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Program #2: Package World Agents 

Due: Thursday, Oct. 22 

 

For this assignment, you will design a team of homogeneous agents that will cooperate in 

order to achieve a simple package delivery task. The agents are situated in a 50x50 grid. The grid 

will have some number p of randomly located packages, each of which must be delivered to one 

of d locations. Note, there is a specific destination for each package. Your agents must be able to 

handle any number of packages, destinations, and team size. I have provided a simulator which 

you can use to test your agent teams. 

 

The Agent Simulator 
The simulator is similar to the one we used for the last project. This source code can be 

downloaded from our course web page (http://www.cse.lehigh.edu/~heflin/courses/agents-

2009/). Everything is provided for you, except you must write the PacAgent class yourself. 

There is a skeleton of this class in the pacworld package. In particular you must implement the 

getId(), see() and selectAction() methods. You are not allowed to modify any simulator code 

other than PacAgent. In this assignment, the only direct communication that should occur 

between agents is through the use of the Say action. In particular, static variables are prohibited 

unless they are constants. When the simulation is started, it will place n copies of your agent at 

random locations in the environment. Note, that the PacAgent constructor provides a unique 

integer id to the agent. 

Each agent can only see a limited view of the world. In particular, it can see all packages 

and agents inside a 9x9 square centered on itself. Fortunately, the percept includes the exact (x,y) 

coordinate of each seen object as well as the delivery locations for each visible package. On each 

turn, each agent receives a PacPercept which has the following methods: 

 

• public VisibleAgent[] getVisAgents() – Returns an array which contains the id and 

location information for each agent in sight range. See the VisibleAgent class for details 

on how to access this information. 

• public VisiblePackage[] getVisPackages() – Returns an array which contains the id, 

current location, delivery destination, and status (is it held by an agent or not) for each 

package in sight range. See the VisiblePackage class for details on how to access this 

information. 

• public String[] getMessages() – Returns an array of messages broadcast by the agents 

since the perceiving agent’s last turn. Thus, every agent gets exactly one opportunity to 

hear everything that was said. This array only has as many elements as messages sent; if 

no agent sends a message, then the array will have length 0. It is up to you to decide the 

format and content of any messages sent. 

• public boolean feelBump() – Returns true if the agent (or the package it was carrying) 

bumped into something on the last turn. The agent does not feel a bump if another agent 

bumps into it. 

• public VisiblePackage getHeldPackage() – Return an object describing the package 

held by the agent. If the agent is not holding a package, returns null. 
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There are separate classes for each action available to the agents. The actions available to each 

agent are: 

 

• Dropoff – Causes the agent to drop the package that it is holding in an adjacent square 

(the agent must specify a compass direction; see the Direction class for predefined 

constants). If the package is dropped at its destination then it is successfully delivered and 

disappears. The package cannot be dropped on a location where there is an agent or 

another package, even if this location is the package’s destination. 

• Idle – Causes the agent to skip its turn. 

• Move – Causes the agent to move one step north, south, east or west (see the Direction 

class for predefined constants). If the agent is holding a package, the package will move 

in the same direction. If the agent or the package is blocked by an obstacle (another 

package or agent) then the agent will feel a bump and not move. 

• Pickup – Causes the agent to pick up an adjacent package at the direction specified. The 

package will be held to that side of the agent until the agent drops the package. The agent 

can only pick up one package at a time, so this will  fail if the agent is already holding a 

package. The agent cannot pickup a package that is held by another agent. 

• Say – Agent broadcasts a message to all other agents. The message is a string and will be 

heard by all agents up until the sender’s next action.  The hearers will not be provided the 

identity of the speaker, so if this is important, it must be encoded in the message. The 

exact format and content of the message is up to you, but beware that messages are 

penalized per character sent in the performance measure, so communication should be 

used judiciously. 

 

Note, some actions require a parameter for use. 

 The simulator takes four optional command line parameters: the number of agents, the 

number of packages, the number of destinations, and the size of the world (note, since we are 

fixing the world size at 50 for this environment, you do not need this parameter). If fewer 

parameters are provided, then defaults are used. In order to start the simulator with n agents, p 

packages, and d destinations, type java pacworld.PackageWorld n p d. The simulator will 

launch a simple graphical user interface that allows you to step through each turn in the 

environment or to run it to completion in real time. In this user interface, agents are represented 

by black squares, packages by colored squares, and destinations by colored circles. Each package 

will be the same color as the destination it is to be delivered to. 

 

Evaluation 

 The performance of the team will depend on the number of packages successfully 

delivered, the number of turns required to deliver these packages, the amount of communication 

needed, and the processor time used by your agents to make their decisions. See the 

getTeamPerformanceMeasure() method in PackageWorld for details. Note, that 

communication and processor time are relatively cheap compared to the number of turns taken, 

so you should consider how thinking more intelligently and communicating can improve the 

coherence of your agents. In particular, you should consider sharing information to build a global 

view of the environment and you should consider the kinds of conflicts that can occur when two 

agents get in each other’s way or choose to go after the same package. Note, that coordination 

may be more important in worlds that have more packages and agents. You should test your 
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agents with a range of configurations (i.e., different team sizes, number of packages, and number 

of destinations). You will be graded both on the performance of your agents and on the quality of 

your design.  

 

Submission Format: 

There are hardcopy and electronic components to your submission. Your electronic 

submission must consist of the source code (.java files) and compiled (.class) files for PacAgent 

and any other supporting classes you developed. Any source code you submit should be 

reasonably commented, including an initial comment that identifies you as the author, a 

descriptive comment for each class and method, and comments to explain any complicated logic 

you might have. In particular, you should have a comment that provides a clear and detailed 

description of the strategy used by your agents. You should also print a copy of your agent’s 

source code. Please do not print out any of the simulator code. 

 

Submission Process;  
The electronic version of your program file must be submitted as a single ZIP file using the 

course webpage on the Blackboard Learning System (see https://ci.lehigh.edu/). From the CSE-

431-00-FL09 course, select Assignments and then click on “View/Complete” for Project #2. You 

will then be able to attach your files for submission. Once you are absolutely certain that your 

assignment is complete, press the “Submit” button (although you can add your files at any time, I 

will not be able to access it until you press “Submit”).You must also hand in a hard copy of your 

source code at the beginning of class on Oct. 22. 

 


