Exception handling in C++
Why is exception handling a good idea? What is it good for?
Robustness: error recovery, or at least graceful termination

Goal: separate exceptional from normal processing

How is error handling done in traditional C code?
1) Returning error values from a function

For example, malloc() returns null for out of memory; fopen() for unsuccessful open

What=s are some problems with this approach?
Clients may not check:

For example, printf() returns the number of arguments successfully printed

ho checks that?

Not always possible to return an error value, e.g., if operator[] is out of bounds

2) Setting a global error condition flag

Standard C provides errono() and perror() functions to support this

But again, clients may simply ignore the error information--Why?

Error checking bulks up normal code, making it less efficent and harder to read

Desiderata: separate exceptional from normal processing

3) Non-local gotos, using setjmp() and longjmp()
Note that C gotos can only jump within a local block

setjmp() saves a known good state in a program

longjmp() will restore that state

Problem: high coupling between setjmp and longjmp locales

Problem for C++: setjmp/longjmp do NOT call destructors, so no object cleanup

therefore error recovery is almost impossible--your objects are in a bad state

Ada introduced a special syntax and semantics for exception handling

Stroustrup describes exception handling for C++ (became available as of C++ 3.0)

An example (from Stroustrup):

class Vector { //detects out of range errors as exceptions

int* p;

int sz;

 public:

class Range {}; //an excepton class, defined within class Vector

int& operator[] (int i)

if (0<=i && i < sz) return p[i]; //within range, OK

throw Range();

 //exception--throw a Range object

}

C++ uses metaphor of throwing and catching exceptions

operator[] throws an exception, when it detects an out of range subscript I
Who catches the exception?

A caller: exception unwinds to the stack frame of a catcher

In effect, exception-handling is an alternative return mechanism

Crucially, it is aware of C++ objects and their destructors

In fact, exceptions are objects-- Range() invokes a constructor to create a Range object

void foo(Vector& v)

{ int i; //...

 try { bar(v); //try block may or may not cause an exception

 }

 catch (Vector::Range)

 { //try causes an exception then catch a Range object

 //do something about the exception

 }

 //...

}

void bar(Vector& v) { v[v.size()+1]; //trigger range error!

//Vector::operator[] throws Range up AR stack via dynamic links:

to bar() (no handler here), then foo(), which catches Range

How is exception handling superior to traditional error handling techniques?
Instead of terminating the program, we can write more robust, fault-tolerant code

Instead of returning a value representing error (e.g., 0 or NULL)--

which may not always be feasible if there is no acceptable "error value"

(e.g., every int is a legal return value of operator[])

 --we explicitly separate error handling code form "ordinary" code

more readable and more amenable to tools

Instead of returning a legal value and leaving the program in an illegal state,

which lets the program runs, but may cause mysterious crashes later on

 --we force developers to get the program to run acceptably

Instead of a setjmp, throwing an exception "unwinds the stack"--runs destructors
On the other hand, how is an exception like an non-local goto?

It exits a local scope and branches to a non-local scope

--How are exceptions a violation of the Structure Principle?
The scope of an exception handler is dynamically scoped:

 the handler's name is found by chaining up dynamic links (rather than static links)

If there is no handler for an exception, the top level program aborts
What do you think--are exceptions nevertheless more elegant than a non-local gotos?
Treating exceptions as objects is neat though--because we can pass data members:

Add some body to class Range (in Vector):

 public:

int index; //a data member passed within exception object

Range(int i) : index(i) {} //constructor initializes index member

//modify operator[] to invoke new constructor:

throw Range(i); //What does this do that's useful?
//modify foo() to look at the new data member in the Range object:

catch(Vector::Range r) { //Catch a Range object, r

cerr << "bad index" << r.index << endl;

//Note: index is member of object r, accessible because it's public

Something else is nice about exceptions as objects: we can use inheritance for abstraction!

class MathErr{}; //Base class for a hierarchy of math exceptions

class Overflow : public MathErr {};

class Underflow : public M
athErr {};

class ZeroDivide : public MathErr {};
Now we can catch any of these exceptions:

try { // ... }

catch (Overflow){ /*...*/ } catch (Underflow) { /* ... */ }

catch (MathErr) {/* ... */ }
try can catch various exceptions, distinguishing them by their class names--better than switch

What do you think happens if code in try throws a ZeroDivide exception?
--MathErr catches it, since it is the base class for ZeroDivide --neat?

However, a function need not catch all exceptions

Any exception not caught get passed on up the call stack

But suppose you don't want the buck to stop here (but cannot anticipate all possibilities)?

C++ supports exception specifications: specify what exceptions a function catches in its interface:

void f() throw(x2, x3, xf)

{ /* ... */ }

is equivalent to:

void f()

{
try { /* ... */ }

catch (x2) { throw;] //re-throw it

catch (x3) { throw;] catch (x4) { throw; }//re-throw x3 and x4, too
catch (. . .) { unexpected(); } //firewall: the buck stops here
} //catch(...) catches any exception

//unexpected() normally calls terminate() which calls abort()
You can change this behavior with set_unexpected() (declared in EXCEPT.H)

--analogous to changing behavior of new_handler() with set_new_handler()
--set_unexpected() a function (pointer) parameter, e.g., set_unexpected(foo);

Similarly, set_terminate() can set another function to terminate()
--deals with any uncaught exceptions (default is abort())

Why are exceptions especially a good idea for constructors?
Because constructors may fail, but cannot produce an error value

--exception handling lets failure be transmitted out of the constructor, e.g.:

Vector::Vector(int size)

{ if (size < 0|| max < size) throw Size();//max is member of Vector

 //...

}
--code creating Vectors can catch Size errors:

Vector* f(int i)

{ Vector* p;

 try { p = new Vector v(i); }

 catch (Vector::Size) {p = new Vector v(Vector::max)); }

 //How could I write a handler equivalent to an Eiffel retry? { f(Vector::max); }
 //... continue -- that's right, you can have more code after a try..catch block
 return p;

} //end of f()
Standard C++ Library now supports a set of standard exceptions (see Stroustrup, pp. 384-6)

base language throws exceptions: i.e., new throws bad_alloc (384)

STL container classes throw out_of_range, invalid_argument, etc. (385)

exception -- base class; what() returns a character representation of an exception (386)

Exceptions handlings and assertions in C++ (instead of assert macros):

class Vector {

//...

class Size();

class Invariant();

void checkInvariant()

{ if (DEBUG) //const or macro

 if (p==0 || sz<0 || max<=sz) throw Invariant; }

};

int& Vector::operator[](int i)

{ checkInvariant();

 if (i < 0|| i < size) throw Size(); //member of Vector

 checkInvariant();

 return i;

}

What do you think? Almost Eiffel-like?
Note: Exception-handling has an overhead, but, supposedly, not on any ordinary code

--desiderata: exception handling should not affect normal code or its processing

Run Time Type Information (RTTI)

Why might RTTI be useful?

Input of objects (what kind is it?), OODBs, debugging

Despite Stroustrup's reservations, RTTI adopted by ANSI/ISO committee (Borland 4.0)

Why is RTTI already implied by exception handling? catch needs to discriminate types

typeid operator returns an object of class Typeinfo
Code fragment demonstrating RTTI
#include <iostream.h>

#include <typeinfo.h>
//class Typeinfo

class A { };

void main()

{ char ch; float x;

 if (typeid(ch) != typeid(x) //compare typeid at run-time

cout << "ch and x are not the same type" << endl;

 cout << typeid(ch).name() << endl; //outputs "char"

 cout << typeid(A).name();
//returns "A"

}
Stroustrup resisted RTTI, arguing that it would lead to poor programming style

Why might RTTI undermine the use of virtual functions?

Temptation: lots of if-then-else or switch statements testing typeid!

Remember OO solution: let dynamic binding figure out the type for you!

-2-

