C++ idioms
Now that you've learned C++, how do we use it well

A highly recommended book:

Scott Meyers Effective C++: 50 Specific Ways to Improve your Programs and Designs,

Second Edition, Addison-Wesley, 1997. (Also More Effective C++: 35 New Ways....)

Scott Meyers discusses 50 "items"--good principles, heuristics or idioms, with good explanations

1 Use const and inline instead of #define.

#define RATIO 1.653

/*A C macro*/

const float RATIO = 1.653;

//Why is a C++ const better?
//better compiler error messages, easier symbolic debugging

//obeys scope rules

#define max(a,b) ((a) > (b) ? (a) : (b)) /* A parameterized C macro */

int a=1,b=0; //Let's see what can wrong in a parameterized C macro...

max(a++,b); //a is incremented twice--why? (in condition and result)

max(a++,b+10) //b is incremented just once

max(a,"hello") //compares ints and ptrs (no type checking)

inline int max(int a,int b) { return a > b ? a : b; } //both efficient and type safe

//Use a template to generate a family of type safe functions:

template<class T> inline T& max(T& a, T& b) { return a > b ? a : b; }

//then let the compiler instantiate the template with various types:

max(a++,b);
//compiler generates max with int arguments -- and a is incremented once

max(RATIO,b); //compiler generates max with float arguments

In item 1, Meyers used to have a forward reference to item 32. Indeed, his book reads like hypertext!

But now item 32 has been rewritten (due to changes in C++) and folded into item 1

32 Use enums for integral class constants

Suppose you would like to encapsulate a const within a class

class X {

static const BUFSIZE=100; //error with older compilers, but now acceptable

char buffer[BUFSIZE];

};

//couldn=t initialize static members at the point of its declaration, but you could do this:

const double X::BUFSIZE=100;
//goes in class implementation file

//BTW, why did Meyers want to define this a static const instead of just const?
Another solution is to use an enum, which can be given a value at the point of declaration:

enum { BUFSIZE=100 } ;

char buffer[BUFSIZE];

enum hack should not be necessary for compilers implemented since 1995

33 Use inlining judiciously --why?
excessive inlines can cause code bloat, also hard to debug (why?)

Meyers recommend you limit inlining to truly trivial functions (set and get functions)

Even empty constructors can involve lots of hidden code inserted by compiler (pp. 140-1)

the honored 80-20 rule: typical program spends 80% of its time performing 20% of its code

--so inline and otherwise tweak that crucial 20%, later on

Constructors and Destructors
12 Prefer initialization to assignment in constructors

class NamedData {

string name;

void *data;

 public:

NamedData(const string& initName, void *dataPtr);

};

 Two ways to implement this constructor, one using assignment

NamedData::NamedData(const string& initName,void *dataPtr)

{ name = initName; data=dataPtr; }

 or using member initialization:

NamedData::NamedData(const string& initName,void *dataPtr) :

 name(initName),data(dataPtr) { }

 But initialization is often more efficient:

because initialization always runs before the body of a constructor

if there's no member initialization, then the default constructor runs for that member

therefore, the assignment version runs default string constructor for name,

then runs string operator= for name in the constructor body

the member initialization version just runs the copy string constructor for name

 Sometimes member initialization is required. E.g., suppose we make a member const:

const string name;
//this object=s name should never change

void* const data;
//this data should never change

const members can only be initialized, never assigned

BTW, you should use initialization syntax to initialize the base class part of a derived class:

class Point {

int xcoord,ycoord;

 public:

Point(int x,int y) {xcoord=x; ycoord=x;}

};

class Fruit {

Point center;

 public:

Fruit(int x, int y) : center(x,y) {} //initialize member using constructor

};

class Apple {

 public:

Apple(int x, int y) : Fruit(x,y) {} //initialize base part using constructor

void main() {

Point p(100,200);

Fruit f(200,300);

}

If you don=t use initialization syntax, the compiler will complain about missing default constructors

because it must have a constructor to allocate space for the member Point

Using initialization syntax explicitly obviates any need for default constructors here

13 Declare and initialize members in the same order

class Array {

int *data;

unsigned size;

int lb,up;

public: Array(int lwb,upb) :

size(upb - lwb+1),lb(lwb),ub(upb),data(new int[size]) { }

};

Guess what: amount of memory allocated by new is undefined!

C++ initializes members in the order that they appear

Since data appears before size, its initialization runs first, before size has a value

Why? So that destructors don't need to keep track of initialization order.

Uniform order makes it easier for compiler to generate consistent destructors

14 Make destructors in base classes virtual

class Target {

static int numTargets; //object counter

 public:

Target() { numTargets++; }

~Target() { numTargets--; }

};

int Target::numTargets=0; //define & initialize class static outside the class

class Tank: public Target {

static int numTanks;

 public:

Tank() { numTanks++; }

~Tank() {numTanks--; }

};

In our application, we dynamically create and get rid of a Tank using new & delete:

Target *t = new Tank;

delete t;

 Looks kosher, and compiles OK, but what is not quite right?
numTanks is wrong--because we never called Tank's destructor (since t is ptr to Target)

 How do we fix this problem? Make the destructor of Target virtual.

Now it will dynamically bind the delete t to ~Tank (decrementing numTanks),

then call destructors up the inheritance graph (decrementing numTargets_

 Moral: if a base class has any other virtual functions, better make the destructor virtual, too

However: virtual destructors do add overhead of vtbl (memory and indirection)

Another caveat: even classes with no virtual function may still need a virtual destructor,

if they serve as base classes to other classes.

Hence: AMake destructors in base classes virtual@
15 Have operator= return a reference to *this

Chained or cascaded assignments works for built in types:

int x,y,z; x=y=z=7;

So it should work for user-defined types, too:

String a,b,c; a=b=c="hi";

String& String::operator=(const String& rhs)

{ ...

return *this; //return reference to left-hand object

}

Now operator= will cascade: x.operator=(y.operator=(z.operator=("hi")));

17 Check for assignment to self in operator=

class String {

char* data;

 public:

String(const char* value);

String& string::operator=(const String& rhs)

{ delete [] data; //delete old memory

 data = new char[strlen(rhs.data) + 1];

 strcpy(data,rhs,data);

 return *this;

}

}; //but suppose we try the following snippet:

string a="Hello"; a = a;

*this

rhs

data ---> Hello<-------data

delete get rids of Hello--for both *this and rhs! And strlen in next line is undefined

 Therefore, first test for assignment to self:

{ if (this == &rhs) return *this; //check for assignment to self

 ...

 Another possibility might be test for the same value, rather than the address:
{ if (this == rhs) return *this; //check for assignment to self

 ...

What operator must be overloaded before this test will work?

Which version is more efficient?
 Yet another possibility is a specialized function that tests for object identity

(if (objectID() == rhs.objectID())

...

After all, identity may not mean either a value or a machine addressCpersistent objects?

Member function design

22 Prefer pass-by-const-reference to pass-by-value

Why is pass-by-reference often preferable?
Nevertheless, even after hearing me lecture about this, beginners are liable to do this:

Point foo(Point p)

{ /* munge on p */

 return p;

}

{ Point a; foo(a); }

Looks innocent enough, but consider what happens behind the scenes:

1) copy constructor for Point is called to copy a into p (pass by value makes a copy)

2) copy constructor for Point called again to initialize object returned by foo()

3) destructor runs for p just before exiting foo()

4) finally, destructor runs for object returned by foo() before exiting calling block

What do you think? Pretty wasteful?

It gets worse if an object contains any data members that are class objects,

or inherits from another class

constructors & destructors for the member or base class objects must also run!

Avoid this exorbitant cost by passing by const reference:

const Point& foo(const Point& p) {return p; }

Now, now constructors or destructors are called on function entry or exit

But:

23 Don=t try to return a reference when you must return an object (by value)

Albert Einstein said: make things as simple as possible, but no simpler.

C++ analogue: make things as efficient as possible, but no more efficient.

Beware of always rooting out the evils of pass-by-value for objects!

friend const Rational& operator*(const Rational& lhs,const Rational& rhs)

}; //class Rational

inline const Rational& operator*(const Rational& lhs,const Rational& rhs)

{ return Rational(lhs.n * rhs.n, lhs.d * rhs.d); }

Looks efficient: inline and all const reference!

But look closer: it creates a local object, then tries to return a reference to it!

What happens to this local object once the function is over? (See item 31!)

No, since the operator really needs to return a new object, let it return it by value.

New features of Standard C++

28 Partition the global namespace

biggest problem with global scope is that there=s only one of them! Why? I.e.:

const double LIB_VERSION=1.204;
(in lib1.h)

const double LIB_VERSION=3;

(In lib2.h)

What happens if a program tries to include both header files?
To avoid this problem, standards committee invented the notion of namespaces

(similar to packages in Ada):

namespace sdm {
//namespace is a new scope mechanism

const double LIB_VERSION = 2.0;

class Handle {...};

}
Clients can access symbols in a name space in of three ways:

1) importing all the symbols in a namespace in a scope:

{ using namespace sdm;
//make all names in sdm visible

 cout << LIB_VERSION;

}
2) importing individual symbols into a scope:

{ sdm::LIB_VERSION;

//make just LIB_VERSION visible

 cout << LIB_VERSION;

}
3) explicitly qualifying a symbol:

{ cout << sdm::LIB_VERSION; }

Suppose two namepaces both have LIB_VERSION: how do we disambiguate them?
Use explicit namespace:: qualificaiton, i.e., sdm::LIB_VERSION
Standard C++ now uses a namespace called std, i.e., std::bad_alloc
Why is std namespace a good thing? Avoids cluttering up global namespace!

#include <iostream.h> includes names like cout, cin, endl in global namespace

But #include <iostream> includes these names std namespace

--Can you guess which header file is in standard C++ and which is not?
Use explicit casts of C++ rather than older C-style casts:

type casts are a necessary evil in a language that supports type checking

(type) expression casts of C obscures many different uses of casts in C++:

const_cast<type>(expression) casts away constness of objects

unsigned int String:length() const

{ String* const local = const_cast<String* const>(this);

 if (!valid) { local->len = strlen(data); local->valid = true; }

 return len;

}

dynamic_cast<type>(expression) performs Asafe downcasting@ (see item #39)

reinterpret_cast<type>(expression) gives implementation-dependent results

static_cast<type>(expression) is catch-all, compile-time cast, closest to C-style
Memory management items
3 Use new and delete instead of malloc and free
new and delete know about constructors and destructors; malloc and delete don't

 Consider two ways to get space for an array of String objects:

class String {

 public:

String(const char *value=0);

~String();

};

String *stringA1 = (String*) malloc(10*sizeof(String));

or in modern C++: String *stringA1 = static_cast<String*>(malloc(10*sizeof(String)));

String *stringA2 = new String[10];

 malloc version creates memory for 10 Strings, but doesn't invoke String constructor

--so the memory you've allocated is pretty useless!

 then let's see what happens when we try to deallocate this array:

free(stringA1); //releases memory used by array, but not any strings

delete [] stringA2; //invokes String destructor for each object in array, first

 Therefore, stick with new and delete!

5 Use the same form in corresponding calls to new and delete
suppose we had tried the following:

delete stringA2; //What do you think would happen? --invokes a single destructor

delete [] stringA2; //invokes a destructor for each string in stringA2, then for stringA2

 Therefore, if you se new [], then use delete []

6 Be prepared for out-of-memory conditions (when you invoke new)

Older compilers if new cannot allocate requested memory, new returns 0

Newer compilers (and standard) throw an exception: std::bad_alloc

either way, you should check for this return value or exception, but it's a hassle!

C++ gives you another approach: an error-handling function, set_new_handler

declared in <new.h>: was extern void (*set_new_handler (void (*) ())) ();

but now: typedef void (*new_handler)();

new_hander set_new_handler(new_handler p) throw();

--takes an argument and returns a result, both of which are pointers to functions

--both functions take no arguments and return nothing (void) (but now throws exception)

Here's how to use set_new_handler:

void noMoreMemory()

{ cerr << "Out of memory!\n"; abort(); }

main()

{ set_new_handler(noMoreMemory); //pass function to set_new_handler, which does it

 int *veryBig = new int[1000000000]; //will probably run noMoreMemory

}

--improves on a core dump, and doesn't require tests all over the place

Meyers goes on to describe how to arrange for class-specific outOfMemory routines,

then how to write your own implementations of operator new and operator delete
Design idioms
35 Public inheritance models "isa" (gen/spec)

class Bird {

 public:

virtual void fly(); //birds can fly, albeit in different ways

} ;

class Penguin: public Bird { }; //Penguins are Birds...but Penguins don't fly!

One solution: insert distinuguishing classes in the hierarchy:

class Bird { }; //no fly function here

class FlyingBird: public Bird {

virtual void fly();

};

class NonFlyingBird: public Bird { }; //no fly() here either

Another solution (similar to smalltalk or Objective-C):

class Penguin: public Bird {

 public:

virtual void fly() { error("Penguins don't fly!");

}; What are the tradeoffs for these two approaches?

First approach lets compiler catch the semantic error, second defers check to run-time

40 Model "has-a" or "is-implemented-in-terms-of" through layering (member containment)

41 Model "is-implemented-in-terms-of" through private inheritance, if necessary

-- we discussed these issues our discussion of implementing Stack in terms of OrdCltn

class Stack : private OrdCltn { } vs. class Stack { OrdCltn St; }

layering is simpler, but you need private inheritance to get access to protected members

37 Never redefine an inherited non-virtual function

a pure virtual function establishes a function interface only

a simple virtual function with defines an interface plus a default implementation

a non-virtual function establishes an invariant over specialization for that class

i.e., both an interface and an implementation for that class and all derived classes

if a derived class needs to redefine a non-virtual function,

then maybe it=s not really an isa relation (public derived class)?

39 Avoid casts down the inheritance hierarchy

class BankAccount {...};

class Savings {

 public: void addInterest();

};

list<BankAccount*> allAccounts;

//Suppose you want to credit all the accounts in allAccounts, so you try:

for (list<BankAccount*>::iterator p = allAccounts.begin(); p != allAccounts.end; ++p)

(*p)->addInterest();

Compiler will complain about addInterest(), since list doesn=t contain BankAccount, not Savings

You could try to force the issue with a cast, or a fancy new dynamic_cast:

if (Savings *psa = dynamic_cast<Savings*>(*p)) //is BankAccount a Savings or null?

psa->addInterest();

But why is this if-else style of programming a bad idea, from an OO point of view?
A better way? Redesign your class hierarchy (InterestBearing?) and use virtual functions

-8-

