]. The pseudocode for PRT is given in Algorithm 1.

A roadmap is an undirected graph G = (V, E) over a finite set of configurations
V ⊂ Cfree and each edge (u, v) ∈ E represents a local path from u to v. The
undirected graph GT = (VT , ET) is an induced subgraph of the roadmap which
is defined by partitioning G into a set of subgraphs T1, . . . , TK which are trees
and contracting them into the vertices of GT . In other words, VT = {T1, . . . , TK}
and (Ti, Tj) ∈ ET if there exists vi ∈ Ti and vj ∈ Tj such that vi and vj have
been connected by a local path. As shown in Algorithm 1, the roadmap construction
proceeds in three stages: milestone computation (lines 1–6), edge selection (lines
7–11), and edge computation (lines 12–16).

In PRT, the trees Ti or milestones of the roadmap GT are computed by sampling
their roots uniformly at random in Cfree and then growing the trees using a sample-
based tree planner which has as its goal expansion and exploration. We have found
RRTs [14] and ESTs [9] to be suitable to PRT, but other sample-based tree planners
(e.g., [12]) can be used as well.

The selection of candidate edges is governed by two parameters nclose and
nrandom. Each milestone Ti defines a representative configuration qi which is com-
puted as an aggregate of the configurations in Ti. Our implementation uses the cen-
troid. If Q = {q1, . . . , qK} is the set of centroids, then for each i, we determine
nclose closest and nrandom configurations qj to qi such that i 6= j and set each
(Ti, Tj) as a candidate edge. The notion of closeness is determined by the metric d.
The graph of candidate edges is denoted GC = (VT , EC).

The objective of our planner is to determine the existence of a path. To this
end, we avoid computing a candidate edge unless placing that edge in ET would

Akinc, Bekris, Chen, Ladd, Plaku, and Kavraki

Algorithm 1: PRT

1: VT ← ∅, ET ← ∅, Q← ∅, EC ← ∅.
2: while |VT | < K do
3: T ← build tree with root a randomly chosen free configuration.
4: VT ← VT ∪ {T}.
5: Q← Q ∪ {qT }, where qT is the representative of T .
6: end while
7: for all T ∈ VT do
8: Sclose ← a set of nclose closest q ∈ Q to qT .
9: Srandom ← a set of nrandom random q ∈ Q to qT .

10: EC ← EC ∪ {(T, T ′) : qT ′ ∈ Sclose ∪ Srandom}.
11: end for
12: for all (T1, T2) ∈ EC do
13: if not component(G, T1, T2) and tree-planner(T1, T2) then
14: ET ← ET ∪ {(T1, T2)}.
15: end if
16: end for

decrease the number of connected components in GT . Then, for each candidate
edge (Ti, Tj), a number of close pairs of configurations of Ti and Tj are quickly
checked with a fast deterministic local planner, i.e., a straight-line planner. If any
local path is found, the edge (Ti, Tj) is added to ET and no further computation
takes place. Otherwise, a more complex tree-connection algorithm is executed, e.g.,
bi-directional RRT, EST, or other similar algorithms. During the tree connection
additional configurations are typically added to the trees Ti and Tj .

3 Parallel Planning

In this section, we describe the design and implementation of a parallel version
of PRT. Before relating the details, we discuss data and control flow dependency
in each stage of the PRT algorithm. During milestone computation, there are no
dependencies. Each single milestone can be processed in parallel. Additional par-
allelization is stymied by the sampling scheme we use to generate milestones and
would be considerably more involved. Random edge selection can be done in par-
allel; however, the distribution of the closest edge selection is more difficult since
it requires the construction of a search structure that depends on the representatives
of the milestones. Finally, edge computations are not entirely independent of each-
other. Since milestones can change after an edge computation and since computing
an edge requires direct knowledge of both milestones, the edge computations cannot
be efficiently parallelized without some effort. Furthermore, computation pruning
due to component analysis entails control flow dependencies throughout the com-
putation of the edges. Our experiments with the sequential implementation revealed
that the bulk of the run time occurs in milestone and edge computation.

PRT for Parallel Computation of Multiple Query Roadmaps

Algorithm 3: Hierarchical Operation of Parallel PRT

Scheduler Processor Pi

1: Synchronize with processors.
2: COMPUTE MILESTONES.
3: COMPUTE EDGES.

PARALLEL

PRT
1: Wait for synchronization.
2: COMPUTE MILESTONES.
3: COMPUTE EDGES.

1: Q← ∅.
2: i← 0.
3: while i < K do
4: Wait for some Trep to arrive.
5: Q← Q ∪ {Trep}.
6: i← i + 1.
7: end while
8: Broadcast finish to processors.

COMPUTE

MILESTONES

1: TPi
← ∅.

2: Post request for message from scheduler.
3: while finish has not been received do
4: T ← generate a milestone.
5: TPi

← TPi
∪ {T}.

6: Send Trep to the scheduler.
7: end while

1: GC = (VT , EC)← graph of candidate edges.
2: LPi

= (Vi, Ei)← empty graph, for all Pi.
3: W = {P1, . . . , Pn}.
4: while unprocessed edges remain in GC do
5: COMPUTE PARTITIONS.
6: for i: Pi ∈W and |Ei| > 0 do
7: e← randomly selected from Ei.
8: Send e to Pi.
9: Ei ← Ei − {e}.

10: W ←W − {Pi}.
11: end for
12: if computed edges have arrived then
13: update connected components.
14: remove from GC and LPi

’s all the un-
necessary edges.

15: end if
16: end while
17: Broadcast finish to processors.

COMPUTE

EDGES

1: Post request for message from scheduler.
2: while finish has not been received do
3: while no message has been received do
4: Complete a pending send operation.
5: Complete a pending receive operation.
6: end while
7: if partition message has been received then
8: COMPUTE PARTITIONS.
9: end if

10: if e = (v1, v2) has been received then
11: Complete pending receive operations (if

any) on Tv1
and Tv2

.
12: Try to connect Tv1

and Tv2
.

13: Send result to scheduler.
14: end if
15: Post request for message from scheduler.
16: end while

1: S = {Pi : Ei = ∅}.
2: Compute G′

C = (VS, ES), where
3: VS =

S

P∈S
VP , and

4: ES = {(v1, v2) ∈ E : v1, v2 ∈ VS}.
5: Partition G′

C into LPi
’s for Pi ∈ S.

6: for i: Pi ∈ S do
7: mapv ← Pi for all v ∈ VPi

.
8: end for
9: Send map to Pi for all Pi ∈ S.

COMPUTE

PARTITIONS

1: Complete all pending send operations.
2: Complete all pending receive operations.
3: Receive map from server.
4: for i = 1 to nr ms do
5: if Ti ∈ TPi

and Pi 6= map
i

then
6: Post request to send Ti to map

i
.

7: end if
8: if Ti 6∈ TPi

and Pi = map
i

then
9: Post request to receive Ti from map

i
.

10: end if
11: end for

Akinc, Bekris, Chen, Ladd, Plaku, and Kavraki

We have chosen a scheduler–processor architecture for our parallel implemen-
tation. The processors are responsible for milestone and edge computations. The
scheduler arbitrates milestone ownership, handles edge selection, assigns edge can-
didates to processors, and manages the connected component data structure. Parallel
PRT is described in Algorithm 2.

During the milestone computation stage, each processor Pi computes a set TPi

of milestones and sends to the scheduler their representatives until a predefined total
number K of milestones have been computed. We call the subgraph of GC induced
by TPi

, the local graph, LPi
= (TPi

, EPi
). The edges of LPi

are those which pro-
cessor Pi can compute without communicating with other processors. During the
edge computation, for each i, the scheduler selects an edge ei uniformly at random
from LPi

, deletes ei from GC and Li, and assigns the computation of ei to pro-
cessor Pi. If the edge connection is successful, then ei is added to GT . Then all
edges (Ti, Tj) ∈ GC such that Ti and Tj lie in the same connected component of
GT are deleted from GC as they will not change the connected component struc-
ture of GT . The above steps are repeated until there are no more edges in GC . At
each step, certain LPi

’s may be empty due to edge deletions and cause some of the
processors, say P1, . . . , PN , to become idle. Our implementation avoids this prob-
lem by repartitioning the milestones owned by these processors. Given the graph
GC , we formulate the problem of finding “good” graph partitions as an optimiza-
tion problem: determine a partition TP1

, . . . , TPN
of the milestones that maximizes

∑N

i=1
|EC ∩ EPi

|. This is an instance of the graph partition into N parts problem
which is known to be NP-hard for N ≥ 2. We partition the graph using the classical
Kernighan-Lin algorithm [11] which is a greedy local optimization approach. Once
the partitions are computed, they must be assigned to the processors in such a way
that the number of milestones that need to be exchanged is minimized. This is an
instance of the maximum bipartite matching problem and can be solved efficiently
with the Hungarian algorithm [15].

4 Experiments and Results

The experiments in this paper were chosen for two purposes: to test PRT on prob-
lems that cannot be efficiently solved by PRM and single-query planners and to eval-
uate parallel PRT performance compared to the sequential implementation.

Benchmarks We ran our experiments on a set of benchmarks chosen to vary in type
and in difficulty. Problem “narrow4h2” was a similar problem with four parts and
two walls with two disjoint small square holes (see Figure 1). Problem “narrow6”
is similar except it has four non-convex parts and a single wall with a small square
hole in it. Problems “fence2” and “fence4” consisted of two and four non-convex
parts, respectively, in a box split by a regular fence-like wall. Problem “random4”
and “random-chain” consisted of four non-convex parts and an 12-DOF articulated
arm represented as an open kinematic chain, respectively, in a box filled with ran-
dom objects. Problem “puma-maze” consisted of a 6R articulated limb similar to a
Puma560 surrounded by several vertical bars (Fig 1 and 2).

PRT for Parallel Computation of Multiple Query Roadmaps

Fig. 2: Scenes from our benchmarks. From left to right, the depicted scenes are “puma box”,
“random4”, and “fence2”.

Hardware and Software Setup The implementation was carried out in Ansi C/C++
using the GNU compilers and libraries. Additionally, we made use of the SWIFT++
collision detection library [7], the Atlas2 implementation of LAPACK for nu-
merical routines, the MPICH implementation of MPI standard for communication
and OpenGL for visualization. The processing nodes consisted of eleven dual AMD
Athlon 1900MPs with one gigabyte of memory each. The scheduler node was
an AMD Athlon 1800XP with 500 megabytes of memory. The network topol-
ogy was switched 100Mbps for the processing nodes with a 1Gbps backbone to the
scheduler node. All of the nodes ran Debian Linux with kernel 2.4.21.

Comparison of PRT with Other Planners By setting parameters in different ways
our implementation of PRT can be made into PRM, bi-directional RRT, or EST. We
tested their performance on various difficult benchmarks. Our experiments showed
that PRM, RRT, or EST could not solve the “fence2” or “fence4” problems even
after 8 hours of computation, while PRT was able to solve these problems in 868.18
and 3307.14 seconds on average, respectively. We also tested these algorithms on
“narrow6” and “narrow4h2” benchmarks. PRM was not able to solve any of these
problems after several hours of computation, and for the cost of two or three bi-
directional RRT or EST queries, we can preprocess the space with PRT to obtain a
structure that answers queries more robustly and more quickly than these sample-
based tree planners.

Measuring Parallel Efficiency To measure the parallel efficiency of PRT, we ran
on various benchmarks the parallel code with 1, 2, 4, 8, 16 and 22 processors -
the maximum number of processors we had available. Run times are averaged over
several runs. In Table 2, we report results for PRT with RRT and EST as its local
planners. In each case, we report time with one and twenty-two processors (time[1]
and time[22]). Also, for the parallel runs, we report fraction of time spent in mile-
stone computation (mc), edge computation, (ec), communication (comm), waiting
(idle), and parallel efficiency (eff), which is calculated by ts/(tf · N), where ts is
sequential time, tp is parallel time, and N is the number of processors.

Akinc, Bekris, Chen, Ladd, Plaku, and Kavraki

Table 1: Parallel PRT versus Sequential PRT.

PRT with bi-directional RRT as the local planner.
benchmark time[1](s) time[22](s) mc ec comm idle eff.
fence2 868.18 42.82 0.4108 0.4539 0.0965 0.0388 0.92
fence4 3307.40 151.84 0.4008 0.5551 0.0203 0.0238 0.99
narrow4h2 1666.95 93.21 0.3902 0.5028 0.0618 0.0452 0.81
narrow6 3131.71 173.41 0.4500 0.4509 0.0692 0.0299 0.82
random4 2242.39 125.56 0.3036 0.6412 0.0391 0.0161 0.81
random-chain 10050.48 512.28 0.2330 0.7219 0.0221 0.0230 0.89
puma-maze 8097.04 327.32 0.0248 0.8760 0.0844 0.0148 1.12

PRT with bi-directional EST as the local planner.
benchmark time[1](s) time[22](s) mc ec comm idle eff.
fence2 872.78 41.54 0.2776 0.6311 0.0657 0.0256 0.95
fence4 3158.51 149.23 0.2365 0.7040 0.0449 0.0341 0.96
narrow4h2 1290.25 79.51 0.2715 0.5813 0.0936 0.0536 0.74
narrow6 2935.10 176.15 0.2605 0.6533 0.0583 0.0279 0.76
random4 1577.97 107.83 0.1317 0.7897 0.0488 0.0298 0.67
random-chain 10691.09 551.93 0.2186 0.7429 0.0155 0.0230 0.88
puma-maze 10207.89 414.10 0.0206 0.8939 0.0764 0.0091 1.12

Fig. 3: Parallel PRT Timings

In Figure 2, we present two plots of parallel PRT behavior. The plot on the
left is for “fence2” and indicates the speedup obtained for different numbers of
processors. The plot on the right is for “fence4” and presents logged data showing
how processing nodes spend their time. These plots are characteristic of the behavior
of the algorithm on the other benchmarks as well.

The overall efficiency of the parallel PRT is reasonably high on average 88.8%
and in all our experiments in the range 0.67 − 0.99. We also had a benchmark
were superlinear, 1.12, speedup was obtained. Also, the speedup graph in Figure 2
is almost linear which suggests that the efficiency constant is not decaying with
the number of processors. However, Algorithm 2 as presented places a load on the
scheduler which is proportional to the number of processing nodes. As the number
of processors increases, this will eventually become a problem. A possible solution

PRT for Parallel Computation of Multiple Query Roadmaps

to this problem might be to increase the number of schedulers or to have a hierarchy
of schedulers.

Nevertheless, there are several advantages of the parallel PRT algorithm. It is
fairly simple and makes insignificant use of any blocking communication calls.
Milestone and edge computations are also nearly fully distributed and storage is
also distributed evenly.

Virtually all of the communication overhead occurs during the edge computa-
tions. This phase of the computation would be the most reasonable place to attempt
to make further improvements. The graph partition scheme we used in our imple-
mentation optimized the sum of the number edges in the LPi

’s. A better quantity to
optimize would be to maximize the minimum number of edges over all LPi

’s. This
would favor better load balancing.

5 Discussion

We observed in our experiments that PRT is a powerful multiple query planner
which combines advantages of traditional sampling-based single query and multi-
ple query planners. By varying parameters, a smooth spectrum between single-query
planners and PRM can be obtained from our PRT implementation. The sampling
done in PRT has common attributes with earlier refinement and non-uniform sam-
pling techniques used in PRM planning [10]. We believe that the efficiency of the
PRT derives in part from offering the sample-based tree planner easier queries as
they come from the closest neighbor clustering and the fact that the global sampling
property of PRM is retained so that sample-based expansion heuristics, such as RRT
and EST do not get trapped.

We observed that PRT exhibits similar behavior no matter whether bi-directional
RRT or EST is being used as its local planner. Both RRTs and ESTs are well-known
to be extremely sensitive to the interplay between the metric and the success of the
planner[14]. We also made this observation in our implementation. In environments
with thin obstacles, in particular the fence environment, RRT and EST tended to
produce many configurations that were stuck near obstacles. In these environments
RRT and EST are forced to do a similar amount of work to the PRM or PRT prepro-
cessing phases to answer a single query. The efficiency of PRT is not limited to the
specific single query planners that we used. In fact, other sample-based tree plan-
ners with good coverage properties can be substituted. Furthermore, we suggested a
parallel implementation of PRT and obtained an efficient division of labor allowing
PRT to tackle problems of unprecedented complexity.

We plan to scale our PRT implementation to a cluster with several hundred
nodes. To do this, it is likely that some decentralization of the scheduling computa-
tions will become necessary. Our goal is to apply our work to increasingly hard plan-
ning problems dealing with flexible robots [13], reconfigurable robots [17], complex
planning instances [16], and computational biology applications [3,1].

Acknowledgement Work on this paper by M. Akinc, K. Bekris, B. Chen, A. Ladd, E. Plaku,
and L. Kavraki has been partially supported by NSF 9702288, NSF 0308237, NSF 0205671,

Akinc, Bekris, Chen, Ladd, Plaku, and Kavraki

an REU supplement, a Whitaker Grant, and a Sloan Fellowship to L. Kavraki. A. Ladd is also
partially supported by an FCAR grant.

References

1. N. Amato, K. Dill, and G. Song. Using motion planning to map protein folding land-
scapes and analyze folding kinetics of known native structures. In RECOMB, pages
2–11, April 2002.

2. N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. Choosing good
distance metrics and local planners for probabilistic roadmap methods. TRA, pages 442–
447, 2000.

3. M. Apaydin, D. Brutlag, C. Guestrin, D. Hsu, and J. Latombe. Stochastic roadmap
simulation: An efficient representation and algorithm for analyzing molecular motion.
In RECOMB, April 2002.

4. J. Barraquand and J. Latombe. Robot motion planning: A distributed representation
approach. IJRR, 10:628–649, 1991.

5. K. Bekris, B. Chen, A. Ladd, E. Plaku, and L. Kavraki. Multiple query motion plan-
ning using single query primitives. To appear at IROS 2003 TR03-422, Rice University,
Houston, TX, July 2003.

6. P. Bessiere, E. Mazer, and J.-M. Ahuactzin. Planning in continuous space with forbidden
regions: The ariadne’s clew algorithm. In K. G. et al, editor, Algorithmic Foundations of
Robotics, pages 39–47. A.K. Peters, Wellsley MA, 1995.

7. S. Ehmann and M. Lin. Accurate and fast proximity queries between polyhedra using
surface decomposition. Computer Graphics Forum (Proc. of Eurographics), 2001.

8. R. Geraerts and M. Overmars. A comparitive study of probabilistic roadmap planners.
In Proc. WAFR, 2002.

9. D. Hsu, R. Kindel, J. Latombe, and S. Rock. Randomized kinodynamic motion planning
with moving obstacles. IJRR, 2001.

10. L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. TRA, 12(4):566–580, June
1996.

11. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell
System Technology Journal, 49:291–307, 1970.

12. A. Ladd and L. Kavraki. Motion planning for knot untangling. In WAFR, December
2002.

13. F. Lamiraux and L. Kavraki. Planning paths for elastic objects under manipulation con-
straints. IJRR, 20(3):188–208, 2001.

14. S. LaValle and J. Kuffner. Rapidly exploring random trees: Progress and prospects. In
B. Donald, K. Lynch, and D.Rus, editors, WAFR, pages 293–308. A.K. Peters, 2001.

15. C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity. Prentice Hall, 1982.

16. G. Sanchéz and J.-C. Latombe. On delaying collision checking in prm planning - appli-
cation to multi-robot coordination. IJRR, 21(1):5–16, 2002.

17. M. Yim. Locomotion with a Unit-Modular Reconfigurable Robot. PhD thesis, Stanford
Univ., December 1994. Stanford Technical Report STAN-CS-94-1536.

