Eiffel
Like the tower, emphasizing elegant French design; developed by Bertrand Meyer

The basic structure of object‑oriented languages is the class
· a class is both 1) a module and 2) a type
· as a module: an interface (set of available services) & an implementation (information hiding)

· as a type: pattern for declaring variables or creating instances

Eiffel emphasizes static type checking, performed by compiler

· Smalltalk and OO dialects in Lisp perform all type checking at runtime

· Objective‑C as an added feature allows static typing, but not id
· Cox emphasizes that you want factory objects available at runtime

· C++ is statically typed, but preserves all the holes allowed by C--what holes?
· Macros, unions, type casting, etc

Eiffel’s design tries to extend the heritage of Pascal, Modula, Ada

· Goal is that the compiler should promote more reliable code

· Objects are run‑time entities created during system execution

· Classes are static descriptions of a set of possible objects

· Compiler sees only classes; run‑time system sees only objects

What are the some tradeoffs of a strongly, statically typed language like Eiffel

 vs. a dynamically typed ("typeless") language like Smalltalk?

· security vs. flexibility

· knowledge about classes at run-time (metaclasses)--useful for OODB (C++ adds RTTI)

Routines
Suppose I have an object, Person, with provides a service, age
In Pascal or C or Fortran, Person could provide this service in 2 ways:

· As data (in a field of a record): John.age
· As computation (result of a function): age(John)
· What's the problem here? ‑‑Different syntax for same service

Here's another one of Bertrand Meyer’s principles:

a language should support services in a uniform way

regardless of whether service is implemented through storage or computation

e.g., john.age returns the feature age of object john

‑‑age could either be stored or computed by a function

(Meyer is also implicitly crowing at Bjarne Stroustrup here,

because C++ does not support principle of uniform reference

even if a member function has no parameters, you must use () to denote function)

Two kinds of routines in Eiffel (like Pascal):

a) procedures (effect instance, no result)

b) functions (result, no side effects)

· Eiffel is somewhat purist about insisting that functions have no side effects

· e.g., input.readint is a procedure, not a function, because it has a side effect on input
(input is an instance of class STD_FILE)

since input.readint is a procedure, it does not return an integer;

you need to use a function to actually get the value that readint just read

Here's how to read an integer into a variable:

local integer num; ‑‑declare a variable of type integer

do ‑‑begin executable block

input.readint; ‑‑procedure has a side effect

num := input.lastint; ‑‑function returns a value

end
Comments? What do you think of this design?

Clients and Suppliers
In early‑70's, Wulf and Shaw published an article: "Global Variable Considered Harmful"

Does anyone recognize the allusion to another article in this title? Gotos Considered Harmful

Just as gotos lead to spaghetti in flow of control, global variables lead to spaghetti data

Structure principle: dynamic behavior of program should correspond to static structure

Why is structure principle so desirable? In other words, WYSIWG!

Wulf and Shaw identify four problems with global variables in large software systems:

1) Side effects ‑ changing a nonlocal variable in a subprogram

· E.g., procedure max begin Count:=Count+1; end
· Suppose you modified 'count' elsewhere‑‑what could go wrong later?
· How can we eliminate side effects in a Pascal program? But... lots of parameters!

· Block structure is too loose: three remaining are access problems

2) Indiscriminate access ‑ cannot prevent access to a non-local variable

3) Vulnerability ‑ access is vulnerable to intervening declarations

4) Overlapping definitions ‑ can't control shared access: to share anything, share everything!

From global variables to access control
GOTOs are associated with FORTRAN; problems fixed by control structures of Algol & Pascal

Global Variables assocated with block structure of Algol & Pascal;

fixed by research on modularity and abstract data types; Modula, Ada

Eiffel and C++ each provide rich mechanism for controlling access to names

class POINT

‑‑name of class (in file)

 feature

‑‑implementation section

x,y:REAL;
‑‑attributes (as storage)

translate(a,b:REAL) is
‑‑routine (procedure)

 do ‑‑Move by a horizontally, by b vertically

x:=x+a; y:=y+b
‑‑access class features

 end; ‑‑translate

distance(p:POINT):REAL is
‑‑routine (function)

 do ‑‑Distance to p

Result := sqrt((x‑p.x) ^ 2 + (y‑p.y^2) ‑‑functon returns Result
 end;
end
‑‑ class POINT

feature section describe both interface and implementation

implementation either as storage or computation

· Attributes as storage: x,y:REAL;

· attributes are always visible to routines defined in class (and its heirs)

· Eiffel supports these types: INTEGER,REAL,CHARACTER, as well as classes

· remember, classes are types, so this is legal: p:POINT;

· STRING and ARRAY are predefined classes

· included in Eiffel's kernel library, with exported routines

· language knows that they have special semantics

· syntax recognizes STRINGs: "aString"‑‑a manifest constant
· attributes of new objects get a default initializition:

· INTEGER=0,REAL=0.0,CHARACTER=null,classes=VOID

· Routines as computation:

translate(a,b:REAL) is ‑‑ a procedure (no result)

distance(p:POINT):REAL is ‑‑ a function (returns REAL)

do..end ‑‑executable body of routine

result ‑‑ keyword in Eiffel, assign function result here

Suppliers and Clients in Eiffel

class GRAPHICS
‑‑Another class, which will be a client of supplier, POINT

 feature
p1,p2:POINT; ‑‑Thus, GRAPHICS is a client of POINT

r,s:REAL;

 some_routine is

do
!!p1; !!p2;

‑‑!! denotes creation, here using default initialization

p1.translate(4.0,‑2.0); ‑‑Client has access to features

r := p1.distance(p2); ‑‑This function returns a REAL

p2 := p1;

‑‑Copies a reference

 end ‑‑ some_routine

end ‑‑class GRAPHICS

Client relationship: a client class uses a supplier class (by declaration): p1,p2:POINT;

· Client can reference all of supplier's exported features: e.g., p1.translate, p1.x, etc.

But suppose a supplier wants to restrict access to certain attributes?

One can restrict access to specific clients: feature {A,B} --only these classes have access

default is equivalent to feature {ANY}

 If you don't want clients to have access to features, say feature {} or feature {NONE}
Suppose you want to let any classes access feature X, but only let classes A,B access feature Y?

Use multiple features sections: feature x:INTEGER; feature {A,B} y:REAL;

How does this design support information hiding?

How does fix the four access problems identified by Wulf & Shaw:

side effects? es side effects, indiscriminate access? vulnerability? overlapping definitions?

Creation (!!) allocates and initializes an instance of a class

· Note that declaring p1,p2:POINT is for the compiler only (memory layout, type-checking)

Objects and Reference
An object is a made up of zero or more fields

implemented as a C struct

each field is either an expanded object or a reference to an object

an expanded object is the value of an object, e.g., the data in its fields

a reference is a pointer (but Eiffel does not let a programmer directly manipulate pointers)

| item |

| next -|-------->| |

-------- ------

The field item is an expanded object; the field next is a reference to another object

 Everything is an object--even basic types like INTEGER or CHARACTER are Eiffel classes

How does this representation model compare with C++ and Java?

vs. the hybrid approach of C++ or Objective-C, which includes the basic types of C, as is

Unlike Smalltalk, however, Eiffel retains the efficiency of basic type,

by letting the compiler translates objects of basic classes into underlying C types

that is, INTEGER, REAL, CHARARCTER, etc., are expanded values by default

Objects of non-basic types, on the other hand, are references by default

x:REAL; y:POINT; --x is an expanded value, initially zero, y is a reference, initially Void
A reference is either attached to another object, or Void

Void is an object, essentially the NIL object, defined in class ANY
Reference variables or fields start out Void, until they are created
y:POINT; !!y; --y is Void until it is created by !!y

By the way, guess what implicitly happens in this case:
y:POINT; !!y; y:=Void;
What happens to the old value of y?
Assigning Void does not dispose the old value of y--no memory deallocation here

· Instead, Eiffel supports automatic garbage collection
· Why is automatic garbage collection desirable? Why is it controversial?

This is the subject of many flame wars on COMP.OBJECT, etc.!

· Meyer and others insist that OOP without GC is impossible
Assertions: Eiffel's language of ADT axioms
enter (v : G; i : INTEGER) is

require good_key : valid_index (i)

do
put (v, i);

ensure inserted : item (i).is_equal (v)

end; ‑‑ enter

valid_index (i : INTEGER) : BOOLEAN is ‑‑ Is 'i' within the bounds of the array ?

do

Result := i >= lower and then i <= upper;

end; ‑‑ valid_index

Here, Eiffel seeks to support another of Meyer’s desiderata of software engineering:

· reliable, correct, robust software

· corollary: write software so you know why it is correct

· by specifying formal semantics of classes assertions as part of the language

Assertions are formal expressions of what an element of code must do

· emphasis on what it does, now how it does it, described independently of the code

· a notation with full power of first-order predicate calculus would be desirable, but impractical

· Eiffel settles for boolean logic plus a few useful primitives

· Eiffel is unique in this respect

· EC++ incorporates alot of Eiffel's ideas in a C++ preprocessor

Four kinds of assertions (recall ADTs):

1) preconditions: require expressions‑‑at beginning of routines (discuss example above)

2) postconditions: ensure expressions‑‑at end of routines (also discuss example above)

3) ADT axioms: invariant expressions‑‑at end of class

invariant

consistent_size : count = upper ‑ lower + 1;

non_negative_count : count >= 0

end ‑‑ class ARRAY [G]

4) Loop invariants & variants (see p. 250-151 in Thomas&Weedon) ensure correctness of loops

invariants are esp. useful for getting boundary conditions of loops right (“off by one”)

variant must be >= 0 — ensures progress toward goal (on p. 251, k approaches n)

Assertions enforce programming by contract‑‑a metaphor from good business practice:

· analogy the relationship between a class and its clients is a formal agreement,

expressing each party's rights and obligations:

Obligations

Benefits

Client

Only insert to non‑full Table

X associated with key in Table

Contractor
X must be retrievable by key
Won't worry about full table

· contract puts limits on each party's responsibilities (obligations)

· contract also specifies each party's rights (benefits)

Assertions enforce programming by contract

Assertions represent this contract:

Where do you see the idea of a contract in class ARRAY?
· require clause obligates client to avoid inserting to full table

· Note that you supplier of Table doesn't worry do error‑handling:

· Inheritance and dynamic binding extends the metaphor: subcontracting
Another example: sqrt

sqrt(x:REAL):REAL

require --require what?

x >= 0; ‑‑Can't take sqrt of negative number

do...end;

What are Eiffel assertions good for?
· Writing correct software and knowing why

· Documentation (can be extracted, automatically)

· Debugging: assertions trigger run‑time errors

· Exception handling: assertions trigger disciplined exceptions

Assertions and Exceptions

Eiffel system uses assertions to trigger run‑time errors

· compiler will let you turn assertions on at three levels

NO_ASSERTION_CHECK: ignore assertion errors (fastest, least safe)

PRECONDITIONS: check for routine precondition (default)

ALL_ASSERTIONS: check postconditions and invariants, too (most expensive)

You can prefix assertions with tags. e.g.,

If assertion fails, run‑time system will print the tag

Exceptions in Eiffel are triggered by failures:

· violated assertion (if monitored): failure to perform a contract

· precondition failures are responsibility of client‑‑why?
· postcondition and invariant failures are responsibility of supplier‑‑why?
· access to non‑existent object (x.f where x.f is VOID)

· hardware signal (overflow, BREAK, out of memory, etc.)

· programmer‑raised exception: see class EXCEPTIONS in kernel library

Rescue and retry

Two ways to deal with exceptions: Failure (organized panic) & Resumption

· Eiffel system reports failure by displaying exception history table
Two new clauses for exception‑handling: rescue and retry
· rescue clause executed when exception occurs during execution of a routine

· retry restarts a routine (from a rescue clause)

An example:

tryit is ‑‑attempt method1, or if unsuccessful, method2

local tried:BOOLEAN

do
if tried then

method1 ‑‑method1 might fail

else method2 ‑‑try method2 instead

end;

rescue ‑‑enter here if method2 fails

tried := true; ‑‑change state so to try method2

retry ‑‑restart body of tryit

end ‑‑tryit

An Eiffel routine must either succeed (meet its contract) or fail

· A routine succeeds iff its body executes to completion

· after executing rescue clause a routine is said to have failed
· but rescue may try to patch things, bringing object to a stable state

· note: rescue does not have to meet routine's contract (postcondition)

Assertions (including postconditions) and exceptions together:

pop is
require items >= 0;

do — body

ensure items = old items ‑ 1;

rescue items := 0; ‑‑restore to stable state (if ensure fails)

end; ‑‑ pop

· rescue clause runs if ensure clause fails

· in this case, pop has failed, but client can attempt a rescue

Class EXCEPTIONS (in lib/kernel/exceps.e) provides more fine‑grained control:

· can test attribute EXCEPTION for various kinds of defined exceptions, e.g.:

sigseg for segmentation violation, sigint for UNIX interrupt,
precondition for violated precondition: if exception = precondition then...

raise(ex:STRING) routine explicitly provokes an exception

is_developer_exception(ex:STRING):BOOLEAN ‑‑ test for this exception

Meyer is especially proud of his disciplined exception‑handling scheme

· Ada's raise and (C++’s throw) exception cancels current routine & returns to caller

· But there's no guarantee that caller will do: could ignore exception

· pass the buck? is Ada’s raise just a glorified nonlocal goto? a loophole for incorrect software?

· In Eiffel, a routine must either succeed in meeting contract, or fail

· could possibly succeed though retry; discourages pretending success by ignoring an exception

6

