
SHAPE AND APPEARANCE INFORMATION INTEGRATION
IN MEDICAL IMAGE ANALYSIS AND COMPUTER VISION

BY XIAOLEI HUANG

A Dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

New Brunswick, New Jersey

May, 2006



c© 2006

Xiaolei Huang

ALL RIGHTS RESERVED



ABSTRACT OF THE DISSERTATION

Shape and Appearance Information Integration in Medical Image

Analysis and Computer Vision

by Xiaolei Huang

Dissertation Director: Prof. Dimitris N. Metaxas

In many fundamental problems in medical image analysis and computer vision, object shape

and appearance are two important sources of information that when integrated, provide more

reliable image interpretation. In this thesis, I propose a new perspective onhow to represent the

shape, appearance, and deformations of an object of interest in images. Under this new perspec-

tive, I develop novel and efficient algorithms that coherently integrate shape and appearance

information to augment traditional shape-only deformable models for robustsegmentation, to

better perform shape alignment and registration in arbitrary dimension, to register images of

single or multiple modalities in a joint shape and appearance feature space, and to build a new

framework for learning statistical shape and appearance models that requires significantly less

human effort than the well-known Active Shape and Appearance Models. I also present sev-

eral applications of this research on topics including heart wall motion analysis in tagged MRI

images, and tracking/learning/transfer of 3-D facial expressions.
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Chapter 1

Introduction

Shape refers to geometry, or any spatial attributes of an object as defined by its boundary and

outline. In a general sense, shape also represents the spatial arrangement or composition of

perceptual structures, geometric features or patterns on an object.

Appearance refers to visible aspects of an object, including color, gray-level intensity dis-

tribution, texture, visual patterns, appearance of constituent parts, among others.

Since images are functions not only of object shape but also appearance properties, the two

sources of information are often used complementarily in order to develop robust solutions for

many computer vision and medical image analysis problems. In this thesis, we focus on two

important problems: segmentation and registration.

1.1 Segmentation

Segmentation is the partition of an image domainI into several constituent subsets. Since

there are many possible partitions, the “right” one is often pursued in the context of prior

world knowledge. This prior knowledge can be low level, such as coherence criteria on the

brightness, color, texture or motion within each subset. Or equally important isthe knowledge

in mid-level and high-level, such as statistics on the shape and appearanceof objects that appear

in the image. During the past decade, researchers have realized that it isdifficult to solve the

segmentation problem robustly using low-level image processing alone, because of the common

presence of image noise, cluttered objects, nonuniform object texture, variations in lighting, and

various other artifacts in natural or medical images. To address these difficulties, model-based

methods have been extensively studied and widely used, with considerablesuccess because of

their ability to integrate high-level knowledge about object shape and appearance properties

with low-level image processing.
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The models being used can be eitherdeformable models[62, 106, 21, 14, 70], orstatis-

tical shape and appearance models[26, 25, 65]. Deformable modelsare curves or surfaces

that deform under the influence of internal smoothness and external image forces to delineate

object boundary. Compared to low-level edge detection methods, deformable models have the

advantage of estimating boundary with smooth curves or surfaces that bridge over boundary

gaps. However, traditional shape-only deformable models that use edgeinformation alone are

often sensitive to image noise, spurious edges, and produce results thatare highly dependent

on model initialization. Statistical shape and appearance modelsare learneda priori from

examples to capture variations in the shape and appearance of an object of interest in images.

When applied to segmentation, the models deform toward object boundary but with constraints

to deform only in ways characteristic of the object they represent. Thesestatistical models

encode high-level knowledge in a more specific manner and are often morerobust for image

interpretation; yet they require more efforts because they need collection/annotation of training

data, alignment/registration of training examples, and learning of statistics for positive (and

negative) examples using generative (or discriminative) classifiers.

In both types of models, integrating region statistics constraints (i.e. appearance statis-

tics) into boundary (i.e. shape) based models has been central toward more robust, well-

behaved models in boundary extraction and segmentation. Along the line ofdeformable mod-

els, region-based strategies have been proposed to dynamically estimate intensity/texture sta-

tistics of the region inside a deformable model using parametric (e.g. Gaussian, Mixture-of-

Gaussian) or nonparametric methods, and to derive model deformations that ensure the statisti-

cal coherence inside the model. These strategies are usually formulated in energy minimization

[126, 83, 122, 53] or stochastic optimization frameworks [90, 18] to derive region-based forces

on the deformable model, which is also under the influence of image gradient (i.e. edge) forces.

This way, both region and edge forces work complementarily to aid the model overcome lo-

cal minima due to spurious edges, and to prevent the model from leaking at boundary gaps.

Along the line ofstatistical prior models, using statistical shape models to guide image search

produces reliable segmentation results in noisy, cluttered images [26, 65]. Ageneralization to

statistical appearance models uses also the interior region information [25],and enables reg-

istration of a target object with the learned prior model. Being complementary to each other,
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the integration of statistical shape and appearance models results in a powerful image analysis

paradigm.

1.2 Registration

Registration is the process of establishing point-by-point correspondences between images of

a scene or shapes of an object captured from different view points. For that purpose, para-

meters of global transformation and/or local deformation models are to be recovered to geo-

metrically transform amovingimage/shape to achieve high spatial correspondence with afixed

image/shape. Example global transformation models include rigid, similarity, affine; and ex-

ample local deformation models include displacement vector field, thin plate spline, free form

deformations, and so on. The registration problem has been widely studiedbecause it is im-

portant in various computer vision and medical image analysis applications, such as object

recognition, tracking, image fusion, change detection, and stereo depth perception.

While both shape and image registration are important and have been studied intensively

independent of each other, registration in a joint feature space that considers shape and image

(here image refers to appearance, intensity, texture, etc.) simultaneously isinteresting and in

many applications necessary. In the application of learningstatistical shape and appearance

models, training examples, which are image regions covered by instances of a target object,

need to be registered before meaningful statistical features could be extracted from correspond-

ing elements. Many existing methods [26, 28, 65, 34] focus on establishing correspondences

between basic elements of the boundary shapes; a few [25] further apply interpolation to prop-

agate the shape registration field into the areas inside. However, registering training examples

based on boundary shape alone may fail for some objects of interest such as those with symmet-

ric (e.g. near circular) shapes but varying interior appearance. Joint registration using shape

and appearance uses all the information in the image region covered by the target object; it

provides additional deformation constraints for the large area inside the object, hence leads

to more robust and accurate correspondences. In the application of registering two images of

a scene, hybrid methods [104, 49, 63, 56] that integrate geometric features (such as landmark
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points, edge curves/surfaces) with intensity values from the full image content, are gaining pop-

ularity. These methods combine the advantages of shape-based and intensity-based registration

methods, and they are more flexible in that their frameworks allow edges or other salient shape

structures to be weighted higher than average pixels during registration.

1.3 Investigations on Shape and Appearance Information Integration

As shape and appearance are two complementary sources of information that when integrated,

provide the most reliable results, how to achieve this integration is nontrivial and has been a

problem that arose in the context of model-based segmentation, registration, tracking, among

others.

In model-based segmentation, the main difficulty lies in the fact that traditionally, shape and

appearance have very different representations. Shapes are usually represented by point sets or

parametric curves or surface, while appearances are captured usingstatistical features (such as

mean, variance, distribution) of an image region’s gray level intensity or texture. Shape para-

meters usually form a vector which describes the boundary elements, while appearance/region

parameters represent accumulative statistics that do not have a vector structure. This large dif-

ference in their representation spaces makes it difficult to unify shape and appearance in one

optimization process. As a result, shape (or boundary) and appearance (or region) information

are often accounted in separate optimization processes, and boundary and region parameters

are updated iteratively. For instance, in the literature of deformable model based segmenta-

tion, region analysis strategies were proposed [90, 126, 59, 18] to augment the “snake” (active

contour) models for segmentation. In [126], a generalized energy function that combines as-

pects of snakes/balloons and region growing is proposed and the minimization of the criterion

is guaranteed to converge to a local minimum. This formulation approximates the region inten-

sity statistics using parameters of a Gaussian distribution, while the model shapeis represented

by a parametric spline curve. The differences in representation prevent the use of gradient de-

scent methods to update both region parameters and shape parameters in a unified optimization

process; hence the two sets of parameters are not updated simultaneouslyin [126], rather they

are estimated in separate steps and the energy function has to be minimized in an iterative way.
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In other hybrid segmentation frameworks such as those proposed by [18, 59], a region based

segmentation module is used to get a rough binary mask of the object of interest. Then this

rough estimation of the object can be used to initialize a deformable model, which will deform

to fit edge features in the image using gradient information. However, in these frameworks,

the region-based and edge-based modules are still separate energy minimization processes, so

that the integration is still imperfect and errors from one module can hardly be corrected by the

other.

For registration, hybrid methods [104, 49, 63, 56] are gaining increasing attention because

they integrate geometric features, which are from shape information, with intensity values from

the full image content, which are appearance information. Most of these hybrid methods focus

on incorporating geometric feature constraints into the intensity-based energy functionals to

achieve smoother and faster optimization. Example geometric features include object bound-

ary contours, landmark points, edges, curves, and/or surface patches [13, 71]; and popular

intensity-based energy functionals are sum of squared differences,mutual information, cross

correlation, etc. This type of integration is very effective for global registration, because the

global transformation models such as rigid and affine are applicable to both shape and im-

age, hence both feature-based and intensity-based criteria can be defined in one optimization

framework with respect to the common transformation parameters. The integration becomes

problematic however during local non-rigid registration. The main difficulty lies in the differ-

ences between shape and intensity representations, and many popular non-rigid deformation

models are not applicable to both shape and intensity. For instance, the optical flow like lo-

cal deformation model, which defines a deformation vector at every pixel, iswidely used to

register intensity images; it is not suitable for registering shapes, however, because it does not

guarantee preserving the topology and coherence of a shape after deformation even with ad-

vanced regularization and smoothness constraints (e.g. a closed shape can be deformed to an

open structure, or vice versa) [85]. Another popular non-rigid deformation model, the Thin

Plate Spline (TPS), can be used to derive a dense deformation field givencorrespondences be-

tween two sets of sparse landmark points [11]. Although TPS can represent deformations for

both boundary shape and interior image region, it requires explicitly findingcorrespondences

(between points, regions, etc.), which is a hard problem that lacks very robust solutions.
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1.4 Thesis Outline and Contributions

In this thesis, we propose a new perspective on how to represent the shape, appearance, and

deformations of an object of interest in images. Under this perspective, we are able to develop

new algorithms that integrate shape and appearance information in unified frameworks and

solve effortlessly many problems that we discussed in previous integration approaches.

The main contributions of this thesis are:

1. This thesis identifies problem domains in which the integration of shape and appearance

information helps improve robustness and efficiency.

2. It reviews previous work on shape and appearance integration in various problem do-

mains and analyzes their limitations.

3. It proposes a new perspective on how to integrate shape and appearance information more

naturally through choosing proper shape, appearance, and deformation representations.

4. It introduces a new class of deformable models, Metamorphs, which naturally integrate

boundary shape and region appearance statistics for robust model-based segmentation.

5. It presents a global-to-local registration framework which can be applied to registration

in the shape space, in the intensity space, as well as in the joint shape and intensity

feature space. The correspondences established by the registration framework are used

in learning statistical shape models, statistical shape and appearance models, and the

learned prior models guide robust image search and object segmentation.

6. The thesis also presents an image registration algorithm that integrates shape context and

image intensity through finding good correspondences between salient “region” features.

7. The algorithms introduced in this thesis were implemented in Matlab, C, or C++, and var-

ious prototype systems are demonstrated on real-world applications such assegmenting

the heart in MRI images, segmenting lesions in breast or prostate ultrasoundimages, reg-

istering 3D face range scans, tracking 3D facial expression, registering images of single

or multiple modalities, among others.
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This thesis is organized as follows. Chapter 2 introduces the new perspective of repre-

sentations. Shape is represented implicitly as distance map ”images”. Object appearance is

captured using nonparametric kernel-based density estimation of intensity/texture distributions.

An Incremental Free Form Deformations (IFFD) model is proposed to be aunified deformation

model for both shape and appearance. Using these representations, we are able to develop novel

algorithms for model-based segmentation, registration and visual learning that tightly couple

shape and appearance and achieve more robust results.

Chapter 3 introduces Metamorphs, a new class of deformable models that dynamically inte-

grate model-interior region statistics with edge information during model-based segmentation.

The new models use the shape, appearance and deformation representations in chapter 2, and

by doing so, they can naturally integrate region (appearance) and edge(shape) information to

derive model deformations in a unified variational framework. Furthermore, a Metamorphs

model has an on-learning aspect that constraints the model deformations such that the interior

statistics of the model after each deformation is consistent with the statistics learned from the

past history of model interiors. The extension of Metamorphs segmentation toimages with

large-scale textures is also presented.

Chapter 4 presents new algorithms for learning coupled prior shape and appearance models

based on representations in chapter 2. First, a new global-to-local shape registration algorithm

is introduced. It can be used to establish continuous, smooth and one-to-one correspondences

between shapes in arbitrary dimension; in particular, it can register boundary shapes of train-

ing examples and establish correspondences between them in order to learn a statistical shape

model. Second, as a natural extension of the shape registration algorithm, anew joint regis-

tration algorithm is introduced to register images (or training examples) in a joint shape and

intensity feature space. It establishes correspondences for shapesand interior textures simul-

taneously by maximizing mutual information in both shape and intensity spaces. Third, the

dense correspondences are used to build a coupled shape and appearance statistical model, then

the model is applied to robust segmentation and image interpretation.

The algorithms in chapter 3 and 4 integrate shape and appearance in unifiedenergy mini-

mization frameworks and solve system parameters through gradient-descent optimization. Chap-

ter 5 introduces a hybrid image registration algorithm on the other side of the spectrum. The
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basic idea is to first detect feature correspondences, then solve transformation parameters in

a least-squares sense and in closed-form. The integration of shape andappearance is realized

through feature detection and correspondence finding. Rather than using traditional geometric

features such as curvature extreme points, curves/surface patches,our method detects salient

“region” features, each of which has an associated scale and whose interior intensities (appear-

ance) can be matched using similarity measures such as mutual information. Shape information

is incorporated by considering geometric configuration constraints between the region features

during correspondence finding. The geometric configuration constraints are enforced in an

Expectation-Maximization framework to find a joint correspondence between multiple pairs of

region features that result in a consistent transformation; other featurepairs, which either are

outlier matches or degrade matching performance, are effectively pruned.

Several real-world applications of the algorithms proposed in this thesis arepresented in

Chapter 6. In one application, the Metamorphs deformable models introducedin Chapter 3

are applied to heart wall motion tracking in noisy, tagged MRI images of the heart. In another

application, the Global-to-local shape registration algorithm introduced in Chapter 4 is used for

high-resolution 3D facial expression tracking, learning, transfer andsynthesis.

Finally conclusions are drawn, and future research directions are outlined in chapter 7.
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Chapter 2

Representations for Shape and Appearance Integration: On Shape,

Appearance and Deformations

This chapter introduces representations for shape, appearance anddeformation that will fa-

cilitate the integration of shape and appearance information in various computer vision and

medical image analysis applications.

2.1 Background

In the literature, both shape and appearance representations have been intensively studied. Dif-

ferent representations are used to suit the need of different applications.

2.1.1 Review on Shape Representations

Shape refers to geometry, or any spatial attributes of an object as defined by its boundary and

outline. A common classification of shape representations has three categories. First, an explicit

shape representation describes the set of points that belong to an objectboundary explicitly.

Examples are point clouds (or point sets) [7, 19], binary voxel grids,or Octree [116]. Sec-

ond, a parametric representation encodes important shape information using a few parameters

by finding appropriate mathematically-complete mapping functions. Examples areparametric

curves/surfaces [29, 74] such as triangle meshes and NURBS, harmonic representations such

as fourier descriptors [106], medial axes [101], among others. Third, an implicit representation

embeds a shape in a higher dimensional space and describes it as an iso-surface of a spatial field

function in the embedding space. Examples are the level set shape representations, in which a

shape is represented as the zero level set of a higher dimensional distance function [81, 85, 64].

Comparing the explicit, parametric and implicit shape representations, each has its own

merits and drawbacks.
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• Theexplicit point clouds representation is intuitive and generic since it can easily repre-

sent shapes in 2D and 3D with arbitrary topology. However, its known limitationwhen

used for shape matching and registration is that, it strongly depends on the sampling rule

which affects the number of shape elements, their distribution, etc. For instance, given

two shapes to be registered, each represented by a point cloud, the two point sets may not

be sampled at corresponding locations due to low-resolution or improper sampling, and

this can lead to inherent inconsistencies in the two point sets, thus cast problems when

point correspondences are pursued between the two shapes [20].

• Unlike point clouds, theparametriccurves/surfaces shape representation supports valid

correspondences in a continuous domain. Its main disadvantage is in the difficulties to

parameterize shapes in high dimensions and/or with complex topology. Fourierdescrip-

tors [106] and medial axis [101] are two otherparametricshape representations that are

excellent when measuring the dissimilarity between shapes, but they do not support a

vector description of shape boundary elements so that they are not suitedfor registration

when dense correspondences need to be established between shape boundary elements.

• The implicit shape representation is gaining increasing attention recently, both inshape

registration [85] and in statistical shape modeling [64]. It is attractive in thatit is a

generic representation that handles naturally shapes of arbitrary dimension and arbitrary

topology. This is because it represents shapes using the distance map ”images” derived

from their distance transforms and it does not require parameterization ofthe shapes.

The representation is also stable and robust to shape perturbations and noise, as shown

by the formal proofs given in [128]. The main concern associated with theimplicit shape

representation is in its computational complexity since it embeds a shape in a higher

dimensional space. Another concern is in its topology freedom when preserving shape

topology is desired after deformation.

2.1.2 Review on Appearance Representations

A representation of object appearance in images encodes brightness variations caused by 3D

shape, surface reflectance properties, sensor parameters, illuminationconditions, etc. There are
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two types of appearance representations. The first type encodes the appearance of an object

in one image of interest or in an image sequence. In applications such as segmentation, reg-

istration and tracking, this type of representation is commonly used online whenthere is no

prior knowledge available about what the object looks like, hence low-level coherence proper-

ties on the intensity, color, texture, or motion of the object are assumed. The second type of

representation encodes the appearance and appearance variations among a large set of images

which are all for the same class of object and are all correlated to some degree. Parametric

representations have been dominant which compress this large image set andmap it to a low

dimensional manifold [79]. Applications of the second type of representation include visual

learning, recognition and prior-model based segmentation, in which mid-level and high-level

knowledge are learned off-line to specify the appearance statistics of anobject of interest in

images.

Online Appearance Representation

Without any prior knowledge, many appearance representations of the first type make assump-

tions on the intensity distribution of all pixels inside an object. Gaussian, Mixture-of-Gaussian

models are common assumptions on the distribution. If a Gaussian distribution is assumed, the

intensities of an object are parameterized by a mean intensityµ and a varianceσ2:

P(i
∣
∣O) =

1√
2πσ2

e
−(i−µ)2

2σ2 (2.1)

wherei = 0, ...255 denotes an intensity value, andO represents pixel intensities inside the

object. If a Mixture-of-Gaussian assumption is made, the object intensities are parameterized

by the means and variances of several component functions, each being a Gaussian:

P(i
∣
∣O) =

K∑

n=1

1
√

2πσ2
n

e
−(i−µn)2

2σ2
n (2.2)

whereK components are assumed and for each componentn = 1, ...,K, the mean intensity is

µn, and the variance isσ2
n.
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Other than parametric models such as Gaussian and Mixture-of-Gaussian,nonparamet-

ric kernel-based density estimation (also known as the Parzen windows technique in pattern

recognition literature [32]) is a popular nonparametric statistical method [99]. It represents a

generalization of the Mixture-of-Gaussian model, where it does not make assumptions about

the number of modes in a distribution, rather it treats every single sample as a Gaussian kernel

and integrates over these small Gaussian kernels to derive the overall nonparametric estimation

of the probability density function (p.d.f.). Recently this nonparametric technique has been

applied to imaging and computer vision, most notably in modeling the varying background in

video sequences [35], and in approximating multi-modal intensity density functions of color

images [23]. In this thesis, we use this nonparametric representation to approximate the p.d.f.

of a deformable model’s interior intensities. Detailed formulation of the representation is given

in Section 2.3. One important advantage of the nonparametric representationis that it can be

approximated directly from pixel intensities inside a deformable model, requiringno parame-

ter estimation. Furthermore, when the model deforms, its interior (pixels) changes, hence the

nonparametric intensity p.d.f. gets updated automatically.

Although the nonparametric p.d.f approximation can represent object (or model) interior

appearance with complex multi-modal intensity distributions, it mostly deals with pixel-wise

intensity statistics, and does not account for the spatial correlation (i.e. context information)

between neighboring pixels, nor the scale and pattern of the basic building blocks such as

texture elements that constitute the object (or model) interior. This limits the nonparametric

representation’s applicability in scenarios where the object has texture withlarge-scale periodic

patterns, or when the background has very similar intensity distribution with theobject, but

very different texture because the scale and pattern of the texture elements are different. To

address this limitation, we introduce a hierarchy featuring three levels of texture representation.

The bottom level takes the same form as the nonparametric intensity p.d.f. representation.

The middle level determines a local “best” scale for the model-interior texture element, by

minimizing the symmetrized Kullback-Leibler Divergence (KLD) between the intensity p.d.f.

within the local scale and the overall model interior p.d.f. The third level further considers the

spatial correlation between pixels within the local scale, by constructing a small gabor filter

bank targeted at segmenting the specific texture patterns that appear insidethe model. Detailed
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formulation for the hierarchy of texture representations is given in Section2.3.

Offline Learning of Appearance Representation

Unlike the first type of appearance representations, which capture an unknown object’s inten-

sity/texture statistics during run time, the second type of appearance representations are sta-

tistical models learned off-line to encode the appearance and appearance variations among a

large set of images which are all for the same class of known object. Givena new image that

is known to contain the object, the learned prior model can be used to guide thedetection and

robust segmentation of the object.

Because of variations in shape, surface reflectance properties, illumination and other con-

ditions, the appearance of an object can vary significantly in the large setof training images;

yet because these images are all of the same object, they are often correlated to a large de-

gree. So one dominant approach for learning statistical prior models has been using generative

parametric methods to compress the large training image set to a low dimensional represen-

tation of object appearance. The most intensively studied method for this purpose are lin-

ear dimension-reduction methods such as Principal Component Analysis (PCA) [25, 79], and

nonlinear dimension-reduction methods such as Kernel PCA [89], isometricfeature mapping

(Isomap) [108], and local linear embedding (LLE) [91, 36]. Another approach that is popular

in object detection is to use supervised or semi-supervised learning methodsto train a classifier

that is able to differentiate between positive and negative examples of an object. Commonly

used learning methods along this line are AdaBoost [113, 43], Support Vector Machines (SVM)

[82], Neural Networks [92], MAP decision rules [98], and Co-training[66].

2.1.3 Representations for Integrating Shape and Appearance

In this thesis, we propose a new perspective of representations that are well suited for inte-

grating shape and appearance information. The proposed representations are naturally coupled

and allow us to develop novel segmentation and registration algorithms that integrate shape and

appearance and achieve more robust results.

Within the proposed framework, we represent each shape using the implicitrepresentation.

In this way, shapes are implicitly represented as “images” in the space of distance transforms
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where shapes correspond to the zero level set of the distance functions. The level set values

in the shape embedding space is analogous to the intensity values in the intensity space. As

a result, we can encode the shape (or edge) information in one “image”, and intensity (or

appearance) information in another. The two kinds of images are images of different modality,

but they are parallel to each other, and both can be manipulated using pixelson a common

regular grid. The shape and intensity spaces can therefore be conveniently unified this way.

To capture the intensity/texture statistics of an object, we use the nonparametrickernel-

based approximation (with scale and pattern detection for textured images). With this repre-

sentation, the statistics of object (or deformable model interior) appearance do not require extra

parameters; the probability density functions can be approximated directly given pixels inside

the object (or model), and they are updated automatically when the object (ormodel) deforms.

Another key component of the framework is an Incremental Free Form Deformations (IFFD)

representation, which is proposed to serve as a unified deformation modelfor both shape and

appearance. IFFD is an extension of Free Form Deformations (FFD) [102, 94, 54], which is a

popular approach for modeling deformations in graphics, animation and rendering. It is a space

warping technique, which consists of embedding an object inside a space,and deforming the

object through deforming the space. It couples naturally with the implicit shape representation,

where it deforms a shape via deforming its embedding “image” space. It canalso deform an

intensity image by deforming a regular control lattice overlaid on the image. As a result, IFFD

is the most attractive in the unified shape and appearance space, where itsdeformation can be

derived based on information from both the implicit shape “image” and the explicit intensity

image. Other than FFD, the optical flow like local deformation field and the Thin Plate Splines

are two other popular non-rigid deformation techniques. However, whendealing with both

shape and intensity, they have their limitations which are discussed in Section 1.3.

In the remainder of this chapter, we present in detail the formulations for theshape, appear-

ance, and deformation representations in our framework.
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2.2 Implicit Shape Representation as Distance Map “Images”

To facilitate the integration of shape and intensity, we use the implicit shape representation

in our framework. The Euclidean distance transform is used to embed a shape of interest

as the zero level set of a distance function in the higher dimensional volumetric space. The

distance transform is invariant to translation and rotation, and one can predict the effect of scale

variations on such representation [85]. Hence it is a powerful selectionto implicitly represent

a shape in arbitrary dimension.

We first consider the 2D case. LetΦ : Ω → R+ be a Lipschitz function that refers to

the distance transform of a shapeM. By definitionΩ is bounded since it refers to the image

domain. The shape defines a partition of the image domainΩ: the region that is enclosed byM,

[RM], and the background region [Ω − RM]. Given these definitions, the following implicit

shape representation is considered:

ΦM(x, y) =







0, (x, y) ∈ M

+D((x, y),M), (x, y) ∈ RM

−D((x, y),M), (x, y) ∈ [Ω −RM]

(2.3)

whereD((x, y),M) refers to the minimum Euclidean distance between the image pixel loca-

tion x = (x, y) and the shapeM. If M is an open structure, the un-signed distance transform

is used instead. Some pictorial examples of the implicit shape representation can be found in

[Fig. (2.1)].

The representation is similarly defined in 3D. LetΦ : Ω → R+ be a Lipschitz function that

refers to the distance transform of a 3D shapeM. Ω refers to the 3D volumetric image domain.

Then the implicit shape representation in 3D is defined as:

ΦM(x, y, z) =







0, (x, y, z) ∈ M

+D((x, y, z),M), (x, y, z) ∈ RM

−D((x, y, z),M), (x, y, z) ∈ [Ω −RM]

whereD((x, y, z),M) refers to the minimum Euclidean distance between the 3D image voxel
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Figure 2.1:Implicit Representations of 2D Shapes: (a) hand, (b) dude. (1) visualization of the higher
dimensional embedding space. (2) projection of the implicit representation as a 2D image.

locationx = (x, y, z) and the shapeM.

By representing shapes as distance map “images”, the implicit shape representation facil-

itates the integration of shape and intensity information. This representation also provides a

feature space in which objective functions that are optimized using a gradient descent method

can be conveniently used. One can prove that the gradient of the embedding distance function

is a unit vector in the normal direction of the shape; and the representation satisfies a sufficient

condition for the convergence of gradient descent methods, which requires continuous first

derivatives. Furthermore, in registration problems, the use of the implicit representation pro-

vides additional support to the registration process around the shape boundaries and facilitates

the imposition of smoothness constraints, since one would like to align the originalstructures as

well as their clones that are positioned coherently in the image/volume plane. Finally, one can

refer to recent work [128] that demonstrates the robustness and stabilityof such representation

to noise and shape perturbations.

There are two concerns associated with the implicit shape representation that need to be

addressed. The main concern is in its computational complexity since it has onedimension

higher than the original shape. In our work, this efficiency problem is addressed by using only

a narrow band around the shape in the embedding space as the sample domainfor segmentation
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or registration purposes. This significantly speeds up the execution, whileproducing compara-

ble results to that using the full image domain. Another concern is the preservation of shape

topology after deformation because the order information between neighboring shape elements

are lost in the embedding space. In our framework, this problem is solved implicitly because we

use Incremental Free Form Deformations (IFFD) to represent deformations. The IFFD, with

cubic B-spline basis functions as the choice of interpolating spline, guaranteesC1 continuity at

control points andC2 continuity everywhere else during deformation. These properties ensure

continuous, smooth deformations that preserve the topology and coherence of shapes in their

implicit representation.

2.3 Nonparametric Appearance Representations

In our framework, we use the nonparametric appearance representation to approximate the

interior intensity or texture statistics of an object or a deformable model. In this way, we do not

need any explicit appearance parameters, since the nonparametric representation can be derived

from pixel intensities directly. Coupled with the parameter-free implicit shape representation,

we can achieve the integration of shape and appearance without separate shape or appearance

parameters, and both sources of information can be represented on a pixel-wise basis in the

image domain.

We propose three levels of nonparametric appearance representation,which cover the con-

tinuum from gray-level intensity to textures with large-scale periodic patterns.

2.3.1 Bottom Level: Nonparametric Kernel-based Intensity p.d.f. Estimation

The first level of nonparametric representation considers accumulativepixel intensity statistics.

Suppose a model (deformable model or statistical model),ΦM, is placed on an imageI, the

image region bounded by the model isRM, then the nonparametric kernel-based intensity

p.d.f. estimated using a Gaussian kernel is:

P(i
∣
∣ΦM) =

1

V (RM)

∫∫

RM

1√
2πσ

e
−(i−I(y))2

2σ2 dy (2.4)
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Figure 2.2:The Left Ventricle Endocardium segmentation, demonstrating Metamorphs texture repre-
sentation. (1) Initial model. (2) Intermediate result after 4 iterations. (3) Final converged result after 10
iterations. (a) The evolving model drawn on original image.(b) Interior of the evolving model. (c) The
intensity p.d.f. of the model interior. (d) The image intensity probability map according to the p.d.f. of
the model interior.

wherei = 0, ..., 255 denotes the pixel intensity values,V (RM) denotes the volume ofRM, y

represents pixels in the regionRM, andσ is a constant specifying the width of the Gaussian

kernel (we setσ = 4 pixels in all our experiments).

One example of this nonparametric density estimation for a deformable model canbe seen

in Fig. 2.2. The zero level set of the evolving modelsΦM are drawn on top of the original

image in Fig. 2.2(a). The model interior regionsRM are cropped and shown in Fig. 2.2(b).

Given the model interiors, their nonparametric intensity p.d.f.sP(i
∣
∣ΦM) are shown in Fig.

2.2(c), where the horizontal axis denotes the intensity valuesi = 0, ...255, and the vertical axis

denotes the probability valuesP ∈ [0, 1].

Over the entire imageI, for any pixelx, with intensity valuei, we can also evaluate the

probability of this pixel’s intensity according to the model interior intensity p.d.f., using Eq.

2.4. This way, we can compute a probability (or likelihood) map as shown in Fig.2.2(d).
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2.3.2 Middle Level: Nonparametric Statistics of Texons

In order to take into account the spatial correlation between neighboring pixels, the middle

level appearance representation first determines a “best” natural scale for the texture elements

that are basic building blocks of the model interior (or object) texture. (We call such texture

elements “texons”, following the naming convention in [60, 69, 127].) Then the nonparametric

statistics of the texons are estimated.

Best Local Scale for Model Interior Texons

We compute the “best’ scale of the texons using a detector based on comparing the texon-

interior intensity p.d.f. with the whole model-interior (or object) intensity p.d.f., andwe deter-

mine the scale of the texon as the smallsest scale that provide a texon p.d.f. thatis sufficiently

close to the overall model interior p.d.f.

Suppose a model,ΦM, is placed on imageI, and the image region bounded by the model

is RM, we use the nonparametric kernel-based method (Eq. 2.4) to approximate thep.d.f. of

the model-interior intensity,P(i
∣
∣ΦM). We also denoteP(i

∣
∣ΦM) aspm.

Similarly, the intensity p.d.f. for a local texon can also be defined as in Eq. 2.4,the only

difference being that the integration is over pixels inside the texon. Let us denote a texon of

scales centered at a pixelx by T (x, s), and its interior intensity p.d.f. bypT (x,s). ThenpT (x,s)

is defined by:

pT (x,s) = P(i
∣
∣T (x, s)) =

1

V (T (x, s))

∫∫

T (x,s)

1√
2πσ

e
−(i−I(y))2

2σ2 dy (2.5)

To measure the dissimilarity between two probability density functions, we adoptan information-

theoretic distance measure, the Kullback-Leibler (K-L) Divergence [1]. Since the K-L diver-

gence is asymmetric, we instead use one of its symmetrized relative – the Chernoff Information.

The Chernoff Information betweenp1 andp2 is defined by:

C(p2‖p1) = max
0≤t≤1

− logµ(t)

whereµ(t) =
∫

[p1(i)]
1−t[p2(i)]

tdi. A special case of Chernoff ”distance” is the Bhattachayya



20

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

Intensity

P
ro

b
a

b
ili

ty

(a) (b)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

15 16 17 18 19 20 21 22
1

2

3

4

5

6

7

8

9

10

(c) (d)

Figure 2.3:(a) Cheeta image. Outer large circle shows a model initialized inside the object of interest,
inner small circle shows the determined best scale for model-interior texons. (b) Overall model interior
p.d.f. (c) Y axis: K-L distance between texon p.d.f. and overall model-interior p.d.f.; X axis: changing
scale (i.e. radius) of the texon under evaluation. Each curve represents a texon centered at a different
pixel inside the model. (d) The best scale determined remains stable as we change the size of the model.

”distance”, in whicht is chosen to be12 , i.e., the Bhattachayya ”distance” betweenp1 andp2

is:

B(p2‖p1) = − logµ(
1

2
) (2.6)

In order to facilitate notation, we write:

ρ(p2‖p1) = µ(
1

2
) =

∫

[p1(i)]
1
2 [p2(i)]

1
2di (2.7)

Clearly, when the value forρ ranges from one to zero, the value forB goes from zero to infinity.

In summary, the steps in determining the scale of texons inside a model (or an object) are

as follows.

1. Approximate the intensity p.d.f. of the overall model interior (Eq. 2.4). Denote this p.d.f.

aspm.
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The p.d.f. for a cheetah example based on an initial model (indicated by the large circle)

in Fig. 2.3(a) is displayed in Fig. 2.3(b).

2. Choose a best scalês for the model interior texons among all possible scales between

1...S 1.

To determine the best scaleŝ, we compute the Bhattachayya distance between the model-

interior p.d.f.,pm, and the texon intensity p.d.fs,pT (x,s), for all pixelsx inside the model

and for all scaless = 1...S. Fig. 2.3(c) visualizes the functional relationship between

such distances and the scale in a graph. In the graph, each curve represents the “distance-

scale” function for texons centered at a different pixel. From the graph, we can see that,

as the scale increases, the Bhattachayya distance decreases asymptotically at all pixels,

and all curves finally converge at a small value. This behavior proves the validity of

the usage of this symmetrized K-L distance measure, and it also exposes to usa way to

determine the natural scale of the model interior texons – the scale corresponding to the

point of inflection on the Distance-Scale function curves. Since we get a scale value for

every pixel inside the model this way, we use a robust estimator, the median estimator,

to choose the best scaleŝ as the median of the inflection-point scales chosen for all these

pixels. On Fig. 2.3(a), we indicate the best scale computed this way by the inner small

circle.

Based on our experiments, this ”best” natural scale for model-interior texons determined

using the method above is invariant to the size of the model. Fig. 2.3(d) shows the functional

relation between the best scale chosen vs. the size of the model for the cheetah example. We

can see from the curve that the best scale remains stable as the size of the model changes. This

behavior is also observed in many other examples that we tested.

Nonparametric Statistics of Texons

Once we have determined the scaleŝ for model-interior texons, we can estimate the nonpara-

metric statistics of the texons. We use the kernel-based approximation to capture the probability

1Here we assume that the model interior contains at least one texon, and the largest test scaleS is smaller than
the size of the model.
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density function (p.d.f.) of the Bhattachayya distance values (see Eq. 2.6), which are computed

as the distances between the p.d.fs of texons of scaleŝ and the overall model-interior p.d.f.

Suppose a model,ΦM, is placed on imageI and bounds an image region,RM, then the non-

parametric kernel-based Bhattachayya distance value p.d.f. estimated usinga Gaussian kernel

is:

P(T (x, ŝ)
∣
∣ΦM) =

1

V (RM)

∫∫

RM

1√
2πσ

e
−(B(pT (x,s)‖pm)−B(pT (y,s)‖pm))2

2σ2 dy (2.8)

where

• V (RM) is the volume of the model-interior regionRM,

• T (x, ŝ) represents a texon centered at any pixelx in imageI and with scalês,

• pT (x,ŝ) is the intensity p.d.f. of the texonT (x, ŝ),

• pm is the overall model interior intensity p.d.f.,

• B(pT (x,s)‖pm is the Bhattachayya distance between the texon p.d.f. and the overall

model-interior p.d.f.,

• T (y, ŝ) represents any texon centered at a pixely inside the model and with scalês,

• pT (y,ŝ) is the intensity p.d.f. of the texonT (y, ŝ), and

• B(pT (y,s)‖pm is the Bhattachayya distance between the texon p.d.f. and the overall

model-interior p.d.f., and

• σ is a constant specifying the width of the Gaussian kernel.

Using the above Eq. 2.8, we can compute the probability of any texon of scaleŝ being

consistent with the model-interior texture, thus being part of the object on which the model is

initialize. On the cheetah image (Fig. 2.3(a)), the texture probability map computedusing this

middle level representation is shown in Fig. 2.5(c).
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(1)

(2)

Figure 2.4:(1) Gabor filters in a small bank with constant frequency and shape, and varying orientation.
(2) Responses of the cheetah image to Gabor filters in (1).

2.3.3 Top Level: Nonparametric Statistics of Gabor Filter Responses

In the middle level representation, one limitation of using the nonparametric intensity p.d.f. to

approximate texon-interior statistics is that, the information on pixel order and spatial correla-

tion between pixels within a texon is lost. For instance, if we take a texon inside theobject,

randomly re-permute all pixels within it to generate a new texon, then copy this new texon to

locations surrounding the object, then the computation in Eq. 2.8 would have trouble differen-

tiating these two kinds of texons, even though they appear different.

To address this problem, the third level texture representation further considers the spatial

correlation between pixels within a texon, by applying a small number of gabor filters [27] to

the model interior and learning statistics of the Gabor responses.

A small Gabor filter bank withN(N = 4) Gabor filters are shown in Fig. 2.4(1). The filters

have constant frequency and shape, but with varying orientations. The frequency and Gaussian-

envelop shape of the filters are computed based on the pre-determined scale, ŝ, of model-interior

texons. For each of theN Gabor filters, we get a response imageRn, n = 1, ..., N , as shown

in Fig. 2.4(2). Then instead of on the original image, we compute the nonparametric texon

statistics on each response image, using the middle level representation equation Eq. 2.8. Let

us denote the probability density function acquired onRn asPn(T (x, ŝ)
∣
∣ΦM), then the top-

level texon statistics based on all Gabor filter responses is defined by:

P(T (x, ŝ)
∣
∣ΦM) =

N∏

n=1

Pn(T (x, ŝ)
∣
∣ΦM) (2.9)
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This relation can be easily derived given that the responses from different Gabor-filter bases are

conditionally independent of each other.

On the cheetah image (Fig. 2.3(a)), the texture probability map computed using this top

level representation is shown in Fig. 2.5(d).

2.3.4 Choosing the Right Level of Appearance Representation

Given the three levels of nonparametric appearance representation, it isoften domain-specific

as to which level is the right level to use in segmentation problems. From the bottom to the

top level, the texture representation gets increasingly more specific so that textures that can

not be differentiated by a lower level representation can be differentiated by a higher level

representation. On the other hand, as the representation gets more and more specific, an object

with gradually varying and non-uniform texture patterns may be partitioned into several parts.

A useful parameter that can assist the choice is the scale of the texons,ŝ, since this scale re-

veals to some extent the characteristics of the model-interior texture. Ifŝ is very small (e.g. the

radius of texons is less than 3 pixels wide), the model-interior texture is mostly homogeneous

with some level of noise, hence it is not necessary to further consider thespatial correlation

between pixels, and the bottom level nonparametric representation (Eq. 2.4) is sufficient and it

is the most efficient. An example of this case can be seen from Fig. 2.2. On theother hand,

if ŝ is rather large, we predict that the model-interior texture consists of periodic mosaics of

large-scale patterns, then the bottom level representation may not be appropriate, as can be

seen from Fig. 2.5(b). In this case, either the middle level (Fig. 2.5(c)) orthe top level (Fig.

2.5(d)) representations can be used, depending on the accuracy andperformance requirements

for segmentation.

2.4 Dynamics: Deformation Representation for Both Shape andAppearance

In many vision and imaging problems, a key component is the dynamics or deformations that

drive one shape or image to another. In model-based segmentation, deformations are to be

solved to deform a model to fit an object’s boundary. In registration, deformations are to be

solved to establish correspondences between two shapes or two images.
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(a) (b) (c) (d)

Figure 2.5: (a) the original cheetah image, (b) likelihood map computedfrom the bottom level rep-
resentation using intensity statistics, (c) likelihood map computed from the middle level representation
using texon statistics, (d) likelihood map computed from the top level representation using gabor filter
response statistics.

In our pursuit of integrating shape and appearance, we found the Free Form Deformations

(FFD) is a powerful tool to be a unified deformation model for both shapesand appearances.

FFD is a space warping technique that represent the deformations of a space. In our unified

shape and intensity feature space, there are two “images” associated with one underlying im-

age domain: one image encodes the shape information using the implicit shape distance map

“image”, and the other is the intensity image that encodes the appearance information. Hence

by deforming the space that corresponds to the common underlying image domain, both shape

and appearance are deforming. In the inverse problem, the FFD deformations (or deformations

of the space) can be derived from energy functions that are based on information from both the

shape and intensity images.

The essence of FFD is to deform an object by manipulating a regular control lattice P

overlaid on its volumetric embedding space. The deformation of the control lattice consists

of displacements of all the control points in the lattice, and from these sparsedisplacements,

a dense deformation field for every pixel in the embedding space can be acquired through

interpolation using an interpolating basis function, such as Bezier spline or B-spline functions.

One illustrative example is shown in [Fig. (2.6)]. A circular model [Fig. (2.6).1.a] is implicitly

embedded as the zero level set of a distance function [Fig. (2.6).1.b]. A regular control lattice

(drawn in green) is overlaid on this embedding space. When the embedding space deforms due

to the deformation of the FFD control lattice as shown in [Fig. (2.6).b], the model undergoes

an expansion in its object-centered coordinate system. [Fig. (2.6).c] shows another example of

free-form deformation given a particular FFD control lattice deformation.

In this thesis, we propose an extension of the FFD technique, which we callthe Incremental
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(1)

(2)
(a) (b) (c)

Figure 2.6: Model shape deformations based on FFD. (1) The deformingmodels. (2) The
implicit representations for the model shapes. (a) The initial shape. (b) Example FFD control
lattice deformation to expand the shape. (c) Another FFD control lattice deformation to deform
the shape in a free-form manner.

Free Form Deformations (IFFD) [54]. IFFD uses the Cubic B-spline functions as the interpo-

lating basis functions. In this way, it enforces smoothness constraints implicitly, guaranteeing

C1 continuity at control points andC2 continuity everywhere else. As a result, the recovered

deformation field is smooth, continuous, preserves shape topology/coherence, and guarantees

a one-to-one mapping. The formulation of IFFD is presented below.

2.4.1 IFFD Deformation Formulation

Let us consider a lattice of control points

P = {Pm,n} = {(P x
m,n, P

y
m,n)}; m = 1, ...,M, n = 1, ..., N (2.10)

overlaid to a regionΓc = {x} = {(x, y)|1 ≤ x ≤ X, 1 ≤ y ≤ Y } in the embedding space

that encloses a model (or an object). Let us denote its initial regular configuration with no

deformation asP 0 (e.g., [Fig. (2.6).1]), and the deforming configuration asP = P 0 + δP .

Then the IFFD parameters are the deformation improvements of the control points in bothx

andy directions:

Θ = δP = {(δP x
m,n, δP

y
m,n)}; (m,n) ∈ [1,M ] × [1, N ] (2.11)
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Suppose the control lattice deforms fromP 0 to P , the deformed position of any pixelx =

(x, y) in the embedding space is defined by a tensor product of cubic B-splines:

D(x) =
3∑

k=0

3∑

l=0

Bk(u)Bl(v)Pi+k,j+l (2.12)

wherei = ⌊ x
X
· (M − 1)⌋+ 1, j = ⌊ y

Y
· (N − 1)⌋+ 1. This is the familiar definition for cubic

B-spline based interpolation, and the terms in the formula refer to:

1. Pi+k,j+l, (k, l) ∈ [0, 3] × [0, 3] are the coordinates of the sixteen control points in the

neighborhood of pixelx.

2. Bk(u) represents thekth basis function of cubic B-spline:

B0(u) = (1 − u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6

with u = x
X

·M − ⌊ x
X

·M⌋.

Bl(v) is similarly defined, withv = y
Y
·N − ⌊ y

Y
·N⌋.

According to our IFFD formulationP = P 0 + δP , we can re-write [Eq. 2.12] in terms of

the IFFD parametersΘ = δP :

D(Θ;x) =
3∑

k=0

3∑

l=0

Bk(u)Bl(v)(P
0
i+k,j+l + δPi+k,j+l)

=
3∑

k=0

3∑

l=0

Bk(u)Bl(v)P
0
i+k,j+l +

3∑

k=0

3∑

l=0

Bk(u)Bl(v)δPi+k,j+l (2.13)

Based on the linear precision property of B-splines, a B-spline curve through collinear con-

trol points is itself linear, hence the initial regular configuration of control latticeP 0 generates
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the un-deformed space, i.e., for any pixelx in the sampling domain, we have:

x =
3∑

k=0

3∑

l=0

Bk(u)Bl(v)P
0
i+k,j+l (2.14)

wherei, j are derived the same way as in [Eq. 2.12].

Now combining [Eq. 2.13] and [Eq. 2.14], we have:

D(Θ;x) = x+ δD(Θ;x)

= x+
3∑

k=0

3∑

l=0

Bk(u)Bl(v)δPi+k,j+l (2.15)

Compared to the traditional FFD, the IFFD formulation above simplifies the integration of

smoothness constraints, and accounts for an efficient multi-level approach (see section 4.2.4)

to deal with both large and small non-rigid deformations.

2.5 Summary

In summary, this chapter presents the shape, appearance and deformation representations in our

framework. In the next few chapters, we will introduce novel algorithms for model-based seg-

mentation, registration and visual learning that use these representations tonaturally integrate

shape and appearance information to achieve more robust results.
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Chapter 3

Metamorphs: Deformable Shape and Appearance Models

Integrating region statistics constraints into traditional shape-based deformable models has

been a centerpiece of the efforts toward more robust, well-behaved models in boundary ex-

traction and segmentation. Most of the work in this area consists of methods that loosely

couple edge and region information either inparametricdeformable models or ingeometric

deformable models. In this chapter, we propose a new class of deformablemodels, Meta-

morphs, which integrate model shape and interior appearance more naturally and address the

limitations in previous integration efforts. The main features of Metamorphs arethe implicit

shape representation, the nonparametric approximation of model-interior intensity statistics,

and the incremental free form Deformations (IFFD) introduced in Chapter2. With these repre-

sentations, a unified variational framework can be formulated to derive theMetamorphs model

dynamics when the models are applied to segmentation. The framework consistsof both edge

and region energy terms and both types of terms are differentiable with respect to a common

set of IFFD parameters. A Metamorphs model can be initialized far-away from the boundary

and efficiently converge to an optimal solution. The main driving forces arean anisotropic

balloon force derived from region-based energy terms, and edge-based forces derived from

edge-based energy terms. During model deformation, the forces are updated dynamically and

the deformations are constrained to guarantee consistent model-interior intensity statistics. The

Metamorphs formulation also allows natural merging and competition of multiple models. To

segment objects with large-scale textures, the texture representation with texon scale analysis

introduced in chapter 2 is used, and forces are derived from nonparametric texture statistics to

drive model deformations. We demonstrate the robustness of Metamorphs models using both

natural and medical images that have high noise levels and complex textures.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Metamorphs segmentation of brain structure. (a) A MRI imageof the brain, with the
initialized circular model drawn on top. (b) Edges detectedusing canny edge detector. (c) The intensity
likelihood map computed according to the probability density function of the initial model interior.
(d) Intermediate evolving model after 15 iterations. (e) The intensity likelihood map according to the
intermediate model’s interior statistics. (f) Final converged model after 38 iterations.

3.1 Introduction

Automated image segmentation is a fundamental problem in computer vision and medical im-

age analysis. It remains difficult to solve the problem robustly however, due to the common

presence of cluttered objects, object texture, image noise, variations in lighting, and various

other artifacts in natural or medical images. To address these difficulties, deformable model-

based methods have been extensively studied and widely used, with considerable success be-

cause of their ability to integrate high-level knowledge with low-level image processing.

Deformable models[62, 106, 21, 14, 70] are curves or surfaces that deform under the influ-

ence of internal smoothness and external image forces to delineate objectboundary. Compared

to local edge-based methods, deformable models have the advantage of estimating boundary

with smooth curves or surfaces that bridge over boundary gaps. However, they may get stuck

in local minima during evolution, when there is high image noise or spurious structures in-

side/around the object boundary.

In this chapter, we propose a new class of deformable models which integrate region inten-

sity or texture information with boundary or edge information to achieve more robust segmen-

tation. We term the new models “Metamorphs”.
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The basic framework of applying a Metamorphs model to boundary extraction is depicted

in Fig. 3.1. The goal is to find the boundary of the corpus callosum brain structure on a MRI

image of the brain. First, a simple-shape (e.g. circular) model is initialized centered around a

seed patch inside the corpus callosum (see the blue circle in Fig. 3.1(a)). The model then de-

forms toward image edges as well as toward the boundary of a region that has similar intensity

statistics as the model interior1. Fig. 3.1(b) shows the edges detected using a canny edge detec-

tor; note that the edge detector with automatically-determined thresholds givesresult that have

spurious edges and boundary gaps. To counter the effect of noise inedge detection, a region of

interest (ROI) that has similar intensity statistics with the model interior is approximated. We

first estimate the model-interior probability density function (p.d.f.) of intensity, then a like-

lihood map is computed which specifies the likelihood of a pixel’s intensity according to the

model-interior p.d.f. Fig. 3.1(c) shows the likelihood map computed based on theinitial model

interior; and we threshold the likelihood map to get the ROI. The evolution of themodel is then

derived using a gradient descent method from a unified variational framework that consists of

energy terms defined on both edges and the ROI boundary. Fig. 3.1(d) shows the model after

15 iterations of deformation. As the model deforms, the model interior and its intensity statis-

tics change, and the new model-interior statistics leads to the update of the likelihood map and

the update of the ROI boundary for the model to deform toward. This onlineadaptive learning

process empowers the model to find the boundary of objects with non-uniform appearances

more robustly. Fig. 3.1(e) shows the updated likelihood map given the evolved model in Fig.

3.1(d). Finally, the model converges taking a balance between the edge and region influences,

and the result is shown in Fig. 3.1(f).

The key property of Metamorphs is in that they naturally couple edge information with

region statistics. By doing so, the new models generalize two major classes of deformable

models in the literature: theparametricmodels and thegeometricmodels, which are tradi-

tionally shape-based, and take into account only edge or image gradient information. In the

remainder of the Introduction section, we will briefly review theparametricand geometric

models, as well as previous efforts to incorporate region statistics into thesemodels. We then

discuss in more detail the novel aspects and contributions of Metamorphs.

1the model interior refers to the area in the image that is enclosed by the current deformable model.
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3.1.1 Shape-based Deformable Models

Various snakes and deformable models proposed in the literature can be largely classified into

two categories. The first class is the parametric (explicit) models that explicitly represent de-

formable curves and surfaces in their parametric form during the segmentation process. Ex-

amples are “Snakes” (or Active Contour Models) [62] and their extensions in both 2D and 3D

[106, 21, 74, 72, 118]. The other class of deformable models is the geometric (implicit) de-

formable models [14, 70, 121, 15]. These models represent curves and surfaces implicitly as

the level set of a higher-dimensional scalar function [103, 80], and themodel evolution is based

on the theory of curve evolution, with speed function specifically designedto incorporate im-

age information. Comparing the two classes of deformable models, the parametric models have

a compact representation and allow fast convergence, while the geometricmodels can handle

naturally topological changes.

Although the parametric and geometric deformable models differ both in their formulations

and in their implementations, both classes traditionally use primarily edge (or image gradient)

information to derive external image forces to drive a shape-based model.In parametric models,

a typical formulation [62] for the energy term deriving the external image forces is as follows:

Eext(C) = −
∫ 1

0

∣
∣∇Î

(
C(s)

)∣
∣2ds (3.1)

HereC represents the parametric curve model parameterized by curve lengths, Î = Gσ ∗ I

is the imageI after smoothing with a Gaussian kernel of standard deviationσ, and∇Î(C) is

the image gradient along the curve. Basically by minimizing this energy term, the accumu-

lative image gradient along the curve is maximized, which means that the parametric model

is attracted toward strong edges that correspond to pixels with local-maxima image gradient

values.

In geometric models, a typical formulation [14] for the objective function thatdrives the

front propagation of the level set function is:

E(C) =

∫ 1

0
g
(∣
∣∇Î(C(s))

∣
∣
)∣
∣C′(s)

∣
∣ds, where g

(∣
∣∇Î

∣
∣
)

=
1

1 +
∣
∣∇Î

∣
∣2

(3.2)
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(a) (b) (c) (d)

Figure 3.2:Potential problems in using a shape-only deformable model that moves under the influence
of external forces derived from edge or image gradient information. The problematic areas are pointed
by arrows.

HereC represents the front (i.e. zero level set) curve of the evolving level set function. To

minimize the objective function, the front curve deforms along its normal direction C′′(s), and

its speed is controlled by the speed functiong
(∣
∣∇Î

∣
∣
)
. Given the form of the speed function

(Eq. (3.2)), one can see that,g
(∣
∣∇Î

∣
∣
)

is defined based on image gradient∇Î, and it is positive

in homogeneous areas and zero at ideal edges. Hence the curve evolves at a nearly constant

speed across homogeneous regions and stops at strong edges.

The reliance on edge information in both types of traditional deformable models, however,

makes the models sensitive to noise, spurious edges, and highly dependent on the model ini-

tialization. For instance, Fig. 3.2 shows several situations where deformable models deforming

based on edges may have trouble converging to the optimal solutions. In Fig.3.2(a-b), because

of the weak image gradient along one side of the Left Ventricle, there is a large gap on the

detected edges. Even though a parametric model can bridge over a small gap, it is likely to

leak through a gap of this scale, and be attracted to the strong edges of the Epicardium instead.

A geometric model is even less effective in countering the effect of boundary gaps, thus more

likely to leak through the gap and converge to a wrong solution. In Fig. 3.2(c-d), there are some

high image gradient areas and spurious edges detected inside the object of interest. In this case,

a parametric model started small inside the object may get stuck in local minima and fails to

reach the desired boundary; on the other hand, a topologically-free geometric model will keep

evolving toward the boundary, yet the resulting front curve may contain small holes or islands,

which correspond to the spurious structures instead of the true boundary.
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3.1.2 Integrating Region Statistics Constraints

In order to address the limitations in shape-only deformable models, and develop more robust

models for boundary extraction, there have been significant efforts to integrate region informa-

tion into both parametric and geometric deformable models.

Along the line of parametric models, region analysis strategies have been proposed [90,

126, 59, 18] to augment the “snake” (active contour) models. In [90],a region-based energy

criterion for active contours is introduced by including photometric energyterms that assume

the local partition of the image into an object region and a background region. The optimiza-

tion of the integrated energy function is mostly heuristic however, and it accounts for internal

and external energies in separate steps. In [126], a generalized energy function that combines

aspects of snakes/balloons and region growing is proposed and the minimization of the crite-

rion is guaranteed to converge to a local minimum. Yet this formulation still does not address

the problem of unifying shape and intensity, because it approximates the region intensity sta-

tistics using parameters of a Gaussian distribution, while the model shape is represented by a

parametric spline curve. This large difference in representation prevented the use of gradient

descent methods to update both region parameters and shape parameters ina unified optimiza-

tion process. As a result, the two sets of parameters are not updated simultaneously in [126],

rather they are estimated in separate steps and the energy function has to beminimized in an

iterative way. In other hybrid segmentation frameworks such as those proposed by [18, 59], a

region based segmentation module is used to get a rough binary mask of the object of interest.

Then this rough estimation of the object can be used to initialize a deformable model, which

will deform to fit edge features in the image using gradient information. In these frameworks,

the region-based and edge-based modules are still separate energy minimization processes, so

that the integration is still imperfect and errors from one module can hardly be corrected by the

other.

Along the line of geometric models, the integration of region and edge information[122, 97,

112, 83] has been mostly based on solving reduced cases of the minimal partition problem in

the Mumford and Shah model for segmentation [78]. In the Mumford-Shah model, an optimal

piecewise smooth function is pursued to approximate an observed image, such that the function
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varies smoothly within each region, and rapidly or discontinuously across the boundaries of

different regions. The solution represents a partition of the image into several regions. A

typical formulation of the framework is as follows:

FMS(u,C) =

∫

Ω
(u− u0)

2dxdy + a

∫

Ω\C
|∇u|2dxdy + b|C| (3.3)

Hereu0 is the observed, possibly noisy image, andu is the pursued “optimal” piecewise smooth

approximation ofu0. Ω represents the image domain,∇u is the gradient ofu, andC are the

boundary curves that approximate the edges inu0. One can see that the first term of the func-

tion minimizes the difference betweenu andu0, the second term pursues the smoothness within

each region (i.e. outside the setC), and the third term constraints the boundary curvesC to be

smooth and have the shortest distance. Although this framework nicely incorporates gradient

and region criteria into a single energy function, no practical globally-optimal solution for the

function is available, most notably because of the mathematical difficulties documented e.g. in

[78]. In the recent few years, progress has been made and solutionsfor several reduced cases

of the Mumford-Shah functional and their implementations have been proposed in the level set

framework. One approach presented in [122] is able to segment images that consist of two

or three types of regions, each characterizable by a given statistics such as the mean intensity

and variance. The approach is implemented in a curve evolution framework and is able to

cluster pixels in an image based on both geometric and statistical constraints. Nevertheless the

algorithm requires knowna priori the number of segments in the image and its performance

depends upon the discriminating power of the chosen set of statistics (i.e. themeans and vari-

ances). Another approach in [97] applies the multi-phase level set representation to piece-wise

constant segmentation based on a reduced model of Mumford and Shah. It is considered as

solving a classification problem because it assumes the mean intensities of classes are known

a priori, and only the set of boundaries are unknown. In the works presentedby [15, 112],

piece-wise constant and piece-wise smooth approximations of the Mumford-Shah functional

are derived for two-phase (i.e. two regions) [15] or multiphase (i.e. multipleregions) [112]

cases in a variational level set framework. The optimization of the framework is based on an
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iterative algorithm that approximates the region mean intensities and level-set shape in sepa-

rate steps. The approach is still not a guaranteed global minimizer of the functional, hence its

numerical results depend on the initialization of the model curves, and it may converge to a

local minimum only.Geodesic Active Region[83] is another frame partition framework which

integrates edge and region based modules. The algorithm consists of two stages: a modeling

stage that constructs a likelihood map of edge pixels and approximates region/class statistics

using mixture-of-Gaussian components, and a segmentation stage that useslevel set techniques

to solve for a set of smooth curves that are attracted to edge pixels and partition regions that

have the expected properties of the associated classes. The first stageof the algorithm requires

some off-line learning, and there is no online adaptive learning aspects in the method. From

the above approaches, one can see that they all solve the frame partition problem, and assume

piece-wise constant, piece-wise smooth, Gaussian, or Mixture-of-Gaussian intensity distribu-

tions within each partitioned region. However, the pursuit of a partition of the entire image may

cause some difficulties when dealing with busy images that contain many objects and clutter.

Their assumptions on the region intensity distributions also limit their effectiveness in finding

boundaries of objects whose interiors have textured appearance, and/or complex multi-modal

intensity distributions.

3.1.3 The Metamorphs Model

Having reviewed previous works on incorporating region constraints intoshape-based deformable

models, we propose a new class of deformable models, which we call “Metamorphs”. Meta-

morphs efficiently address several limitations in previous integration efforts, by combining the

best features ofparametricand geometricmodels, and introducing novel formulations that

unify the representations for shape and intensity and derive the model deformations from both

edge and region information in a unified variational framework. The shapeof a Metamorphs

model is implicitly embedded in a higher-dimensional space of distance transforms, thus rep-

resented by a distance map “image”. This implicit shape representation has been introduced in

Chapter 2.2, and we use it in Metamorphs to specify model geometry so that noexplicit shape

parameters are needed. To capture the intensity or texture statistics of the model-interior region,

Metamorphs use the nonparametric kernel-based density approximation, which is introduced
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in Chapter 2.3. Unlike Gaussian or Mixture-of-Gaussian representations[126, 83], the non-

parametric statistics does not have explicit parameters and it gets updated automatically as the

model interior changes due to model deformation. The only set of parameters for Metamorphs

are those specifying model deformations, which are parameterized by the cubic B-spline based

Incremental Free Form Deformations (IFFD) [54]. The IFFD model is anextension of the Free

Form Deformations (FFD) models [2, 38, 6], and it is introduced in Chapter2.4.

In this chapter, we introduce the model dynamics of Metamorphs when they are used for

boundary finding in images. We formulate both edge and region energy termsthat are differ-

entiable with respect to the common set of model-deformation parameters. The overall energy

function is then optimized by a gradient-descent based method to deform the model toward

object boundary. During model evolution, a Metamorphs model has the online-learning aspect

which will constrain the model deformations such that the interior statistics of themodel after

each deformation is consistent with the statistics learned from the past historyof the model in-

teriors. The edge and region energy terms will have complementary effectsand they will aid the

model to overcome local minima due to small spurious edges inside the object, to prevent the

model from leaking at boundary gaps, and to enable the segmentation of objects with intensity

inhomogeneity and multi-modal interior statistics. An anisotropic balloon-force term is also

conveniently defined according to region constraints, which leads to two-way forces that effi-

ciently grow or shrink the model toward true object boundary. Furthermore, if multiple models

are initialized, they are allowed to evolve simultaneously, and upon collision theycan naturally

either merge or compete based on whether their interior statistics are sufficiently close. In the

case that the object to be segmented has large-scale texture, the nonparametric texture statistics

representations introduced in Chapter 2.3.2 and 2.3.3 can be used to derive region-based forces

to deform Metamorphs models toward the object boundary.

The Metamorphs framework has some similar components to works described by Region

Competition (RC) [126], Geodesic Active Contours (GAC) [14], and level-set based methods

[112, 83]. Our similarity to RC is in that both approaches do not solve a framepartition prob-

lem, rather they initialize the segmentation by putting multiple seed models across the image;

and both have a Bayes energy term that aims to maximize intensity likelihood givencurrent

estimate of the region statistics. However, the differences between the two are numerous: our
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work uses nonparametric statistics while RC uses Gaussian parameters; ourwork represents

model shape implicitly which enables natural extension to higher dimensions andtopology

changes, while RC requires explicit parameterization of the model curves/surfaces; we are able

to reduce two sets of parameters (one for shape, one for intensity) downto one (for model de-

formations) so that a unified gradient-descent based optimization scheme can be derived, while

RC keeps the two sets of parameters separate, hence adapts an iterative greedy algorithm that

finds a local minimum of its energy functional by updating the two parameters sets in alternat-

ing steps. The similar component between our work and GAC is in the design ofthe balloon

forces. We use a similar multiplicative form as in Eq. (3.2) to incorporate the speed function

that controls the speed of Metamorphs model evolution due to balloon forces.But our model

representation and speed function definition are very different from that in GAC: instead of

defining the speed function based on image gradient as in GAC, we derivethe speed function

from region constraints; instead of isotropic, nearly constant speed in homogeneous regions,

our speed function is anisotropic and its value is proportional to a model point’s distance from

the region boundary. Compared to other level-set approaches [112, 83], although Metamorphs

also use the implicit shape representation, the model evolution is more efficientand more robust

to noise and spurious structures, because their deformations are parameterized by FFD rather

than implemented in the curve evolution framework. The nonparametric intensity statistics in

Metamorphs is also more generic than those using Gaussian or Mixture-of-Gaussian.

The remainder of this chapter is organized as follows. In section section 3.2, we intro-

duce the energy functional and optimization schemes for Metamorphs when they are applied to

boundary finding in images. In section 3.3, we present experimental results using both intensity

and textured images. We conclude with discussions in section 3.4.

3.2 Boundary Finding with Metamorphs Model

In this section, we present the variational framework in which a Metamorphsmodel can be

used to find the boundary of an object of interest. Given a model initialized inside the object of

interest, we apply the scale analysis introduced in Chapter 2.3.2 to determine thescale of the
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(a) (b) (c)

Figure 3.3:The effect of small spurious edges on the “shape image”. (a) An MR image of the heart;
the object of interest is the endocardium of the left ventricle. (b) The edge map of the image. (c) The
derived “shape image” (un-signed distance transform of theedge map), with edge points drawn on top.
Note the effect of the small spurious edges on the “shape image” inside the object.

model-interior texture,̂s. If the scale is very small, we treat the image as an intensity image,

and use the bottom level nonparametric intensity p.d.f. representation for model-interior region

statistics (see chapter 2.3.1); in this case, the Metamorphs model dynamics arederived from

both edge-based energy terms and region-based energy terms, whoseformulations will be given

in section 3.2.1. On the other hand, if the texon scaleŝ is rather large (see Chapter 2.3.4), we

predict that the model-interior texture consists of periodic mosaics of large-scale patterns; in

this case, we formulate, in section 3.2.2, the energy terms that are derived from either the

middle level (see chapter 2.3.2) or the top level (see chapter 2.3.3) region texture statistics.

3.2.1 Boundary Finding in Intensity Images

In intensity images, the motion of a Metamorphs model toward object boundary isdriven by

two types of energy terms derived from the image: the edge data termsEE , and the region data

termsER. So the overall energy functionalE is defined by:

E = EE + kER (3.4)

wherek is a constant balancing the contribution of the two types of terms. In our formula-

tion, we are able to omit the model smoothness term in traditional parametric or level-set based

deformable models, since this smoothness is implicit by using the Incremental Free Form De-

formations. Next, we derive the edge and region data terms respectively.
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The Edge Data Terms

A Metamorphs model is attracted to edge features with high image gradient values. We encode

the edge information of an image using a “shape image”,Φ, which is derived from the un-

signed distance transform of the edge map of the image. The edge map is always computed

using a standard Canny Edge Detector implementation with default parameter settings. In Fig.

3.3(c), we can see the “shape image” of an example MR heart image.

To evolve a Metamorphs model toward image edges, we define two edge data terms – an

interior termEEi
and a boundary termEEb

:

EE = EEi
+ aEEb

(3.5)

In the interior edge-based term, we aim to minimize the Sum-of-Squared-Differences be-

tween the implicit shape representation values in the model interior and the underlying “shape

image” values at corresponding deformed positions. This can be written as:

EEi
=

1

V (RM)

∫∫

RM

(
ΦM(x) − Φ(D(Θ;x))

)2
dx (3.6)

In the above equation 3.6, the definitions for the following terms can be recalled from Chapter

2:

• ΦM refers to the implicit representation for model shapeM,

• RM refers to the model-interior region (i.e. the region that is enclosed byM in the

image domain),

• V (RM) is the volume of the model-interior region, and

• D(Θ;x) refers to the deformed position of the pixel§ given IFFD control lattice con-

figuration specified by the IFFD parametersΘ = δP = {(δP x
m,n, δP

y
m,n)}; (m,n) ∈

[1,M ] × [1, N ].

During optimization, this term will deform the model along the gradient direction of the

underlying “shape image”. Thus it will expand or shrink the model accordingly, serving as a

two-way balloon force implicitly and making the attraction range of the model large.
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Figure 3.4:At a small gap in the edges, the boundary data term constraints the model to go along a
path that coincides with the smooth shortest path connecting the two open ends of the gap. (a) Original
Image. (b) The edge map, note the small gap inside the green square region. (c) The “shape image”.
(d) Zoom-in view of the region inside the green square. The numbers are the “shape image” values at
each pixel location. The red dots are edge points, the small blue squares indicate a path favored by the
boundary term for a Metamorphs model.

The previous interior term is good in attracting the model toward boundary structures from

far away. However, when there are small spurious edges detected withinan object, the “shape

image” inside the object could differ from the model shape representation inthe surrounding

areas of those small edges. One such example can be seen in Fig. 3.3(a-c). To make the

model deformation more robust to such situations, we consider a separate boundary term, which

allows higher weights for pixels in a narrow band around the model boundary ∂RM.

EEb
=

1

V (∂RM)

∫∫

∂RM

(
Φ(D(Θ;x))

)2
dx (3.7)

Intuitively, this term will encourage deformations that map the model boundary to image

edge locations where the underlying “shape image” distance values are assmall (or as close

to zero) as possible. In the energy functional combining the interior and boundary edge data

terms [Eq. (3.5)], by setting the value of the constanta > 1, those model boundary pixels get

higher weights.

One additional advantage of the boundary term is that, at an edge with small gaps, this term

will constrain the model to go along the “geodesic” path on the “shape image”,which coincides

with the smooth shortest path connecting the two open ends of a gap. This behavior can be seen

from Fig. 3.4. Note that at a small gap of the edge map, the boundary term favors a path with

the smallest accumulative distance values to the edge points.
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The Region Data Terms

One of the most attractive aspects of the Metamorphs deformable models is that their interior

intensity statistics are learned dynamically, and their deformations are influenced by forces

derived from this dynamic region information. This region information is veryimportant to

help the models out of local minima, and converge to the true object boundaries. In Fig. 3.3,

the spurious edges both inside and around the object boundary degrade the reliability of the

“shape image” and the edge data terms. Yet the intensity probability map computedbased on

the interior intensity statistics of the model, as shown in Fig. 2.2(d), gives prettyclear indication

on where the rough boundary of the object is. In another MR heart imageshown in Fig. 3.5(1.a),

a large portion of the object (Endocardium) boundary is missing during computation of the

edge map using the default canny edge detector settings [Fig. 3.5(1.b)]. Relying solely on the

“shape image” [Fig. 3.5(1.c)] and the edge data terms, a model would have leaked through the

large gap and mistakenly converged to the outer epicardium boundary. Inthis situation, the

intensity probability maps [Fig. 3.5(2-4.d)] computed based on the intensity statistics of the

model-interior region become the key to optimal model convergence.

In our framework, we define two region data terms – a “Region Of Interest”(ROI) based

balloon termERl
and a Maximum Likelihood termERm , so the overall region-based energy

functionER is:

ER = ERl
+ bERm (3.8)

We determine the “Region Of Interest” (ROI) as the largest possible regionin the image

that has a consistent intensity distribution as the model interior. The purposeof the ROI-based

balloon term is to efficiently evolve the model toward the boundary (i.e. perimeter) of the ROI.

Given a modelM on imageI [Fig. 3.6(a)], we first compute the image intensity prob-

ability mapPI [Fig. 3.6(b)], based on the model interior intensity statistics (see Eq. 2.4 in

section 2.3.1). Then a threshold (typically the mean probability over the entire image domain)

is applied onPI to produce a binary imageBPI . More specifically, those pixels that have prob-

abilities higher than the threshold inPI are given the value1 inBPI , and all other pixels are set

to the value0 in BPI . We then apply binary image analysis onBPI to extract the connected

component that overlaps the model. Small holes in this connected component are filled using
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Figure 3.5:Segmentation of the Endocardium of the Left Ventricle in a MRimage with a large portion
of the object boundary edge missing. (1.a) the original image. (1.b) the edge map. (1.c) the “shape
image”. (2) initial model. (3) intermediate model. (4) converged model. (a) zero level set of the current
model drawn on the image. (b) model interiors. (c) the interior intensity p.d.f.s. (d) intensity probability
maps.

morphological operations, and finally we take this connected component as the current ROI.

Suppose the binary mask of this ROI isBIr [Fig. 3.6(c)], we encode its boundary information

by computing the “shape image” ofBIr, which is the un-signed distance transform of the re-

gion boundary [Fig. 3.6(d)]. Denote this “shape image” asΦr, the ROI-based balloon term is

defined as follows:

ERl
=

1

V (∂RM)

∫∫

∂RM

Φr(x)
(
ΦM(D(Θ;x))

)
dx (3.9)

where∂RM refers to the model affinity (i.e. a narrow band around the zero level setof the

model).

There are two components in the above ROI term, and they are combined multiplicatively.

The key to understand the first component,ΦM(D(Θ;x)), is to take note that this model shape

representation has negative values outside the model, zero value on the model, and positive
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(a) (b) (c) (d)

Figure 3.6:Deriving the ROI based region data term. (a) The model shown on the original image. (b)
The intensity probability map computed based on the model interior statistics. (c) The ROI derived from
the probability map after thresholding. (d) The “shape image” encoding boundary information of the
ROI.

values inside the model (see Eq. 2.3). Hence by this component alone, the model would

expand and grow like a balloon so as to minimize the value of the energy term. Thesecond

component in the energy term,Φr, is the ROI “shape image” and encodes the distance value

of each pixel from the ROI region boundary. It serves as a weighting (or modulation) factor

for the first component so that the speed of model evolution is proportional to the distance of

the model from the ROI boundary. That is, the model moves fast when it is far away from the

boundary and the underlyingΦr(x) values are large in the model affinity; it slows down as

it approaches the boundary, and stops at the boundary. This property of adaptively changing

speed leads to improved model evolution behavior.

Within the overall energy minimization framework, this ROI-based balloon term isthe most

effective in countering the effect of small spurious edges inside the object of interest (e.g. in

Fig. 3.3 and Fig. 3.12), since the ROI boundary is derived from region information alone. The

adaptively changing balloon forces generated by the term also expedite model convergence and

improve convergence accuracy, especially when the shape of the object is elongated, or has

salient protrusions or concavities.

The previous ROI term is efficient to deform the model toward object boundary when the

model is still far away. When the model gets close to the boundary, however, the ROI derived

may become less reliable due to gradual intensity changes in the boundary areas. To achieve

better convergence, we design another Maximum Likelihood (ML) region-based data term that

constrains the model to deform toward areas where the pixel probabilities of belonging to the

model interior intensity distribution are high. This ML term is formulated by maximizingthe
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log-likelihood of pixel intensities in a narrow band around the model after deformation:

ERm = − 1

V (∂RM)

∫∫

∂RM

logP(I(D(Θ;x))
∣
∣ΦM)dx

= − 1

V (∂RM)

∫∫

∂RM

[

log
1

V (RM)

+log
1√
2πσ

+ log

∫∫

RM

e
−(I(D(Θ;x))−I(y))2

2σ2 dy
]

dx (3.10)

During model evolution, when the model is still far away from the object boundary, this ML

term generates very little force to influence the model deformation. When the model gets close

to the boundary, however, the ML term generates significant forces to prevent the model from

leaking through large gaps (e.g. in Fig. 3.5), and help the model to converge to the true object

boundary.

Dynamic Evolution of the Model

In our formulations above, both edge data terms and region data terms are differentiable with

respect to the model deformation IFFD parametersΘ, thus a unified gradient-descent based

parameter updating scheme can be derived using both edge and region information. Based on

the energy term definitions, one can derive the following evolution equationfor each element

Θi in the deformation parametersΘ:

∂E

∂Θi
=
(∂EEi

∂Θi
+ a

∂EEb

∂Θi

)
+ k
(∂ERl

∂Θi
+ b

∂ERm

∂Θi

)
(3.11)

• The motion due to the edge data terms are:

∂EEi

∂Θi
=

1

V (RM)

∫∫

RM

2
(
ΦM(x) − Φ(D(Θ;x))

)
·
(
−∇Φ(D(Θ;x)) · ∂

∂Θi
D(Θ;x)

)
dx

∂EEb

∂Θi
=

1

V (∂RM)

∫∫

∂RM

2Φ(D(Θ;x)) ·
(
∇Φ(D(Θ;x)) · ∂

∂Θi
D(Θ;x)

)
dx
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• And the motion due to the region data terms are:

∂ERl

∂Θi
=

1

V (∂RM)

∫∫

∂RM

Φr(x)
(
∇ΦM(D(Θ;x)) · ∂

∂Θi
D(Θ;x)

)
dx

∂ERm

∂Θi
= − 1

V (∂RM)

∫∫

∂RM

[(
∫∫

RM

e
−(I(D(Θ;x))−I(y))2

2σ2 dy
)−1

∫∫

RM

e
−(I(D(Θ;x))−I(y))2

2σ2 ·

(−(I(D(Θ;x)) − I(y))

σ2
·
(
∇I(D(Θ;x)) · ∂

∂Θi
D(Θ;x)

)
)dy
]

dx

In the above formulas, the partial derivatives with respect to the IFFD deformation parameters,

∂
∂Θi

D(Θ;x), can be easily derived from the deformation formula forD(Θ;x) [Eq. (2.15)].

Details are given in the Appendix.

The Model Fitting Algorithm

Having defined the energy terms, the overall model fitting algorithm consists of the following

steps:

1. Initialize the deformation parametersΘ to beΘ0, which indicates no deformation.

2. Compute∂E
∂Θi

for each elementΘi in the deformation parametersΘ.

3. Update the parametersΘ′
i = Θi − λ · ∂E

∂Θi
. λ is the gradient descent step size.

4. Using the new parameters, compute the new modelM′ = D(Θ′;M).

5. Update the model. LetM = M′, re-compute the implicit shape representationΦM,

and the new partitions of the image domain by the new model: [RM], [Ω − RM], and

[∂RM]. Also re-initialize a regular FFD control lattice to cover the new model, and

update the ROI “shape image”φr based on the new model interior.

6. Repeat steps 1-5 until convergence.

In the algorithm, after each iteration, both model shape and model-interior intensity statis-

tics get updated, and deformation parameters get re-initialized for the new model. This allows

continuous, both large-scale and small-scale deformations for the model to converge to the

energy minimum.
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One important advantage of our framework is that, as the model evolves, themodel interior

changes, hence the model-interior intensity statistics get updated and the newstatistics are

used for further model evolution. This online learning property makes ourmodel evolution

framework a dynamic region growing process, which is more adaptable to segment objects

with non-homogeneous interior intensities and more robust to noise and small islands inside

an object. As examples, the evolving model-interior p.d.f.s and their corresponding image

intensity likelihood maps can be seen from Fig. 2.2, Fig. 3.5, and Fig. 3.12.

3.2.2 Boundary Finding in Textured Images

Recall from Chapter 2.3 that there are three levels of nonparametric appearance representation

in Metamorphs. The texon scaleŝ is the key parameter to determine which level of appearance

representation to use (see Chapter 2.3.4) when applying Metamorphs to a new image for seg-

mentation. If the image’s texon scale is small, we use the bottom level of representation, and

the boundary finding framework has been described above in Section 3.2.1. In this section, we

present the boundary finding framework for textured images whose natural texon scale is large.

We consider either the middle level (see chapter 2.3.2) or the top level (see chapter 2.3.3) region

texture statistics. In either case, a probability (or likelihood) map is computed (see Eq. 2.8 and

Eq. 2.9), which represents the likelihood of the texon surrounding everypixel in the image hav-

ing a consistent statistics with the model-interior. For instance, on the cheetah image example

(see Fig. 3.7(a)) that we used in Chapter 2, the likelihood map computed usingthe top-level

texon statistics is shown in Fig. 3.7(b)2. Let us denote this likelihood mapP(T (x, ŝ)
∣
∣ΦM)

asLI . We then improve the likelihood map by taking into account context information using

Markov Random Fields (MRF) based belief propagation, and formulate thevariational frame-

work for Metamorphs-based boundary finding in textured images. We will describe the belief

propagation step and the variational framework in detail below.

2This is the same as Fig. 2.5(d).
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(a) (b) (c)

Figure 3.7:(a) the original cheetah image. Initial Model: blue circle;Texon scale: red circle, (b) like-
lihood map computed based on the top-level texon statistics, (c) updated likelihood map after applying
BP based MRF.

Figure 3.8: The MRF Graphical Model.

Contextual Confirmation through Belief Propagation

The likelihood mapLI , computed by Eq. 2.8 using the middle level texon statistics or by Eq.

2.9 using the top level statistics, quantifies the probability of every local texonbelonging to part

of the texture region of interest. However, all measurements are still local, and no context infor-

mation between neighboring texons is accounted for. Markov Random Field(MRF) models are

often used to capture dependencies between neighboring cliques (e.g. pixels, texons, etc.), and

can be applied on the likelihood map to reduce noise and improve neighborhood consistency.

Given a typical graphical-model illustration for MRF, as shown in Fig. 3.8, the graph has

two kinds of nodes: hidden nodes (circles in Fig. 3.8, representing region labels) and observable

nodes (squares in Fig. 3.8, representing image pixels). Edges in the graph depict relationships

between the nodes.

Letn be the number of the hidden/observable states (i.e., the number of pixels in the image).

A configuration of the hidden layer is:

h = (h1, ..., hn), hi ∈ V, i = 1, ..., n (3.12)
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whereV is a set of region labels, such asV = 0, 1, where the value0 indicates different texture

from the model interior, and the value1 indicates same texture as the model interior.

Similarly, a configuration of the observable layer is:

o = (o1, ..., on), oi ∈ D, i = 1, ..., n (3.13)

where D is a set of pixel values, e.g., the original likelihood values in the mapLI . The relation-

ship between the hidden states and the observable states (also known as local evidence) can be

represented as the compatibility function:

φ(hi, oi) = P (oi|hi) (3.14)

Similarly, the relationship between the neighboring hidden states can be represented as the

second compatibility function:

ψ(hi, hj) = P (hi, hj) (3.15)

Now the inference problem can be viewed as a problem of estimating the MAP solution of the

MRF model:

hMAP = argmaxhP (h|o) (3.16)

where

P (h|o) ∝ P (o|h)P (h) ∝
∏

i

φ(hi, oi)
∏

(i,j)

ψ(xi, xj) (3.17)

The exact MAP inference in MRF models is computationally infeasible, and we use an ap-

proximation technique based on the Belief Propagation (BP) algorithm, which isan inference

method proposed by [86] to efficiently estimate Bayesian beliefs in the networkby iteratively

passing messages between neighbors. We assume the likelihood values in each region follow a

Gaussian distribution:

φ(hi, oi) =
1

√

2πσ2
xi

exp
(
− (oi − µxi

)2

2σ2
xi

)
(3.18)
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and the compatibility function between neighboring hidden states is represented by:

ψ(oi, oj) =
1

Z
exp
(δ(oi − oj)

σ2

)
(3.19)

whereδ(x) = 1 if x = 0; δ(x) = 0 if x 6= 0, σ controls the degree of similarity between

neighboring hidden states, andZ is a normalization constant.

After this step of MRF contextual confirmation, the resulting new likelihood map isdenoted

by Lc
I . One example demonstrating the effect of this step can be seen in Fig. 3.7(c). In our

experiments, we use the{0, 1} region labels as the hidden states, hence by thresholding at

0.5, we can differentiate regions that have similar texture with the model-interior from other

background regions.

Deformable Model Dynamics

In order to evolve the deformable model toward the boundary of the textureregion of interest,

we derive the model dynamics in a variational framework by defining an efficient energy term

that leads to both external texture/image forces and internal balloon forces.

Given the likelihood mapLc
I computed based on the current model-interior texture statis-

tics, we define an energy term that produces forces to evolve the model toward the textured

object boundary as follows:

Etexture =
1

V (∂RM)

∫∫

∂RM

Lc
I(x)

(
ΦM(D(Θ;x))

)
dx (3.20)

whereΦM is the implicit representation of the current model (Eq. 2.3),∂RM refers to the

model affinity (i.e. a narrow band around the zero level set of the model),V (∂RM) refers to

the volume of model affinity region∂RM, andD(Θ;x) is the IFFD definition for the position

of a sample pixelx after deformation (Eq. 2.15).

Note that the energy term above (Eq. 3.20) has a similar form as the anisotropic region-

based balloon force defined by Eq. 3.9. There are two components in the energy term and

they are combined multiplicatively. The componentΦM(D(Θ;x)) makes the model expand

and grow along its normal direction like a balloon, and the speed of expansion is weighted
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(a) (b) (c) (d)

Figure 3.9:(a) Initial model. (b) Likelihood map (after MRF) based on initial model. (c) An interme-
diate model. (d) Likelihood map re-computed based on the intermediate model.

(modulated) by the other likelihood componentLc
I(x). Hence the model grows toward object

boundary with anisotropic speed modulated by the underlying likelihood map value, and it

stops at object boundary where the likelihood values inLc
I decrease to zero. The energy term

generates forces that lead the model to efficiently converge to textured object boundary, even

when the object shape has salient protrusions and concavities.

The energy term defined in Eq. 3.20 is differentiable with respect to the model deforma-

tion parametersΘ, hence a unified gradient-descent based parameter updating scheme can be

derived:

∂Etexture

∂Θi
=

1

V (∂RM)

∫∫

∂RM

Lc
I(x)

(
∇ΦM(D(Θ;x)) · ∂

∂Θi
D(Θ;x)

)
dx (3.21)

In the above formula, the partial derivatives with respect to the deformation (FFD) parameters,

∂
∂Θi

D(Θ;x), can be easily derived from the model deformation formula Eq. 2.15, and the

details are given in the Appendix.

One important advantage of this model-based texture segmentation frameworkis that, as

the model evolves, the model interior changes, hence the model-interior texture statistics get

updated and the new statistics are used for further model evolution. This online learning prop-

erty enables our deformable model framework to segment objects with non-uniform texture

patterns to some extent. In Fig. 3.9, we show the evolution in the likelihood map as the model

evolves from an initial circular model to an intermediate model.

3.2.3 Multiple Model Initialization and Merging

When multiple models are initialized in an image, each model evolves based on its owndy-

namics. To allow merging and competition of the multiple models, a collision detection stepis
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applied after every few iterations to check whether the interiors of more than one models over-

lap. Although collision detection requires complicated algorithms in parametric deformable

models [46], it is straightforward in Metamorphs because of the implicit model shape repre-

sentation. Suppose the implicit representations for two models being tested are: ΦMa(x) and

ΦMb
(x). According to the definition of implicit shape representation (Eq. 2.3),ΦMa and

ΦMb
have positive values for pixels inside the model, negative values outside, and zero on the

model. So to detect collision, we test every pixelx that has positive value inΦMa . If for any

such pixelx (ΦMa(x) > 0), ΦMb
(x) is also positive, then a collision is detected, becausex is

inside both modelMa and modelMb. Upon completion of each collision detection step, all

models that collide are checked to see whether their interior intensity statistics are close; the

colliding models are merged only if their statistics are sufficiently close.

Suppose a collision is detected between modelA and modelB. Since the model interior

appearances are represented using nonparametric p.d.f.s, the Kullback-Leibler Divergence can

be used to measure the dissimilarity between two p.d.f.s. Suppose the intensity p.d.f. for model

A is pA and the p.d.f for modelB is pB, then the Kullback-Leibler Divergence between the two

distributions is defined by:

DpA‖pB
=

∫

U

pA(i)log
pA(i)

pB(i)
di (3.22)

whereU denotes the set of all intensity values. If this K-L distance is sufficiently small,the

algorithm decides the statistics of the two models are sufficiently close, and the two models

will be merged; otherwise, the two models will keep evolving on their own.

If two models in collision are to be merged, the new model’s implicit representation can be

easily derived from the representations of the two models before merging.Suppose the implicit

representations for the two models to be merged are:ΦMa(x) andΦMb
(x). Then the implicit

representation for the merged model will simply be:ΦM(x) = max
(
ΦMa(x),ΦMb

(x)
)
.

Thereafter this new model’s interior statistics are updated and it evolves in place of the two old

models.

Fig. 3.10 shows an image of the chest where we initialize multiple models inside the objects

of interest including the left and right lungs, and the left and right ventricles. The models
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(a) (b) (c) (d) (e)

Figure 3.10: (a) Multiple initialized models. (b) Result after the models evolve on their own for 5
iterations. (c) Collision detection, and merging after passing the statistics tests. (d) Result after 5 more
iterations. (e) Converged models after 16 iterations.

(a) (b) (c) (d)

Figure 3.11:(a) Two initial models. (b) Two models evolving on their own before merging. (c) The
two models are merged into one new model upon collision and the new model continues evolving. (d)
The final converged model.

first evolve on their own, and if any two models collide, they merge into one newmodel if

their interior intensity statistics are sufficiently close. The converged models are shown in Fig.

3.10(d) to demonstrate the segmentation result.

Another model topology change example on the cheetah texture image is shownin Fig.

3.11, where two models are initialized and they first evolve on their own, then merge into one

new model upon collision.

3.3 Experimental Results

In this section, we demonstrate segmentation results on both intensity and textureimages using

the Metamorphs framework.

3.3.1 Boundary Finding in Intensity Images

Some boundary finding examples on intensity images using Metamorphs have been shown in

Fig. 2.2, Fig. 3.5, and Fig. 3.10. In Fig. 3.12, we show another example in which we

segment the left ventricle of the heart in a noisy tagged MRI image. We use theintensity image
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Figure 3.12:Tagged MR heart image example. (1.a) Original image. (1.b) Edge map. (1.c) “shape
image” derived from the edge map. (2) Initial model. (3) Intermediate result. (4) Converged model (after
12 iterations). (2-4)(a) The evolving model. (2-4)(b) Model interior. (2-4)(c) Model interior intensity
p.d.f. (2-4)(d) Intensity probability map according to thep.d.f. in (c).

framework for this image because the interior of the object of interest, left ventricle, is non-

textured, although the tagging lines have obvious texture patterns. Note that,due to the tagging

lines and intensity inhomogeneity, the detected edges of the object are fragmented, and there

are spurious edges inside the region. In this case, the integration of edgeand region information

was critical in helping the model out of local minima.

We also apply our algorithm to ultrasound breast images to test its ability to deal with

objects whose interior intensity distribution has multiple modes, or has high noise and speckle

patterns. Fig. 3.13 shows two such examples, and the goal is to use Metamorphs models to find

boundaries of the breast lesions. Because of the nature of the ultrasound images, there is no

clear contrast edges that separate a lesion from its surrounding normaltissue. The criterion in

spotting and locating lesions is usually that the lesion areas are denser hence appear darker than

its surroundings. One can see from Fig. 3.13(c) that the nonparametric kernel-based method

can represent pretty well the differences in the intensity statistics of ultrasound speckle patterns,

hence providing important information about where the lesion boundaries are.
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(1)

(2)
(a) (b) (c) (d) (e)

Figure 3.13: Segmenting lesions in ultrasound breast images. (a) The original ultrasound
image, with the initial model drawn on top, (b) The shape image derived from the edge map,
(c) Intensity likelihood map, (d) Intermediate model after 4 iterations for example (1), and
13 iterations for example (2), (e) Final converged model after 11 iterations for (1) , and 20
iterations for (2).

Figure 3.14:Boundary finding in the pepper image. (a) Original image, with initial models drawn on
top. (b) The shape image derived from the edge map. (c) Intermediate result showing the models after
10 iterations. (d) Final converged models after 14 iterations. (e) The three pepper segments enclosed by
the three converged models.

Other than the medical images, we tested our algorithm on natural images in whichocclu-

sion, specularity, shadow, reflection, and other conditions are common. Fig. 3.14 shows the

segmentation result using a pepper image. Several circular models are initialized, and their in-

teriors capture the intensity variations on the three foreground peppers due to lighting, shadow

and specularity. The models evolve, merge and finally converge to the result shown in Fig.

3.14(d-e). During model evolution, the two models initialized on the elongated pepper quickly

merge after a few iterations because their interior intensities are very close,while the two mod-

els initialized on the dark-colored pepper do not merge until the top model evolves and includes

part of the specular region (see Fig. 3.14(c)) because only then the twomodel interiors have

sufficiently close statistics (Eq. 3.22).

Fig. 3.15 demonstrates the experiment on a picture of people. Several circular models are
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(c) (d)

(2)
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(c) (d)

Figure 3.15:Boundary finding in a picture of people. (1) the evolution of models; (2) finally segmented
patches. (1.a) Original image, with initial models drawn ontop. (1.b) The shape image derived from
the edge map, with edge points drawn on top. (1.c) Intermediate result showing the models after 8
iterations. (1.d) Final converged models after 22 iterations. (2.a) Skin color patches that correspond to
faces. (2.b) Patches that correspond to hair. (2.c) Patchesthat correspond to white shirt. (2.d) Patches
that correspond to the women’s textured dress.
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initialized on the face, hair, clothes of the two people. The converged modelsare shown in Fig.

3.15(1.d). On the faces, small interior structures such as the eyes and eyebrows did not stop

the models from converging to the face boundaries. The texture of the women’s dress consists

of large-scale patterns and multiple colors; by initializing a model whose interiorcaptures

the color changes within the texture, the model accurately converges to the texture boundary

without getting stuck at interior edges produced by the changing colors. The model on the

man’s white shirt stopped before including the left arm because of the strong appearance and

edge boundary generated by the glass and bright sunlight. In the second row, Fig. 3.15(2)

shows the segments enclosed by the converged models. In Fig. 3.15(2.a-c), the segments

that are displayed together have similar intensity statistics according to the Kullback-Leibler

Divergence criterion in Eq. 3.22.

3.3.2 Boundary Finding of Textured objects in Texture Images

One texture segmentation result using the cheetah image first shown in Fig. 2.3can be seen

in Fig. 3.11. We also run our algorithm on a variety of other images with texturesof different

patterns and scales. Figures 3.16-3.17 show typical segmentation results.In all the cases, we

initialize several seed points inside the textured regions of interest, then a texture-consistency

likelihood map is computed based on each model interior, the models evolve on theirown

dynamics, and those models with similar texture statistics are allowed to merge upon collision.

The likelihood map for each model is re-computed after every5 iterations of model evolution

since the model interior statistics change as the model deforms.

Fig. 3.16 is an experiment run on an image containing two cheetahs. The likelihood maps

computed based on the initial model are shown, and the converged model finds the boundary

for one of the cheetahs. By initializing another model in another high-likelihood area, we are

able to get the boundary for the other cheetah (Fig. 3.16(e)).

In Fig. 3.17, we demonstrate our algorithm using two synthetic images. The imageon

the top row has a small-scale homogeneous region in the center, and large-scale periodic line

patterns in the background. The line pattern is generated using a sinusoidal signal. To test

the robustness of the method to noise, we randomly added high level of Gaussian noise to the

entire image. The segmentation result shows that our method can deal with bothsmall-scale
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(a) (b) (c)

(d) (e)

Figure 3.16: (a) Original image with initial model. (b) Likelihood map based on Gabor response
statistics. (c) Likelihood map after Belief Propagation. (d) The converged model. (e) Both cheetah
boundaries detected after initializing another model in the other high-likelihood area.

(a) (b) (c) (d)

Figure 3.17:(a) Original images. (b) Likelihood maps based on model-interior texture statistics. (c)
Likelihood maps after BP. (d) The converged models at texture boundary.

and large-scale texture patterns, and has good differentiation power even in the presence of high

noise levels. On the bottom row, we show the performance on a synthetic texture mosaic image.

The image consists of five texture regions of similar intensity distribution, and wedemonstrate

the likelihood map and segmentation of one of the regions. We are able to segment the other

four regions in the mosaic using the same method.
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3.3.3 Performance and Parameters

The Metamorphs model evolution is computationally efficient. For all the examplesshown,

the segmentation process takes less than200ms to converge on a 2GHz PC station. Several

reasons contribute to this. First, the IFFD parameterization of model deformations significantly

reduces the number of local deformation parameters, while guaranteeing the model’s smooth-

ness properties. Second, most computation only involves pixels that are either within a narrow

band surrounding the model or inside the model. The only whole-image computation, which is

the intensity probability map, is done efficiently using the Fast Gauss Transform [35] in linear

time.

The resolution of the IFFD control lattice used to cover the model,M ×N in Eq. 2.10, is

initially set to be10 × 10 for all examples, and it is dynamically adjusted during model evolu-

tion to allow for both global and highly local deformations. More specifically,we increase the

resolution along bothx andy directions by one after each iteration. Based on the properties

of IFFD, the higher resolution is the IFFD control lattice, the higher curvature the model can

capture. By increasing the resolution dynamically, the model can quickly evolve toward the

boundary with global smoothness constraints in the beginning, then once it isnear the bound-

ary, the increasing resolution of the lattice enables it to fit into the detailed convexities and

concavities of the object boundary. The capability of the Metamorphs modelto capture high

curvature features on boundaries is demonstrated through Fig. 2.2, Fig.3.10 (e.g. tips of lung),

and Fig. 3.15 (e.g. ears, clothing-generated corners).

The three weight factors that balance the contributions from different energy terms,k, a

and b in Eq. (3.11), are estimated automatically for each Metamorphs model based onits

surrounding image information. The weighting factor between the edge terms and the region

terms,k, is determined by a confidence measure,Ce, of the computed edge map. To decide

this confidence value, we compute the “region of interest” (see section 3.2.1) after initializing

a model, thenCe is determined by the complexity of image gradient or edge map within this

ROI. The confidence value is low if there are high gradients and edges inside the region; the

value is high otherwise. Then we set the value for the weighting factork = 1
Ce

. The other

two weighting factorsa andb are set to be:a > 1, b > 1. This is because we always assign
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higher weights to data terms that make the model converge when it is near the boundary, i.e.

the boundary termEEb
and the Maximum Likelihood termERm . In all our experiments, this

automatic weight-factor estimation scheme gives good and stable performance.

For different examples, there are only two parameters that need to be adjusted by human

intervention. The first one is the gradient descent step sizeλ (see section 3.2.1). The reason to

allow users to manually adjustλ is to avoid too big step sizes that blow up the model after the

first iteration, as well as to avoid too small step sizes that make model convergence too slow.

For the examples shown, typical values forλ are between20 and40. The second parameter

that can be adjusted by users is the thresholdδ for determining model convergence. The model

convergence thresholdδ is measured in terms of thel2-norm of the IFFD parameter vector|Θ|.

Recall from Section 2.4.1 thatΘ represents the displacements of IFFD control points, then

|Θ| =
∣
∣[δP x

1,1δP
y
1,1...δP

x
m,nδP

y
m,n...δP x

M,NδP
y
M,N ]T

∣
∣ measures the magnitude of the overall

control lattice displacement. That is, if the derived movement of IFFD control points (Eq. 3.11)

between two consecutive iterations is very small (smaller than the threshold),we consider the

model has converged. The reason to manually adjust the model convergence threshold is to

allow the user to control the model when occasionally it is necessary to make acompromise

between preserving sharp corners on the boundary and avoiding modelleakage into another

neighboring object with similar intensity statistics. Setting the threshold to a very small value

will enable the model to gradually fit into high-curvature corners; and setting the threshold to

a reasonably small value can generally prevent the model from leaking through boundary gaps

that survive both in edges (as gaps) and in regions (as narrow bridges). For the examples shown,

typical values forδ are between0.2 and1.0 pixels.

In the case that multiple models are initialized on an image, the same set of parameters are

used for all models. In the beginning, all models are active, and during evolution, if any model

converges, its status is changed to inactive. The algorithm runs until all models converge and

are no longer active.
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3.3.4 Performance Comparison with Other Boundary Finding Methods

In this section, we compare experimentally Metamorphs with some other boundary finding

methods in the literature including several well-known snake (deformable) models and region-

statistics based segmentation methods. The comparison results are demonstrated on two gray-

level image examples (one chest MRI image and one breast ultrasound image) in Fig. 3.18 and

Fig. 3.19.

Comparison with Other Snake Models

Compared to various snake (deformable) models in the literature, the main contribution of the

Metamorphs model lies in its novel way of integrating edge and region information for robust

boundary finding. The advantage of Metamorphs is most significant whenmodels are initial-

ized far away from the object boundary. Using circular model initializationsin Fig. 3.18(1.a)

and Fig. 3.18(2.a) for the chest MR and the breast ultrasound images respectively, we first

attempt to recover the object boundary using a snake model with balloon forces [21]. 3 The

external potential field for the balloon model is computed based on the gray-level edge strength

map (see Fig. 3.18(1.b) and 3.18(2.b)). We manually adjusted the weight factor between the

external force and the inflation balloon force, but found it hard to strikea balance between the

two. Fig. 3.18(1.c) and 3.18(2.c) show the balloon snake model after 120 iterations for the

MR image and after 150 iterations for the ultrasound image respectively. Theballoon model is

starting to fail at this time, because some part of the model has already surpassed the bound-

ary at places that have relatively weak image-gradient magnitudes while some other parts still

haven’t reached the true boundary. Since a balloon model applies explicitly either inflation or

deflation forces that only support one-way evolution, once the model mistakenly goes over the

true boundary, it can not recover from the mistake.

Next, we test the performance of the Gradient Vector Flow (GVF) snakes[118] on the im-

ages. The GVF snakes were proposed to make snake models have better convergence behavior

3We do not show comparison results with the traditional snake model [62] because such a model will shrink to
a point under its internal forces given the far-away initializations in our experiment.
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Figure 3.18:Comparison between various snake models in the literature and Metamorphs. (1) Results
on a chest image. (2) Results on segmenting a breast lesion inan ultrasound image. (a) original image
with initial model drawn on top. (b) gray-level edge map. (c)result using snake model with balloon
forces. (d) result using GVF snake on original image. (e) result using GVF snake on smoothed image
after applying Gaussian smoothing. (f) underlying GVF potential field that caused GVF snake local
minima. (g) result using Metamorphs without image smoothing.

into concavities and be less sensitive to initialization. For the chest MR image, without smooth-

ing the original image and when initialized as in Fig. 3.18(1.a), a GVF snake converged after

120 iterations and the result is shown in Fig. 3.18(1.d). Note that the GVF snake is not very

robust to image noise and spurious edges and it got stuck in local minima. To reduce noise, we

further applied Gaussian smoothing to the original image and run a GVF snakeusing the same

initialization on the smoothed image. The converged GVF snake after 150 iterations is shown

on the smoothed image in Fig. 3.18(1.e). This time the underlying GVF potential fieldthat

caused the local minima on the upper portion of the snake model is shown in Fig.3.18(1.f).
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We tried the same tasks on the breast ultrasound image, with a GVF model initializedas shown

in Fig. 3.18(2.a). On the original image without smoothing, the GVF snake converged after 80

iterations and the result is shown in Fig. 3.18(2.d). After applying GaussianSmoothing, we run

a GVF snake on the smoothed image, and the converged model after 100 iterations is shown in

Fig. 3.18(2.e). The model is stuck in local minima, and part of the underlying GVF potential

field that contributes to the local minima can be seen in Fig. 3.18(2.f). The localminima prob-

lem with GVF is related to the essence of the GVF potential field, which is a laplacian diffusion

of the gray-level edge map’s gradient vectors. So when strong image gradients (edges) or small

islands remain inside the object even after smoothing, the GVF snake gets attracted to them

and gets stuck in local minima. This behavior is also typical of all other deformable models

that rely on image gradient or edge information alone.

Finally, for comparison, we show the result from Metamorphs using the sameinitializations.

The parameter setting for the Metamorphs model on the chest MR image is the sameas that

in Fig. 3.10, and the parameter setting on the breast ultrasound image is the sameas that in

Fig. 3.13(2). The models are run on the original images without smoothing. The Metamorphs

model on the chest MR image reached convergence after 24 iterations (see Fig. 3.18(1.g)),

and the model on the breast ultrasound image reached convergence after only 18 iterations (see

Fig. 3.18(2.g)). From the results, one can see that while other snake models fail to segment

accurately due to local variations in image gradient caused by image noise orobject texture, the

Metamorphs model is fast and robust in convergence because it naturally integrates both region

statistics and image gradient information.

Comparison with Region-based Segmentation Methods

Popular region-based segmentation methods such as region growing, Markov Random Fields,

and graph cuts have the advantage that they group pixels whose intensitiesfollow consistent

statistics, hence they are less sensitive to localized image noise. However they often generate ir-

regular region boundaries, small holes inside regions of interest, and they may mistakenly link

separate regions with similar statistics by a narrow bridge. Metamorphs has theadvantages

of region-based methods because of its nonparametric region statistics testand region-based

energy terms. Meanwhile, Metamorphs generates smooth region boundaries, avoids small
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(2)
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Figure 3.19:Comparing segmentation results from Region Growing (RG) and Markov Random Fields
(MRF) with that from Metamorphs. (a) seed patches for RG are enclosed by yellow circles. (b) RG
segmentation results. (c) two-class initialization for MRF: object class sample patches are enclosed by
white rectangles, and background class sample patches are enclosed by black rectangles. (d) MRF seg-
mentation results using the algorithm described in [8]. Object class is rendered in black, and background
class is rendered in gray.

holes and narrow bridges, because of its internal smoothness constraints as a hybrid deformable

model based approach.

In Fig. 3.19, we compare the segmentation results from region growing and Markov Ran-

dom Fields with that from Metamorphs. First, the region growing (RG) algorithm we imple-

ment is based on nonparametric region statistics. Starting with a small seed patch, RG grows

the region by gradually adding in surrounding connected pixels as long asthe pixels follow

the nonparametric region statistics4. When the growing stops, the result for the MR image

is shown in Fig. 3.19(1.b) and the result for the ultrasound image is shown in Fig. 3.19(2.b).

One can see that although for the MR image, RG finds roughly the object region, the region

has many holes and the boundary is irregular. RG failed to find the lesion boundary on the

ultrasound image due to ultrasound speckle patterns and leaking into the background. Second,

the Markov Random Fields (MRF) implementation we use is based on the supervised Bayesian

MRF image classification algorithm described by [8]. We specified the images consisting of

two classes: the object class (the class sample patches are enclosed by white rectangles in Fig.

3.19(1.c) and Fig. 3.19(2.c)), and the background class (the class sample patches are enclosed

by black rectangles in Fig. 3.19(1.c) and Fig. 3.19(2.c)). Given the classsample patches, the

4We consider a pixel follows the statistics if its intensity likelihood is greater than a threshold according to Eq.
2.4.
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algorithm computes the intensity mean and variance for each class and appliesMRF to im-

prove classification. The MRF segmentation result after 266 iterations for the chest MR image

is shown in Fig. 3.19(1.d), and the result after 346 iterations for the breast ultrasound image is

shown in Fig. 3.19(2.d). One can see that the MRF segmentation is good for the MR image,

although it still generates irregular boundary and small holes/islands. TheMRF segmentation

failed on the ultrasound image since it did not separate the lesion object frompart of the back-

ground that has similar statistics and it generated small holes/islands inside the object. For

comparison, the clean and smooth object boundaries found by our Metamorphs model-based

method can be seen in Fig. 3.18(1.g) and Fig. 3.18(2.g).

3.4 Discussions

We have presented a new class of deformable models, Metamorphs, which possess both bound-

ary shape and interior appearance statistics. We propose variational frameworks in which Meta-

morphs models can be applied to boundary finding in both intensity and texture images. During

boundary finding, both edge and region information are coupled coherently to drive the defor-

mation of the model toward object boundary.

The main contributions of the work lie in several aspects. First, the Metamorphs models

represent a generalization of previousparametricandgeometricdeformable models, to take

into account model-interior region information, while being computationally efficient. Second,

the proposed framework does not require learning statistical shape andappearance modelsa

priori , but the model deformations are constrained such that interior statistics of the model

after deformation are consistent with the statistics learned adaptively from the past history of

the model interiors. Third, compared to other works that integrate edge andregion information

for segmentation, our framework is more natural in that it does not have separate parameters

to represent model shape and model-interior appearance statistics. The only set of parameters

in our framework is the IFFD parameters that specify model deformation, and when the model

deforms, its implicit shape representation and its interior nonparametric intensityor texture sta-

tistics get updated automatically. When used for boundary finding, the Metamorphs dynamics

can be derived from edge and region energy terms that are both differentiable with respect to
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the IFFD deformation parameters in a common variational framework. Lastly, our algorithm

supports model topology changes and multiple models can merge upon collision iftheir interior

statistics are sufficiently close.

The Metamorphs framework can also be extended to work on color images and 3D images.

For color images, edges can be computed using color edge detectors (e.g.,[96]); to derive the

region terms, model-interior intensity statistics can be considered in three independent chan-

nels (Red, Green and Blue), and the overall color likelihood map can be computed by taking the

multiplication of likelihood maps from the three channels. In 3D, the implicit model shape rep-

resentation and kernel-based intensity p.d.f. estimation remain the same. The IFFD use regular

control lattices in 3D and a 3D tensor product of B-spline polynomials. For model dynamics,

the definitions for all edge terms and region terms remain valid in 3D. Compared totraditional

deformable models, Metamorphs have several advantages in higher dimensions. Compared to

the parametric models, Metamorphs use implicit distance functions to representmodel shapes,

hence eliminate the need for explicit parameterization of high-dimensional shapes; compared

to the geometric models, Metamorphs use IFFD which possess implicit smoothnessconstraints

and have far fewer parameters than an evolving front surface, hence enable more efficient com-

putation.

In the current implementation of Metamorphs, we assume user-guided model initializa-

tion. That is, the user initializes one or several circular models within the objectsof interest

by clicking two points for each model: the first point is the centroid, and the distance between

the first and the second point specifies the radius. Our method is robust topoor initializations

where a model covers part of the background, as long as the majority of the model interior has

consistent texture with the object of interest. This is because all energy terms in our frame-

work generate two-way forces, and the model will be pulled back toward object boundary if

it is initialized outside. We could also potentially automate the initialization process through

supervised learning of the texture statistics of the objects.

When presented with different initialization conditions for the same task, the converged

Metamorphs models do have small differences, but the variations are mostly within a small

range around the ground truth. Such variations can be seen from Fig. 3.10(e) vs. Fig. 3.18(1.g),

and Fig. 3.13(2.e) vs. Fig. 3.18(2.g). Since it is hard even for humans to reach consensus on
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a unique ground truth for most segmentation tasks, we believe a good strategy is to take the

average of several converged models that resulted from different initializations, when high

segmentation accuracy is desired.

Although we assume user-defined seed points to start the simple-shape initialmodels, our

method can be directly applied to full-field image segmentation by starting multiple initial

models on a regular lattice covering the image. The topology freedom of the models enables

evolving models with similar statistics to merge, and finally the image is partitioned into regions

of homogeneous textures.

Another interesting future direction is to explore dynamically changing edge maps instead

of one static edge map pre-computed using canny edge detector. This is analogous to the exist-

ing capability of our framework to learn and exploit the dynamically changing model-interior

intensity statistics, which distinguishes the method from other region based segmentation tech-

niques such as region growing.

To use Metamorphs models to segment objects with holes, the basic idea is to segment

layer by layer. That is, we can first segment the inner-most layer, then for the next outer

layer, we can use the inner-layer boundary as initialization, and exclude the inner-layer interior

when computing the new model-interior statistics. Coupling Metamorphs with statistical prior

models such as those learned through Active Shape and Appearance Models could also help.

Other than segmentation, the Metamorphs framework can also be applied to manyother

applications such as tracking, shape reconstruction, etc. For tracking ina video sequence, we

can use the converged model from a previous frame as the initialization for the next frame, then

the Metamorphs dynamics are the same as that in segmentation to guide the model convergence

on the new frame. Useful tracking techniques such as Kalman filtering can also be integrated

with the Metamorphs in similar manners to their integration with the Snakes. For shape recon-

struction, the forces driving a Metamorphs model can be derived from the distance between the

model and the sparse point set, and the free form deformations enable themodel to smoothly

interpolate between the sparse points.
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Appendix

We can analytically derive the partial derivatives∂
∂Θi

D(Θ;x) for the incremental FFD para-

meters inΘ:

δFm,n = (δF x
m,n, δF

y
m,n); m = 1, ...,M, n = 1, ..., N

Without loss of generality, one can consider the(m,n)th control point and its deformations in

both directions. Then, from the definition for the deformationsD(Θ;x), the following relations

hold:

∂ δD(Θ;x)

∂δF x
m,n

=










Bm−i(u) Bn−j(v)

0



 , 0 ≤ m− i, n− j ≤ 3

0, otherwise

∂ δD(Θ;x)

∂δF y
m,n

=










0

Bm−i(u) Bn−j(v)



 , 0 ≤ m− i, n− j ≤ 3

0, otherwise
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Chapter 4

Learning Coupled Shape and Appearance Prior Models for

Segmentation

This chapter presents a novel framework for learning coupled shape and appearance prior mod-

els using the implicit shape representation and free form deformations introduced in Chapter

2. First, a new global-to-local shape registration algorithm is developed. It can be used to

establish continuous, smooth and one-to-one correspondences between shapes in arbitrary di-

mension. In particular, we use it to register boundary shapes of training examples and establish

correspondences between them in order to learn a statistical shape model. Second, as a natural

extension of the shape registration algorithm, a new joint registration algorithmis introduced to

register images (or training examples) in a joint shape and intensity feature space. It establishes

correspondences for shapes and interior textures simultaneously by maximizing mutual infor-

mation in both shape and intensity spaces. Third, the dense correspondences established by the

registration algorithms are used to build a coupled shape and appearance statistical model, then

the model is applied to robust prior-model guided segmentation and image interpretation.

4.1 Introduction

Learning shape and appearance prior representations for an objectof interest has been central

to many model-based medical image analysis and computer vision algorithms. Usingshape

models to guide image search produces reliable segmentation results in noisy, cluttered images.

A generalization to statistical appearance models uses also the interior regioninformation, and

enables registration of a target object with the learned prior model. Being complementary to

each other, the integration of statistical shape and appearance models results in a powerful

image analysis paradigm.
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Although numerous methods in the literature have been proposed to learn shape and appear-

ance prior models, most are hampered by the automated alignment and registration problem of

training examples. In the seminal work of Active Shape and Appearance Models (ASM [26]

and AAM [25]), models are built from analysing the shape and appearance variabilities across a

set of labelled training examples. Typically landmark points are carefully chosen and manually

placed on all examples by experts to assure good correspondences. This assumption leads to a

natural framework for alignment and statistical modeling, yet it also makes thetraining process

time-consuming. Yang & Duncan [120] proposed a shape-appearancejoint prior model for

Bayesian image segmentation. Their work does not deal with registration of the training exam-

ples, however, and assumes the training data are already aligned.

A number of automated shape registration and model building methods have been proposed

[28], [34], [50], [12], [20]. These approaches either establish correspondences between geo-

metric features, such as critical points of high curvature [50]; or find the“best” corresponding

parametrization model by optimizing some criterion, such as minimizing accumulated Euclid-

ean Distance [34], [20], Minimum Description Length [28], or Spline Bending Energy [12],

[20]. Both geometric feature based and explicit parameterization based registration methods are

not suitable for incorporating region intensity information. In [64], the implicitshape represen-

tation using level sets is considered, and shape registration algorithms usingthis representation

have been proposed [84, 54].

Non-rigid registration is a popular approach to build statistical atlas and to model the ap-

pearance variations [42, 93, 17]. The basic idea is to establish dense correspondences between

textures through non-rigid registration. However, few of the existing methods along this line

are able to take into account shape information or to be coupled with shape registration.

In this chapter, we introduce a new algorithm for global-to-local shape registration based on

the implicit shape representation, mutual information and free form deformations. The shape

registration algorithm is then applied to register training examples of an object of interest to

learn a statistical shape model. The registration framework is easily extensibleto a unified

shape and intensity feature space, hence we can achieve registration in the joint shape and in-

tensity space by maximizing mutual information between both shape and intensity. The dense

correspondences between training shape and texture enable us to learna coupled shape and
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appearance prior model, which is then used for robust model-based segmentation. In the re-

mainder of the chapter, we first introduce the shape registration and statistical shape modeling

algorithms, we then introduce registration and learning in the joint shape and intensity spaces

and model-based segmentation using the coupled prior model.

4.2 Global-to-local Shape Registration in Implicit Spaces

4.2.1 Previous Work on Shape Registration

Shape registration is critical to various imaging and vision applications [111]. Global registra-

tion, also known as shape alignment, aims to recover a global transformation that brings the

pose of a source shape as close as possible to that of a target shape. The alignment has exten-

sive uses in recognition, indexing and retrieval, and tracking. To further account for important

local deformations, non-rigid local registration is needed to establish dense correspondences

between the basic elements of shapes, such as points, curvature, etc. Medical imaging is a

domain that requires local registration such as in building statistical models forinternal organs

[24], and intra-subject or atlas registration of 2D/3D anatomical structures.

There has been a lot of previous research on the shape registration problem [85, 125, 10],

as well as on similar problems such as shape matching [7, 24, 29, 100], andpoint set matching

[19]. The algorithms proposed differ in the following three main aspects.

1. Shape Representationis the selection of an appropriate representation for the shapes of

interest. Clouds of points [7, 19], parametric curves/surfaces [29, 74], fourier descriptors

[106], medial axes [101], and more recently, implicit distance functions [85, 64] are often

considered.

2. Transformation refers to the selected global, local, or hierarchical (global-to-local)

transformation model, which is used to transform the source shape to match withthe tar-

get shape. Global transformation models apply to an entire shape; and examples are rigid,

similarity, affine and perspective. Local transformation models can represent pixel-wise

deformations that deform a shape locally and non-rigidly; and examples include optical

flow [85, 16], Thin Plate Splines (TPS) [7, 19], and space deformation techniques such
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(a) (b) (c)

(d) (e) (f) (g)

Figure 4.1: (a) Initial condition(source shape in blue, target shape in red). (b) The implicit
source shape representation using a distance map; points on the shape overlap the zero level set
(as drawn in color). (c) The implicit target shape representation. (d) Global alignment using
Mutual Information; only the aligned shapes (zero level sets of the implicit representations) are
shown. (e) Result after local non-rigid registration using IFFD; the transformed source shape
(in green) is shown overlaid on the target shape (in red). (f) Established correspondences using
IFFD. (g) The embedding space deformation to achieve local registration.

as Free Form Deformations (FFD) [102, 94]. Hierarchical models are also popular since

they cover the entire transformation domain using both global and local transformations.

3. Registration Criterion is the approach used to recover the optimal transformation pa-

rameters given a shape representation and a transformation model. One can classify

existing approaches into two sub-categories. The first is to establish explicit geometric

feature correspondences and then estimate the transformation parametersusing the cor-

respondences [7, 44, 58]. The second is to recover the optimal transformation parameters

through optimization of energy functionals [125, 10, 85, 19].

4.2.2 Overview of Our Shape Registration Algorithm

We propose a hierarchical shape registration method using the implicit distance function shape

representation in a variational framework. Our overall approach is depicted in [Fig. (4.1)].

The shapes of interest are represented in an implicit form (see Ch. 2), embedded in the space

of distance functions of a Euclidean metric [Fig. (4.1).b-c]. Global alignment using an arbi-

trary motion model is achieved by maximizing mutual information [22, 114, 107] between two
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shape-embedding distance functions [Fig. (4.1).d]. For local non-rigidregistration, parameters

of the cubic B-spline based Incremental Free Form Deformation model (IFFD) are recovered

by minimizing the sum-of-squared-differences between the two globally aligned distance func-

tions [Fig. (4.1).e]. The resulting registration field [Fig. (4.1).g] preserves shape topology, is

smooth, continuous and gives dense one-to-one correspondences between the source and the

target shapes [Fig. (4.1).f].

4.2.3 Global Registration by Maximizing Mutual Information

As discussed in Chapter 2, the implicit shape representation used in our framework is inher-

ently translation/rotation invariant [85]. When a shape undergoes scale variations, the intensity

values of its associated distance map (i.e., its implicit representation) scale accordingly. There-

fore the registration of distance maps of a shape in various scales is analogous to matching

images in multiple modalities that refer to the same underlying scene elements. Mutualin-

formation, an information-theoretic criterion for measuring the global statisticaldependency

of its two input random variables, has been shown in the literature [87] to beable to address

such matching objective. The integration of mutual information and the implicit representation

gives rise to a global alignment framework that is invariant to translation, rotation, scaling, and

accommodates transformations in arbitrary dimensions.

In order to facilitate notation let us denote the source shape representationΦD asf [Fig.

(4.1).b], and the target shape representationΦS asg [Fig. (4.1).c]. Bothf andg are intensity

“images” where the intensity values refer to the distance values to the underlying shapes re-

spectively. In the most general case, let us consider a sample domainΩ in the image domain of

the source representationf 1, then global registration is equivalent to recovering the parame-

tersΘ = (θ1, θ2, ..., θN ) of a parametric transformationA, such that the mutual information

betweenfΩ = f(Ω) andgA
Ω = g

(
A(Θ; Ω)

)
is maximized. The definition for such mutual

information is:

MI(fΩ, g
A
Ω) = H

[

pfΩ(l1)
]

+ H
[

pgA
Ω (l2)

]

−H
[

pfΩ,gA
Ω (l1, l2)

]

(4.1)

1In practice, this sample domain contains the collection of pixels in a narrow band around the zero level set.
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The terms in the above formula are: (i)l1 andl2 denote the intensity (distance value) random

variables in the domainsfΩ and gA
Ω respectively; (ii)H represents the differential entropy;

(iii) pfΩ is the intensity probability density function (p.d.f.) in the source sample domainfΩ;

(iv) pgA
Ω is the intensity p.d.f. in the projected target domaingA

Ω ; and (v)pfΩ,gA
Ω is their joint

distribution.

This mutual information measures the general dependence between the target distance func-

tion and the transformed source distance function. It consists of three components: (i) the

entropy of the source,H
[
pfΩ(l1)

]
, (ii) the entropy of the projection of the source on the tar-

get given the transformation,H
[

pgA
Ω (l2)

]

, and (iii) the joint entropy between the source and

its projection on the target,H
[

pfΩ,gA
Ω (l1, l2)

]

. Maximizing this mutual information quantity

encourages transformations wherefΩ statistically correlate withgA
Ω .

We can further expand the formula in [Eq. 4.1] using the definition for differential entropy:

H
[

pfΩ(l1)
]

= −
∫

R1

pfΩ(l1)logp
fΩ(l1)dl1 = −

∫∫

R2

pfΩ,gA
Ω (l1, l2)logp

fΩ(l1)dl1dl2 (4.2)

H
[

pgA
Ω (l2)

]

= −
∫

R1

pgA
Ω (l2)logp

gA
Ω (l2)dl2 = −

∫∫

R2

pfΩ,gA
Ω (l1, l2)logp

gA
Ω (l2)dl1dl2 (4.3)

H
[

pfΩ,gA
Ω (l1, l2)

]

= −
∫∫

R2

pfΩ,gA
Ω (l1, l2)logp

fΩ,gA
Ω (l1, l2)dl1dl2 (4.4)

Combining [Eqs. 4.1, 4.2, 4.3 and 4.4], one can derive the criterion to perform global align-

ment using an arbitrary transformation modelA with parametersΘ, by maximizing mutual

information, which is equivalent to minimizing the following energy functional:

EGlobal(A(Θ)) = −MI(fΩ, g
A
Ω) = −

∫∫

R2

pfΩ,gA
Ω (l1, l2)log

pfΩ,gA
Ω (l1, l2)

pfΩ(l1)p
gA
Ω (l2)

dl1dl2 (4.5)

The probability density functions in the energy functional are approximatedusing a nonpara-

metric, differentiable Gaussian Kernel-based Density Estimation model. Using thismodel, the

marginal probability density functions are:

pfΩ(l1) =
1

V (Ω)

∫∫

Ω
G(l1 − f(x)

︸︷︷︸

α

)dx (4.6)

pgA
Ω (l2) =

1

V (Ω)

∫∫

Ω
G(l2 − g(A(Θ;x))

︸ ︷︷ ︸

β

)dx (4.7)
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Wherex = (x, y) refer to pixels in the sample domainΩ, V (Ω) represents the volume of the

sample domain, andG(a) represents the value of a one dimensional zero-mean Gaussian kernel

at locationa:

G(a) =
1√
2πσ

e−
a2

2σ2

whereσ is a small constant controlling the kernel width (we setσ = 4 in all experiments).

Similarly, we can derive the expression for the joint probability density function using a

two dimensional zero-mean Gaussian kernel:

pfΩ,gA
Ω (l1, l2) =

1

V (Ω)

∫∫

Ω
G(l1 − f(x)

︸︷︷︸

α

, l2 − g(A(Θ;x))
︸ ︷︷ ︸

β

)dx (4.8)

where the 2D kernelG(a, b) is given by:

G(a, b) =
1

2πσ1σ2
e
− 1

2
( a2

σ2
1
+ b2

σ2
2
)

andσ1, σ2 are the constants specifying the kernel widths in 2D.

The calculus of variations with a gradient descent method can now be usedto minimize the

cost functionEGlobal and recover the transformation parametersθi, i = 1, ..., N . The parameter

evolution equations are derived as follows:

∂EGlobal

∂θi
= − 1

V (Ω)

∫∫

Ω

[
∫∫

R2

(

1 + log pfΩ,gA
Ω (l1,l2)

pfΩ (l1)p
gA
Ω (l2)

)(

−Gβ(l1 − α, l2 − β)
)

dl1dl2

]

(
∇g(A(Θ;x)) · ∂

∂θi
A(Θ;x)

)
dx (4.9)

By substituting the general parametersΘ with specific transformation parameters, the method

supports registration using any global transformation model for shapes in2D/3D.

Examples of such global alignment for 2D shapes using the similarity transformation model

are given in [Fig. (4.2).1-4], and 2D examples using the affine transformation are shown in [Fig.

(4.2).4]. The 3D registration examples will be shown in Chapter 4.2.5.
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(1)

(2)

(3)

(4)

Figure 4.2: Global registration examples. (1) Bunny, (2) Dude, (3) Hand, (4) Fish. (odd rows)
Initial conditions (source in blue vs. target in red), (even rows) Alignment result using the
similarity transformation model, (last row) Alignment result using the Affine transformation.
Each column corresponds to a different trial. Only the zero level sets of the registered distance
functions are shown in contour form.
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Figure 4.3: Empirical validation of global registration (a) Translations inx, y directions un-
known, (b) Scale and rotation unknown, (c)Translation inx and scale unknown, (d) Translation
in x and rotation unknown.

Empirical Evaluation of the Global Criterion

Gradient descent optimization techniques often suffer from being sensitive to the initial con-

ditions. The form of the objective function is a good indicator regarding theefficiency and

stability of an optimization framework.

In order to perform a study on the performance of our global registration technique, we take

the 2D similarity transformation model with four parameters: translations inx andy directions

respectively, isotropic scale factor and the 2D rotation angle. Then we constrain the unknown

parameter space in two dimensions, and empirically evaluate the form of the global registration

objective function. For an example “dude” shape [Fig. (4.2).2], we have studied the following

four cases: (1) translations inx, y directions are unknown [Fig. (4.3).a], (2) scale and rotation

are unknown [Fig. (4.3).b], (3) translation inx and scale are unknown [Fig. (4.3).c], and (4)

translation inx and rotation are unknown [Fig. (4.3).d]. In each case, we quantized thesearch

space using a uniform sampling rule (100 elements) for all unknown parameters. Translations in

(x, y) were in the range of[−20, 20]×[−20, 20], scale was in[0.5, 2.0] and rotation in
[
−π

3 ,
π
3

]
.

Then, one can estimate the projections of the objective function in the space of two unknown

parameters, by considering all possible combinations derived from the sampling strategy (the

other two parameters are fixed). The resulting projections of the functional, as shown in [Fig.

(4.3).a-d], have some nice properties: they are smooth and exhibit a singleglobal minimum.

Hence the objective function has a convex form for all combinations that involve two unknown

registration variables and this is a good indicator for a well-behaved optimization criterion with

smooth convergence properties.
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4.2.4 Free Form Local Registration and Correspondences

Global registration can be an acceptable solution to a large number of computer vision appli-

cations. Medical imaging is an area where quite often global motion is not a validanswer

when solving the dense registration and correspondences problem [39]. Local deformations

are a complementary component to the global registration model. However, dense local motion

(warping fields) estimation is an ill-posed problem since the number of variables to be recov-

ered is often larger than the number of available constraints. Smoothness aswell as other forms

of constraints were employed to cope with this limitation.

In our shape registration framework, a global transformationA is recovered using the mu-

tual information criterion. One can use such transformation to transform thesource shapeD

to a new shapêD = A(D). Then, on top of this global registration result, local registration

is equivalent to recovering a pixel-wise local deformation field that creates correspondences

between the implicit representation [ΦS ] of the target shapeS and the implicit representation

[ΦD̂] of the transformed source shapêD. Such a local deformation fieldD(x) can be repre-

sented using the Incremental Free Form Deformations (IFFD) model introduced in Chapter 2

(See Eq. 2.15), since IFFD can implicitly enforce smoothness constraints, itpreserves shape

topology and guarantees a one-to-one correspondence between two shapes.

Local Registration Optimization Criterion and Gradient Descent

Considering the Incremental Free Form Deformations (IFFD) formulation (see Ch. 2), dense

registration is achieved by incrementally evolving a control latticeP according to a deformation

improvement [δP ], and the inference problem is solved by minimizing a Sum-of-Squared-

Differences criterion, with respect to the control lattice deformation improvements, which are

the parameters of IFFD:Θ = δP = {(δP x
m,n, δP

y
m,n)}; (m,n) ∈ [1,M ] × [1, N ]. That is,

local registration is equivalent to finding the control lattice deformationδP such that when

applied to the embedding space of the source shape, the deformed sourceshape coincides with

the target shape. Since the structures to be locally registered in our framework are the distance

transform of the target shape - [ΦS ], and the distance transform of its globally aligned source
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(1)

(2)

(3)

(4)

(a) (b) (c) (d) (e)

Figure 4.4: Incremental B-spline FFD local registration. (1) Bunny, (2) Fish, (3)
Brain Structure, (4) Digit 3. (a) Initial conditions (source shape in blue, target shape in red), (b)
Result after global registration, (c) Established correspondences after local registration; only
the zero level set (i.e., shape) correspondences are shown, (d) Locally deformed source shape
(in green) overlaid on the target (in red), (e) Final IFFD control lattice configuration depicting
the space warping to achieve local registration.

shape - [ΦD̂], the Sum-of-Squared-Differences (SSD) criterion can be considered as the data-

driven term to recover the deformation fieldD(Θ;x)):

Edata(Θ) =

∫∫

Ω

(
ΦD̂(x) − ΦS(D(Θ;x))

)2
dx (4.10)

In order to further preserve the regularity of the recovered registration flow field, one can

consider an additional smoothness term on the local deformation fieldδL. We consider a

computationally efficient smoothness term:

Esmoothness(Θ) =

∫∫

Ω

(∣
∣
∣
∣

∣
∣
∣
∣

∂δD(Θ;x)

∂x

∣
∣
∣
∣

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∣
∣
∣
∣

∂δD(Θ;x)

∂y

∣
∣
∣
∣

∣
∣
∣
∣

2
)

dx (4.11)



80

Such a smoothness term is based on an error norm with known limitations. One can replace

this smoothness component with more elaborate norms. Within the proposed framework, an

implicit smoothness constraint is also imposed by the B-Spline FFD, which guaranteesC1

continuity at control points andC2 continuity everywhere else. Therefore there is no need for

introducing complex and computationally expensive regularization components.

The data-driven term [Eq. 4.2.4] and the smoothness term [Eq. 4.2.4] cannow be integrated

into one energy functional to recover the IFFD parameters:

ELocal(Θ) =

∫∫

Ω

(
ΦD̂(x)−ΦS(D(Θ;x))

)2
dx+α

∫∫

Ω

(∣
∣
∣
∣

∣
∣
∣
∣

∂δD(Θ;x)

∂x

∣
∣
∣
∣

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∣
∣
∣
∣

∂δD(Θ;x)

∂y

∣
∣
∣
∣

∣
∣
∣
∣

2
)

dx

(4.12)

whereα is the constant balancing the contribution of the two terms. In our experiments,the

typical values forα are in the range of1 ∼ 5; smaller values lead to faster convergence,

while larger values result in smoother deformation fields. The one-to-one mapping property is

guaranteed regardless of theα value.

The calculus of variations and a gradient descent method can be used to optimize the local

registration objective function [Eq. 4.12]. One can obtain the following evolution equation for

each parameterθi in the IFFD control lattice deformation parametersΘ:

∂

∂θi
ELocal(Θ) = −2

∫∫

Ω

(
ΦD̂(x) − ΦS(D(Θ;x))

)(
∇ΦS(D(Θ;x)) · ∂

∂θi
δD(Θ;x)

)
dx

+2α

∫∫

Ω

∂

∂x
δD(Θ;x) · ∂

∂θi

(
∂

∂x
δD(Θ;x)

)

+
∂

∂y
δD(Θ;x) · ∂

∂θi

(
∂

∂y
δD(Θ;x)

)

dx(4.13)

The partial derivatives in the above formula can be easily derived fromthe model deformation

equation in [Eq. 2.15]. Details are given in the Appendix.

Once the optimal IFFD parameters and the local registration fieldL̂ are derived, dense

one-to-one correspondences can be established between each pointx = (x, y) on the source

structure, with its deformed position̂L(x) on the target structure. These correspondences in-

clude not only the correspondences for those pixels located on the zerolevel set, which are

points on the source and target shapes, but also correspondences between nearby level sets

which are clones of the original shapes coherently positioned in the embedding image/volume

space.
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The performance of the proposed local registration paradigm is demonstrated for various

2D examples shown in [Figs. (4.4, 4.1)]. And 3D examples will be presentedin Chapter 4.2.5

(see [Fig. (4.6), as well as in Chapter 6.2.4 (see [Fig. (6.8)]).

Multi-resolution Incremental Free Form Deformations (IFFD)

To account for both large-scale and highly local non-rigid deformations, we can use an efficient

multi-level implementation of the IFFD framework, as shown in [Fig. (4.5)]. To this end, multi-

resolution control lattices are used according to a coarse-to-fine strategy. A coarser level control

lattice is applied first to account for relatively global non-rigid deformations; then the space

deformation resulting from the coarse level registration is used to initialize the configuration of

a finer resolution control lattice, and at this finer level, the local registrationprocess continues to

deal with highly local deformations and achieve better matching between the deformed source

shape and the target. Generally speaking, the hierarchy of control lattices can have arbitrary

number of levels, but typically2 ∼ 3 levels are sufficient. The layout of the control lattices in

the hierarchy can be computed efficiently using a progressive B-spline subdivision algorithm

[41]. At each level, we can solve for the incremental deformation of the control lattice using

the scheme presented in section 4.2.4. In the end, the overall deformation field is defined by

the incremental deformations from all levels. In particular, the total deformation δD(x) for a

pixel x in a hierarchy ofr levels is:

δD(x) =

r∑

k=1

δDk(Θk;x) (4.14)

whereδDk(Θk;x) refers to the deformation improvement at this pixel due to the incremental

deformationΘk of thekth level control lattice.

4.2.5 Shape Registration in 3D

The proposed Global-to-local shape registration algorithm can be naturally extended to 3D.

For global registration, parameters of a 3D transformation model can be solved by maximizing

mutual information in the 3D sample domain. For local registration, free form deformations can

be defined by the 3D tensor product of B-spline polynomials, and the SSD energy functional is
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(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 4.5: Multi-level Incremental FFD for local registration. (a) Initial Condition, (b) Af-
ter global registration, (c) Established correspondences using a coarse resolution IFFD control
lattice for local registration, (d) Coarse resolution matching result, (e) Coarse resolution con-
trol lattice (space) deformation, (f) Refined correspondences by a finer resolution IFFD control
lattice, (g) Finer resolution matching result, (h) Finer resolution control lattice(space) defor-
mation.

defined in the 3D volumetric domain. Geometric feature constraints can be specified in 3D as

well to increase registration accuracy. The detailed 3D formulation and some3D registration

examples are given in Chapter 6.2.4.

Here we show one example of the 3D registration framework in [Fig. (4.6)] for register-

ing a pair of 3D face range scans. The global transformation model consists of translation,

scaling, and quaternion-based rotation [Fig. (4.6).1]. The local incremental FFD model uses

control lattices in the 3D space and a 3D tensor product of B-spline polynomials. Qualita-

tively the result after global-to-local registration can be seen from two views: the front view

[Fig. (4.6).2(front)], and the side view [Fig. (4.6).2(side)]. Quantitatively, the sum-of-squared-

differences matching error (Eq. 4.2.4) after global registration was8.3. The IFFD based local

registration used three resolutions of control lattices in a coarse-to-fine manner and ran20 iter-

ations for each resolution. After the coarsest-level (10*10 lattice) IFFDlocal registration, the

matching error was reduced to3.4; after the middle level (20*20 lattice), the matching error

was reduced to1.8; and after the finest level (40*40 lattice), the matching error was reduced to

1.2. The total time spent for global and multi-level local registration was4.6 minutes.
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(1)

(a) (b) (c) (d) (e)

(2) (Front view)

(a) (b) (c) (d)

(Side view)

(a) (b) (c) (d)

Figure 4.6: Global-to-local registration for open 3D structures (both source and target shapes
are from face range scan data). (1) Global registration using the 3D similarity transformation
model: (a) source shape; (b) target shape; (c) initial pose of the source relative to the target; (d
& e) globally transformed source shown overlaid on the target - front view (d) and side view
(e). (2) Local registration using IFFD: (Front view & Side view): (a) source shape after rigid
transformation; (b) target shape; (c) locally deformed source shape after IFFD registration; (d)
locally deformed source shape shown overlaid on the target.

4.3 Statistical Organ Shape Modeling and Prior Shape Model Guided Segmen-

tation

The shape registration algorithm introduced in the previous section 4.2 can be applied to statis-

tical shape modeling of objects of interest, because learning a compact representation that can

capture the shape variations in an object of interest requires establishing dense correspondences

across a set of training examples.

As an example, we show the statistical modelling of systolic left ventricle (LV) shapes

from ultrasonic images, using40 pairs of hand-drawn LV contours. We first apply global rigid

registration to align all contours to the same target, as shown in [Fig. (4.7)]. Local registration

based on free form deformations is then used to non-rigidly register all these contours to the
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Figure 4.7: Rigid Registration for User-Determined Ground Truth (Systole)shapes of the Left
Ventricle from Ultrasonic Images (multiple views). (blue) target mean shape,(red) registered
source shape.

common target (see grid deformations in [Fig. (4.8)]). In order to establishdense one-to-

one correspondences between all the aligned contours, we pick a set of sample points on the

common target and compute their correspondences on each training contour based on the local

registration result (see [Fig. (4.9)] for established local correspondences).

Using the established correspondences, the Principal Component Analysis (PCA) technique

can be applied to build a Point Distribution Model (PDM) [24] to capture the statistics of the

corresponding elements across the training examples. Assumingφi=1...n aren column vectors,

each representing the point coordinates from one example in the training set [Fig. (4.7)]. A

zero mean assumption can be made for each vector{φi} by estimating the mean vectorφ (i.e.

mean shape) and subtracting the mean vector from the training samples{φi}. Given the set of

training samples and the mean vector, one can define the covariance matrix asfollows:

[

Σ̂ = E{φiφ
T
i }
]

It is well known that the principal orthogonal directions of maximum variationfor {φi} are

the eigenvectors of̂Σ. One can replace thêΣ with the sample covariance matrix that is given

by
[
φT

MφM

]
. φM is the matrix formed by concatenating the set of examplesφi=1...n. Then,

the eigenvectors of̂Σ can be computed through the singular value decomposition (SVD) of
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(1)

(2)

Figure 4.8: Local Non-rigid registration using Incremental FFD. (1) initialundeformed grid
overlaid on global rigid registration result (blue - mean reference shape), (2) deformed grid to
map the reference shape to various training shapes. Each column corresponds to a different
trial.

φM = UΣVT . The eigenvectors of the covariance matrixΣ̂ are the columns of metricU

while the elements of the diagonal matrixΣ are the eigenvalues which refer to the variance of

the data in the direction of the basis vectors. The magnitude of the eigenvectors can be used

to determine the number of basis vectors (m) to keep in order to retain the largest amount of

variation within the training data while reducing those dimensions with very small variation.

For any new exampleφ, assuming

φ = φ+ Σm
j=1bj Uj

whereφ is the mean shape,m is the number of retained modes of variation,Uj are these modes

(eigenvectors), andbj are linear weight factors that combine the modes and reconstruct the new

example, we can compute the linear weight factors

b = U+(φ− φ)

whereb is the vector consisting ofbj , j = 1, ...,m, andU+ is the pseudo-inverse of the

eigenvector matrixU. Typically, the new example is considered one instance of the learned

object of interest, if all weight factorsbj , j = 1, ...m, are within the allowable range of variation

defined by the eigenvalues.

On the ultrasonic systolic left ventricle shape example, the computed principal components

for the statistical model can be seen in [Fig. (4.10)]. The model captures the variations in
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Figure 4.9: Established correspondences using IFFD. (red) sourceshapes after global transfor-
mations, (blue) target mean shape, (dark lines) correspondences fora fixed set of points on the
mean shape.

(1)

(2)

(3)

Figure 4.10: PCA modelling for the systolic Left Ventricle shapes using the established local
correspondences. (1) first mode, (2) second mode, (3) third mode; For each mode, from left to
right shows the mode changing from−2

√
λi to 2

√
λi.

the training set well, and generates new shapes that are consistent with thetraining examples.

This also justifies to some extent the validity of the established correspondences using our

registration algorithm.

The learned statistical shape model can be used to guide image search and segmentation

on unseen images in a way similar to the Active Shape Models [26]. Using the statistical

shape model of the left ventricle learned above (see [Fig. (4.10)]), weshow some example

segmentation results on ultrasound images of the heart during the systolic phase in Fig. 4.11.
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Figure 4.11: Statistical Shape Model guided segmentation of left ventricle shapes in echocar-
diograms (cardiac ultrasound images) during the systolic phase.

T

−→
(a) (b)

Figure 4.12: Illustrating potential problem in shape-only registration. (a) Example one with
contour shapes shown, (b) Example two, linked to Example one through an unknown transfor-
mationT.

4.4 Learning Coupled Shape and Appearance Models and Model-based segmen-

tation

Using statistical shape models to guide image search help produce reliable segmentation results

in noisy, cluttered images. However, methods considering boundary shape alone may fail in

robust registration of training examples for some objects of interest. [Fig. (4.12)] illustrates one

example demonstrating potential problems in shape-only registration. The training examples

are the left ventricle examples collected from a set of MRI images of the heart. Due to the

near-to circular Left Ventricle shapes in the two different training examples in [Fig. (4.12)],

it is unfeasible for any automated shape-only alignment algorithm to approximate the trans-

formation (e.g. rotation angle) between the two. In this case, the joint registration in both

shape and intensity spaces between training examples is imminent to address these limitations.

Furthermore, joint registration using both shape and texture provides additional deformation

constraints for the large area inside the object of interest.

The registration and learning framework introduced in section 4.2 and section 4.3 can be

easily extended to a joint shape and intensity feature space. we present next the extended

learning framework and demonstrate it to build a coupled shape and appearance prior model

for the left ventricle and whole heart in short-axis cardiac tagged MR images. We then use the
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.13: The globally-aligned training examples. (a) All aligned contours overlaid together.
(b-h) Some examples of the globally aligned textures. Note that due to tagging lines in the heart
wall and RV topology irregularity, we consider the whole-heart shape but texture only inside
the LV.

prior model to guide segmentation of the heart chambers in noisy, cluttered images, and we

show quantitative validation on the segmentation results by comparing to expertsolutions.

4.4.1 Unified Shape and Intensity Feature Space

Within our proposed framework, we represent each shape using a Euclidean distance map. In

this way, shapes are implicitly represented as “images” in the space of distance transforms

where shapes correspond to the zero level set of the distance functions. The level set values

in the shape embedding space is analogous to the intensity values in the intensity (appearance)

space. As a result, for each training example, we have two ”images” of different modality, one

representing its shape and another representing its intensity (grey-levelappearance). The shape

and intensity spaces are conveniently unified this way.

We use the Mutual Information as the similarity criterion to be optimized. Such information-

theoretic criterion has been successfully used for dealing with images of multi-modalities. Sup-

poseA andB are two training examples, and the similarity transformation between them isT .

Let us denote the level set value random variables in the shape space for exampleA asXA
S and

the shape variable for exampleB given the transformation isXT (B)
S , and denote their intensity

random variables in the intensity space asXA
I andXT (B)

I respectively. The Mutual Informa-

tion between the two examples in the joint shape and intensity spaces given the transformation

can be defined as:

MJ(A, T (B)) = MS(A, T (B)) + αMI(A, T (B))

= H(XA
S ) + H(X

T (B)
S ) −H(XA

S , X
T (B)
S ) +

α
[
H(XA

S ) + H(X
T (B)
S ) −H(XA

S , X
T (B)
S )

]
(4.15)
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(1)

(2)

Figure 4.14: Demonstraing local FFD registration between training examples.(1) Each training
shape (in blue) deforms to match a target mean atlas (in red). The deformed training shapes
are shown in green. The FFD control lattice deformations are also shown.(2) The registered
textures. Note that each training texture is non-rigidly deformed based on FFD and registered
to a mean texture atlas. All textures cover a same area in the common referenceframe. Dense
pixel-wise correspondences are established.

whereH represents the differential entropy andα is a constant balancing the contributions of

shape and intensity in measuring the similarity. To solve for the transformation parametersT ,

we maximize the above mutual information similarity measure in Eq. 4.15. The optimization

is done through a gradient-descent based method in a similar way to the optimization of Eq.

4.1. In Fig. 4.13, we show the aligned examples for an articulated whole heart model collected

from our training set of tagged MRI images. Here we randomly picked one example as the

atlas, and aligned all other examples to it by maximizing mutual information in the joint shape

and intensity spaces.

4.4.2 Local Registration using IFFD and Mutual Information

After global alignment, the next step towards building a statistical shape and appearance model

is to solve the dense correspondences problem. We extend the nonrigid shape registration al-

gorithm in section 4.2.4 to the unified shape and intensity space, thus achievingsimultaneous

registration on both shapes and textures of the training examples. This joint registration pro-

vides additional constraints on the deformation field for the large area insidethe object.

The Incremental Free Form Deformations (IFFD) is used to model the localdeformations,

and dense registration is achieved by evolving a control latticeP according to a deformation

improvement [δP ].

To non-rigidly register the atlasA and a rigidly aligned training exampleB, we consider a

sample domainΩ in the common reference frame. The mutual information criterion defined in
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both shape and intensity spaces can be considered to recover the deformation fieldδD(Θ;x)

that registersA andB:

E(δD(Θ)) = MS

(
B(Ω), A(D(Θ; Ω))

)
+ αMI

(
B(Ω), A(D(Θ; Ω))

)
(4.16)

In the equation,D(Θ; Ω) represents the deformed domain of the initial sample domainΩ, i.e.

D(Θ;x) = x + δD(Θ;x), for anyx ∈ Ω.

A gradient descent optimization technique is then used to optimize the mutual information

cost function, and to recover the parameters of the dense, smooth, one-to-one registration field

δD. Then correspondences can be established between each pointx = (x, y) on example

B, with its deformed position̂D(x) on the atlasA. The correspondences are valid on both

the “shape” images and the intensity images. We show the results using this localregistration

algorithm in Fig. (4.14).

4.4.3 Statistical Modeling of Shape and Appearance

By registration in the joint shape and intensity space, we are able to recoverthe deformation

fields that establish correspondence between both training shapes and textures. We apply Prin-

ciple Component Analysis (PCA) on the deformed FFD control lattices to capture variations

in shape. The feature vectors are the coordinates of the FFD control lattice points inx and

y directions in the common reference frame. We also use PCA on the registeredobject in-

terior textures to capture variations in intensity. Here the feature vectors are the image pixel

intensities from each registered texture.

Fig. (4.15) illustrates the mean atlas and three primary modes of variation for both the

shape deformation fields (Fig. (4.15).1) and intensities (Fig. (4.15).2). The shape model shown

uses the articulated heart model with epicardium and LV endocardium, and the texture model

is for the LV interior texture only (due to the presence of tagging lines in heartwalls and RV

irregularity).

4.4.4 Coupled Prior based Segmentation

Given an unseen image, we perform segmentation by registering the learned prior model with

the image based on both shape and texture.
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(1)

(2)

(a) (b) (c) (d) (e) (f) (g)

Figure 4.15: PCA modeling on the FFD control lattice deformations to capture variations in
shape, and on registered textures to capture the variations in appearance. (1.a) The mean FFD
control lattice configuration and mean shape. (1.b-c) Varying first mode ofFFD deformations:
−2σ reconstruction in (b) and2σ in (c). (1.d-e) Second mode of FFD deformations. (1.f-g)
Third mode of FFD deformations. (2.a) The mean LV texture (based on pixel-wise correspon-
dences). (2.b-c) Varying first mode of LV texture. (2.d-e) Second modeof LV texture. (2.f-g)
Third mode of LV texture.

In the image, we encode the gradient information of the image using a “shape image”, which

is derived from the un-signed distance transform of the edge map of the image. Then we register

the learned prior shape and appearance model with the image in both shape and intensity spaces.

The energy functional is the same as Equation 4.16, except that hereB consists of the new

intensity image and the derived “shape” image. Another difference from the learning process

is that, during optimization, instead of using directly the recovered FFD parameter increments

to deform the prior model, we back-project the parameter increments to the PCA-based feature

space, and magnitudes of the allowed actual parameter changes are constrained to have a2σ

upper bound. This scheme is similar to that used in Active Shape and Appearance Models.

Using the statistical model learned as shown in Fig. 4.15, we conduct automated segmen-

tation via statistically constrained registration in both shape and intensity spaceson two novel

sequences of 4D spatial-temporal tagged MR images of the heart. Each of the 4D test sequence

has 24 spatial locations and 18 time points, which gives us over400 2D test images. Example

segmentation results on the two datasets are shown in Fig. 4.16. During segmentation, the

learned prior model is registered to the images based on the shape models of the epicardium

and LV, and texture model of the LV. We also approximate the position and shape of the right

ventricle, but we do not show the RV segmentation here since we did not learn a prior model

for the RV.
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(1)

(2)

Figure 4.16: Coupled prior based segmentation results on two novel taggedMR image se-
quences. (1) Example segmentation results on novel sequence 1. (2) Example results on novel
sequence 2.

Quantitative validation is performed by comparing the automated segmentation results with

expert solutions. Denote the expert segmentation results in the images asℓtrue, and the results

from our method asℓprior. We define the false negative fraction (FNF) to indicate the frac-

tion of tissue that is included in the true segmentation but missed by our method:FNF =

|ℓtrue−ℓprior|
|ℓtrue|

. The false positive fraction (FPF) indicates the amount of tissue falsely identi-

fied by our method as a fraction of the total amount of tissue in the true segmentation: FPF =

|ℓprior−ℓtrue|
|ℓtrue|

. And the positive fraction (TPF) describes the fraction of the total amountof tissue

in the true segmentation result that is overlapped with our method:TPF =
|ℓtrue∩ℓprior|

|ℓtrue|
. On

the novel tagged MR sequence 1, our segmentation results produce the following average sta-

tistics: FNF = 2.4%, FPF = 5.1%, TPF = 97.9%. On the novel sequence 2, the average

statistics are:FNF = 2.9%, FPF = 5.5%, TPF = 96.2%.

4.5 Summary

In this chapter we have proposed a novel, generic algorithm for learningcoupled prior shape and

appearance models. The main contributions of this chapter are three folds.First, we propose

a new global-to-local shape registration algorithm that is able to establish continuous, smooth

and one-to-one correspondences. The algorithm can be used to register training shapes and

establish correspondences between them in order to learn a statistical shape model. Second,

to learn coupled shape and appearance models, we propose to work in a unified shape and
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intensity feature space. Third, a global-to-local registration algorithm based on the implicit

shape representation, FFD and mutual information performs registration both between shapes

and between textures simultaneously in order to acquire accurate correspondences to build a

coupled shape and appearance model.
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Chapter 5

Hybrid Image Registration based on Configural Matching of

Scale-Invariant Salient Region Features

In previous chapters, shape and appearance information are integrated in unified energy-minimization

frameworks and system parameters are solved through gradient-descent optimization. In this

chapter we explore the integration of shape and intensity information on the other side of the

spectrum. We introduce a novel method for aligning images under arbitrary poses, based on

finding correspondences between image “region” features. Rather than using traditional geo-

metric features such as curvature extreme points, curves/surface patches, our hybrid method

detects salient “region” features, each of which has an associated scale and whose interior

intensities (appearance) can be matched using robust similarity measures such as mutual infor-

mation. Shape information is incorporated by considering geometric configuration constraints

between the region features during correspondence finding. The geometric configuration con-

straints are enforced in an Expectation-Maximization framework to find a joint correspondence

between multiple pairs of region features that result in a consistent transformation; other fea-

ture pairs, which either are outlier matches or degrade matching performance, are effectively

pruned.

5.1 Introduction

Image registration aims to spatially align one image to another. For that purpose,parameters

of a global transformation model, such as rigid, affine or projective, areto be recovered to

geometrically transform amovingimage to achieve high spatial correspondence with afixed

image. The problem has been studied in various contexts due to its significance in a wide range

of areas, including medical image fusion, remote sensing, recognition, tracking, mosaicing, and

so on.
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Existing methods for image registration can largely be classified into three categories:

feature-based methods, intensity-based methods, and hybrid methods that integrate the pre-

vious two. Traditional feature-based methods use sparse geometric features such as points

[109], curves, and/or surface patches [13, 71], and their correspondences to compute an op-

timal transformation. These methods are relatively fast. However, the main critiques of this

type of methods in the literature are the robustness of feature extraction, theaccuracy of fea-

ture correspondences, and the frequent need of user interaction. Intensity-based registration

methods [114, 22] operate directly on the intensity values from the full image content, without

prior feature extraction. These methods have attracted much attention in recent years since

they can be made fully automatic and can be used for multi-modality image matching by utiliz-

ing appropriate similarity measures. However, these methods tend to have highcomputational

cost due to the need for optimization on complex, non-convex energy functions. In addition,

they require the poses of two input images be close enough to converge to alocal optimum.

Furthermore, they often perform poorly when partial matching is required. Recently, several

hybrid methods are proposed that integrate the merits of both feature-based and intensity-based

methods [104, 49, 63]. Most of them focus on incorporating user provided or automatically

extracted geometric feature constraints into the intensity-based energy functionals to achieve

smoother and faster optimization.

Despite the vast efforts, however, several hard problems in registration still remain. First,

dealing with structure appearing/dissappearing between two images is still challenging. For

instance, tumor growth/shrinkage in medical images acquired in the clinical tracking of treat-

ment, trees/shadows or construction in aerial images taken at different times, and occlusion in

other natural images often lead to significant differences in local image appearance (see Figs.

5.1, 5.7). Second, it is still difficult to match images acquired by sensors of different modali-

ties in general, since different sensors, such as MRI, CT or PET, may produce very dissimilar

images of the same scene. The relationship between the intensities of the matchingpixels is

often complex and not knowna priori. Image noise and intensity inhomogeneity also add to

this complexity. Last, but not least, given two input images under arbitrary poses, recovering

the globally optimal transformation efficiently is a hard problem due to the large parameter
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(I)

(II)

(III)
(a) (b) (c) (d)

Figure 5.1:The registration method based on matching scale-invariantsalient region features. (I.a) The
fixed imageIf . (I.b) Salient region features (shown as yellow circles) detected onIf . (I.c) The moving
imageIm. (I.d) Salient region features detected onIm. (II.a-b) The first corresponding feature pair
chosen. (II.c-d) The corresponding feature pairs chosen bythe algorithm upon convergence. (III.a-b)
Registration result: (III.a) the fixed imageIf , and (III.b) the transformed moving imageIt based on the
transformation parameters recovered using the chosen feature correspondences. (III.c-d) Comparison of
the edge superimposed maps: (III.c) edges (in yellow) from the original moving imageIm superimposed
on fixed imageIf , and (III.d) edges from the transformed moving imageIt superimposed on fixed image
If .

search space. To tackle these problems, the integration of both feature-based and intensity-

based methods is very attractive since they are of complementary nature. While intensity-based

methods are superior in multi-modal image matching and have better robustness toimage noise

and inhomogeneity, the feature-based methods are more natural to handle the structure appear-

ing/dissappearing problem, occlusion, and partial matching as well as to alignimages despite

of their initial poses.

In this chapter, we propose a new hybrid image registration method that integrates shape

and intensity information by matching a small number of scale-invariant salient region features.

Rather than using traditional geometric features such as curvature extremapoints, curves/surface
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patches, the image alignment in our approach is driven directly by image intensities within au-

tomatically extracted salient regions. The overall approach is depicted in Fig. 5.1. First, on

both the fixed and moving images, salient region features are selected, using an entropy-based

detector, as those areas (each associated with a best scale) with the highest local saliency in both

spatial and scale spaces (see Fig. 5.1, I.a-d). Then aregion component matching(RCPM) step

is used to determine the likelihood of each hypothesized fixed-moving pairing of two region

features. The likelihood of each pairing is measured by the normalized mutualinformation

between the two regions. The result of this step is a total ordering of the likelihoods of all

hypotheses about individual feature matches. Due to image noise or intensity changes, the top

matches from this result often contain an unpredictable portion of outliers (i.e., mismatches),

whose effects can only be partially alleviated by the use of robust estimation techniques. In the

literature, the global one-to-one correspondence constraint [7, 19]has been widely used. How-

ever, in the presence of unmatchable features or in the situation of partial matching, this global

constraint is neither sufficient nor valid. To address these limitations, we emphasize the impor-

tance of the geometric configural constraints in preserving the global consistency of individual

matches. Utilizing the top individual feature correspondence candidates from the RCPM step,

we further design aregion configural matching(RCFM) step in which we detect a joint cor-

respondence between multiple pairs of salient region features (see Fig. 5.1, II.c-d). The strict

geometric constraints imposed by the joint correspondence make the algorithmvery effective

in pruning false feature matches. The combinatorial complexity associated withdetecting joint

correspondences is addressed in an efficient manner by using one feature pair correspondence

as a minimal base (see Fig. 5.1, II.a-b), then incrementally add to the base newfeature pairs

using an Expectation-Maximization algorithm. The likelihood of each hypothesized joint cor-

respondence is always measured based on the global “alignedness” between the fixed image and

the transformed moving image, given the transformation computed from the hypothesis. This

allows convergence to the globally optimal transformation parameters. Various experiments on

registering aerial images and medical images of single and multiple modalities demonstrate the

effectiveness of the proposed method both quantitatively and qualitatively.
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5.1.1 Previous Work

The proposed image registration method is largely inspired by the pioneering works from the

object recognition literature [40, 47, 61]. From their works, we learnedtwo important aspects

that would be beneficial when used in image registration. The first aspectis the use of scale-

invariant region features. In [40], objects are modeled as flexible constellations of regions

(parts) in order to learn and recognize object class models. An entropy-based feature detector

[61] is used to select region features that have complex intensity distributions and are stable in

both spatial and scale spaces. When adapting the idea of region featuresto solve image reg-

istration problems, suitable and robust similarity measures need to be defined between region

intensity values, to deal with multi-modal matching, image noise, and intensity inhomogene-

ity. The second aspect is the importance of geometric configural constraints in robust feature

matching. In [47], the role of geometric constraints in object recognition is studied in depth

using edge and other geometric features, and aninterpretation tree(IT) algorithm is developed

to search for globally consistent feature correspondences. In this chapter, we present a new

method of implementing the geometric configural matching. Compared to the interpretation

tree search algorithms whose best-case and worst-case complexities can be significantly dif-

ferent, our method has a very predictable low computational cost and has the best-case and

worst-case complexities on the same order.

The remainder of the chapter is organized as follows. In section 5.2, we describe the salient

region feature detector. In section 5.3, we present our region featurebased image registration

algorithm. Experimental results on both aerial and medical images are demonstrated in section

5.4. We summarize with discussion in section 5.5.

5.2 Scale-Invariant Salient Region Features

The line of research on feature-based image matching has long been restrained by the question:

what features to use? An interesting feature selection criterion was proposed for tracking under

occlusion and disocclusion situations in [105]. The criterion states that the right features for
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Figure 5.2: Demonstrating our belief that every point in the image can bemade unique if a proper
scale of its neighborhood is selected to calculate the feature. (Inner most circle) Locally at a small scale,
the point neighborhood appear homogeneous. (Middle circle) At a larger scale, the point neighborhood
begins to appear unique. (Large Circle) At a scale that is large enough, every point appears unique based
on the characteristics of its neighborhood.

tracking are exactly those that make the tracker work best. Applying similar reasoning, we be-

lieve that good features for image registration should be those that are “unique” or “rare”. The

uniqueness or rarity of a feature we refer here is in the context of correspondence, i.e., given a

feature from one image, whether the likelihood of having multiple corresponding features on

the matching image is low, not in the context of its uniqueness or rarity in occurrence within the

same image. For example, in the use of point features for image matching, the traditional intu-

ition and argument is that pixels in homogeneous regions (similarly, points with lowcurvatures

on curve or surface segments) tend to be ambiguous in correspondenceand should either not be

chosen as the preferred feature point or weighted less important duringthe matching process

[110, 3]. We argue, however, that these popular beliefs are only correct in a relative sense and

that the “uniqueness” of a feature is closely related to its associated scale.At a smaller scale,

edge points, corner points, or points with high curvature appear to be moreunique than others.

At a medium or larger scale, points in homogeneous regions or with low curvature begin to

appear unique as well. Medial axis points of a shape or a homogeneous region are examples of

these type of points that are unique at the scale they are associated with. Webelieve that every

point regardless of their local characteristics (edgeness, cornerness, medialness, curvature, etc.)

in the image can be made unique if a proper scale and its neighborhood is selected to calculate

the feature1. One pictorial example of this point of view is demonstrated in Fig. 5.2.

Thus motivated, we seek to use scale-invariant region features as the basis for our proposed

1Note that we are not the first to exploit this observation for image registration. For instance, in [104], promising
results have been obtained recently for non-rigid brain image registrationusing an attribute vector of geometric
moment invariants at different scales.
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registration method. In [61], a salient region feature detector is proposed. The salient regions

are found using an entropy-based detector, which aims to select regionswith highest local

saliency in both spatial and scale spaces. For each pixelx on an image, a probability density

function (PDF)p(s,x) is computed from the intensities in a circular region of certain scale

described by a radiuss centered atx. The local differential entropy of the region is defined by:

H(s,x) = −
∫

R
pi(s,x) log2 pi(s,x)di

wherei takes on values in the set of possible intensity values. The best scaleSx for the region

centered atx is selected as the one that maximizes the local entropy:Sx = argmaxs H(s,x).

Then the saliency value,A(Sx,x), for the region with the best scale is defined by the extrema

entropy value, weighted by the best scale and a differential self-similarity measure in the scale

space:

A(Sx,x) = H(Sx,x) · Sx ·
∫

R

∥
∥
∥
∂

∂s
pi(s,x)

∣
∣
Sx

∥
∥
∥di

Since the saliency metric is applicable over both spatial and scale spaces, thesaliency values of

region features at different locations and scales are comparable.

For the proposed registration method, we apply the following steps to pick a lownumber

N (N < 100 for all our experiments) of salient region features (each defined by its center and

the best scale):

• For each pixel locationx, compute the best scaleSx of the region centered at it, and its

saliency valueA(Sx,x).

• Identify the pixels with local maxima in saliency values. Then the salient regionsof

interest are those that are centered at these pixels and have the best scales.

• Among the local maxima salient regions, pick theN most salient ones as region features

for the image.

One of the main advantages of the salient region features is that they are theoretically invariant

to rotation, translation and scale. We also quantitatively validate the invarianceproperties in

section 5.4.1. Some examples on the extracted salient regions are shown in Fig. 5.1(I.a-d) and
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in Fig. 5.4(II.a-d).

5.3 The Salient Region based Registration Algorithm

Once we have extracted the salient region features from both the fixed and moving images, the

alignment of the two images is achieved by finding a robust joint correspondence between mul-

tiple pairs of region features. This joint correspondence is then used to estimate the parameters

of a desired transformation model. In this chapter, we consider the 2D similaritytransforma-

tion. This transformation can be described by four parameters:(tx, ty, σ, θ), wheretx, ty are

the translation alongx andy directions respectively,σ is the isotropic scaling factor, andθ is

the rotation angle.

Several notations are introduced as follows:

• If is the fixed image,Im is the moving image, andIt is the transformed moving im-

age. We aim to recover the parameters of a similarity transformation that geometrically

transforms the moving image to be aligned with the fixed image.

• SupposeNf salient region features are detected onIf , andNm features onIm.

• Ci,j denotes the hypothesized correspondence between theith region feature onIf and

thejth feature onIm. Here(i, j) ∈ [1, Nf ] × [1, Nm].

• Ci1,j1 ∩ Ci2,j2 ∩ ... ∩ Cik,jk
... denotes a hypothesized joint correspondence between

multiple region feature pairs:i1th region onIf corresponds toj1th region onIm, ikth

region onIf corresponds tojkth region onIm, etc.

5.3.1 Region Component Matching (RCPM)

In the RCPM step, we measure the likelihood of each hypothesized correspondence between a

region feature fromIf and a region feature fromIm, respectively. That is to say, we want to

measure the likelihoodLlocal(Ci,j) for each individual feature correspondence hypothesisCi,j .

We can then acquire a total ordering of these hypotheses according to their likelihoods.

We define the likelihood to be proportional to the similarity between the interior intensities

of the two salient regions involved. Let us denote theith region onIf asA, and thejth region
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on Im asB. Before measuring their intensity similarity, we first normalize their scales by

supersampling (using bicubic interpolation) the smaller region to match the scale of the larger

region. This also leads to scale-invariant matching. The translation invariance is intrinsic by

aligning the two region centers. To further achieve rotation invariance, wesample the parameter

space for rotation sparsely2, and use the largest similarity value over all possible angles as the

similarity between the two regions. The similarity measure we use is a normalized form of

mutual information, the Entropy Correlation Coefficient (ECC) [68]. Suchmetric has been

proven robust in the literature in dealing with multi-modal image matching, image noiseand

intensity inhomogeneity.

Formally, the likelihood of a correspondence hypothesisCi,j is defined as:

Llocal(Ci,j) = max
θ
ECC(A,Bθ)

whereBθ is the scale-normalized regionB after rotating angleθ. The Entropy Correlation

Coefficient (ECC) between the two regions is defined by:

ECC(A,Bθ) = 2 − 2H(A,Bθ)

H(A) + H(Bθ)

whereH indicates the joint or marginal differential entropy of the intensity value random vari-

ables of the two regions. Given two inputsu andv, the value ofECC(u, v) has the following

properties:ECC(u, v) is scaled to(0, 1), such that0 indicates full independence and1 com-

plete dependence between the two inputs. Furthermore,ECC(u, v) increases almost linearly

when the relationship betweenu andv varies from full independence to complete dependence,

which makes it an attractive measure of the likelihood thatu corresponds tov.

Using this ECC definition, the likelihood values of all feature correspondence hypotheses

Ci,j , where(i, j) ∈ [1, Nf ] × [1, Nm], are comparable regardless of the scales of the region

features. Thus we are able to sort these hypotheses in the order of descending likelihood.

We then choose the topM such hypotheses to be used in the next configural matching step to

extract a globally consistent joint correspondence. Here we make the assumption that there will

2Typically, the rotation angles are sampled uniformly between[−π, π) at an intervalπ/36.
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be at least2 valid feature correspondences among the topM candidates. From our extensive

experiments, we found this assumption to be fairly reasonable with typical values ofM between

20 ∼ 40.

The RCPM step also generates useful information regarding the transformation to align

the two images, based on the purely local region-based matching. For instance, given a high

likelihood correspondence between a regionA on If and a regionB on Im, we can estimate

the scaling factor by:σ = sA

sB
, wheresA andsB are the scales of the two regions respectively.

The rotation angle can be estimated as:θ = argmaxθ′ ECC(A,Bθ′). And the translation can

also be estimated by the displacement between the center of the regionA and the center of

the regionB after rotation and scaling. These estimates are associated with the related feature

correspondence hypothesis, to provide the initial estimate for the transformation in the next

region configural matching step.

As a result of the RCPM step, we have a total ordering of the individual feature correspon-

dence hypotheses. In addition, based on the topM hypothesisCi,j , we have a transformation

parameter estimate:(tx, ty, σ, θ)Ci,j . As an example, we show the top5 region feature corre-

spondence hypotheses for the pair of aerial images in Fig. 5.3. From the results, one can see

that the RCPM step is able to extract good individual feature matches basedon local region

intensity-based matching. In the next configural matching step, we will demonstrate the use of

geometric constraints to pick out the true correspondences (e.g., Fig. 5.3,I-III, V) and prune

the outliers (e.g., Fig. 5.3, IV).

Note that the RCPM step has the most complexity of our entire registration method,since

it hasNf × Nm hypothesis testings, and a total ordering of their likelihoods are pursued.

However, because the number of region features,Nf andNm, are low, the algorithm is still

computationally efficient.

5.3.2 Region Configural Matching (RCFM)

In the RCFM step, we aim to detect a joint correspondenceCi1,j1 ∩ Ci2,j2 ∩ ... ∩ Cik,jk
... be-

tween multiple pairs of region features, which results in the maximum likelihood in terms of

global image “alignedness”. The intuition behind the configural matching is that, while false

matches are very likely to arise when we search for individual local feature correspondences,
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(I)

(II)

(III)

(IV)

(V)

Figure 5.3:The top five candidate region feature correspondences computed by the region component
matching (RCPM) step. The result is shown for the pair of aerial images in Fig. 5.1.

the likelihood of a global geometrically consistent joint correspondence between multiple fea-

ture pairs being false is very low due to the strict geometric configuration constraints imposed

by the joint correspondence.

We measure the likelihood of a hypothesized joint correspondence withn feature pairs

using the ECC measure between the overlapping portions of the fixed imageIf and the trans-

formed moving imageTn(Im). Here the transformationIt = Tn is estimated from all feature
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pairs contained by current hypothesis. This can be written as:

Lglobal(Ci1,j1 ∩ Ci2,j2 ∩ ... ∩ Cin,jn) = ECC(Tn(Im), If ),

(ik, jk) ∈ [1, Nf ] × [1, Nm], k = 1, ..., n

(5.1)

This likelihood measures the global image “alignedness” under current hypothesis. In the end,

we want to find a joint correspondence that has the maximum likelihood, while containing

adequate number of feature pairs (typically a few) to recover the parameters of a similarity

transformation.

To address the combinatorial complexity in detecting the joint correspondence, we first

compute a minimal correspondence base ofl feature pairs and get an initial estimation of the

transformation. As shown in section 5.3.1, one correspondence betweena pair of region fea-

tures is sufficient to derive a transformation estimate, i.e.,l = 1. To choose this first cor-

respondence, we measureLglobal(Ci,j) for each individual feature match among the topM

hypothesized correspondences resulted from the RCPM step. Using Equation 5.1, the parame-

ters ofTl are(tx, ty, σ, θ)
Ci,j when measuring the likelihood ofCi,j . Then the first feature pair

in the minimal correspondence base is the correspondence yielding the maximum likelihood,

i.e.,

Ci1,j1 = argmax
Ci,j

Lglobal(Ci,j)

To allow converging to a globally optimal solution, we further use a generalized Expectation-

Maximization (EM) algorithm to incrementally add in new feature pairs to the joint correspon-

dence base, while refining the center locations of the corresponding features. The generalized

EM algorithm is described as follows:

1. Let current joint correspondence beC = (Ci1,j1 ∩ ...Cil,jl
). Locally refine the region

feature centers inC in sub-pixel accuracy to achieve better matching, and use the refined

corresponding region centers to estimate a current transformationT .

2. E-step: For each feature pairCi,j that is in the topM individual matches, but not in the

current joint correspondenceC, estimate the likelihood of this feature pair being a valid

correspondence in terms of global consistency asLglobal(C ∩ Ci,j), Ci,j /∈ C.
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3. M-step: Choose the new feature correspondenceCî,ĵ that has the maximum likelihood.

We also require the addition ofCî,ĵ increasing the global image “alignedness”.

If Lglobal(C ∩ Cî,ĵ) > Lglobal(C)

Then

a Let the new joint correspondence beC = (C ∩ Cî,ĵ).

b Locally refine the centers of the region features in the joint correspondence in sub-

pixel accuracy to achieve better matching.

c Re-compute the transformationT using the new joint correspondence.

d Repeat EM steps 2-3.

ElseOutput current transformationT as the converged transformation to align the fixed

imageIf and the moving imageIm.

For the aerial image example, the feature pair shown in Fig. 5.1(II.a-b) is chosen to be the

first feature pair in the minimal correspondence base. Note that this first pair in the RCFM step

is not necessarily the same as the top feature pair resulted from the RCPM step, since different

criteria are used to determine the likelihoods for ranking purposes. In fact, the first pair chosen

by the RCFM step in Fig. 5.1(II.a-b) is the5th feature pair in the RCPM step (see Fig. 5.3,

V), because the transformation estimated from this feature pair gives rise tothe maximum

global image “alignedness”. All the feature pairs in the final converged joint correspondence

are shown in Fig. 5.1(II.c-d). Based on these correspondences, a similarity transformation

is recovered and the registered image pair (i.e., the fixed image and the transformed moving

image) is shown in Fig. 5.1(III.a-b).

Having at mostM iterations, our RCFM step is very efficient. Two key points contribute to

this efficiency: First, pick a minimal correspondence base with only one feature pair; Second,

use the EM algorithm to add in new feature pairs incrementally, thus enabling theconverged

joint correspondence to include as many good feature pairs as possible, while keeping a mini-

mal complexity.
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(I)

(II)

(III)
(a) (b) (c) (d)

Figure 5.4:Registration on the pair of brain images used in the simulation experiment. (I.a) Original
PD-weighted MR brain image. (I.b) Original T1-weighted MR brain image. (II.a) The fixed imageIf .
(II.b) Salient region features onIf . (II.c) The moving imageIm. (II.d) Salient region features onIm.
(III.a-b) The feature pairs in the joint correspondence chosen by the algorithm upon convergence. (III.c)
The transformed moving imageIt. (III.d) The edge superimposed map after registration: edges fromIt
(in red) superimposed on fixed imageIf .

5.4 Experiments

In this section, we present both the quantitative and the qualitative results ofapplying our image

registration method on several simulated and real images.

5.4.1 Quantitative Results on Simulated Moving Images

In order to quantitatively validate the robustness, accuracy, and efficiency of the proposed

method, we conduct a series of controlled experiments using a pair of brainimages with the

moving image simulated from a known transform. The first image is a PD (proton density)

weighted MR brain image (see Fig. 5.4, I.a), and the second image is a T1 weighted MR brain

image (see Fig. 5.4, I.b). The two images are originally registered, and the size of the images

is 217 × 181.
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In our first controlled experiment, we study the invariance properties of our method to

scaling, rotation, and translation. We use the PD image as the fixed image, then simulate

different moving images by artificially transform the T1 image with controlled parameters.

The parameters are chosen according to the following four cases:

1. Case 1 studies the invariance to scaling. To this end, we fix the translation (tx = 0, ty =

0) and rotation (θ = 0), but vary the scale factorσ in the range[0.5, 1.5].

2. Case 2 studies the invariance to rotation. We fix the translation (tx = 0, ty = 0) and

scaling factor (σ = 1), but vary the rotation angle in the range[−π
2 ,

π
2 ].

3. Case 3 studies the invariance to translation. Here only the translation parameterstx, ty

are varied in the range[−50, 50].

4. Case 4 studies the combined effect of the transformation parameters by varying all pa-

rameters simultaneously:tx, ty in the range[−50, 50], σ in the range[0.5, 1.5], andθ in

the range[−π
2 ,

π
2 ].

In each case, we generate50 simulated moving images. Then we apply our registration al-

gorithm to register the fixed image with each simulated moving image respectively. Since

we know the ground truth transformation that was used to simulate each moving image, we

can compare these ground truth with the recovered transformation parameters by our method.

Three statistical performance measures are computed from the study and the results are listed

in Table 5.1. The first measure is thepercentage of correctness(correctness). In a registration

trial, if the recovered transformation is sufficiently close to the ground truth3, this trial results

in a correct registration, otherwise, it is taken as a false registration case. The second measure

is theaverage error(error). This measure gives the average error (i.e., difference) ofthe recov-

ered transformation parameters from the ground truth. It reflects the accuracy and convergence

property of our registration method. The last measure is theaverage execution time(time) for

one trial of registering a pair of fixed and moving images. Note that our methodis currently

3We consider the recovered transformation correct if its difference from the ground truth is less than a pre-
defined error threshold. Typically, we set the threshold as follows: scale error less than 0.05, rotation angle error
less than 5 degrees, translation error inx direction less thanDx/50, and translation error iny direction less than
Dy/50, whereDx, Dy are the dimensions of the image alongx andy directions, respectively.
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correctness error time

Case 1 98% (0.9, 1.1, 0.027, 0.0) 138 s
Case 2 100% (0.5, 0.6, 0.009, 1.5) 155 s
Case 3 100% (0.2, 0.4, 0.000, 0.0) 155 s
Case 4 94% (1.4, 1.7, 0.031, 2.1) 150 s

Table 5.1:Quantitative validation of the invariance properties of the method. For each case, the per-
centage of correct registration (correctness), the average error in recovered transformation parameters
(error), and the average execution time for one trial (time)are given. The given errors are in the format:
(tx, ty, σ, θ), where translation errorstx andty are in pixels, rotation angle errors are in degrees, and the
scaling errors are given relative to the original image scale. The times are given in seconds.

implemented in Matlab with several functions written in C++ and that all the experiments are

conducted on a 2GHz PC workstation.

range ofλ correctness error time

[5, 10] 100% (0.3, 0.6, 0.007, 0.4) 142 s
[10, 20] 97% (0.7, 0.9, 0.006, 1.2) 142 s
[20, 30] 90% (0.9, 1.3, 0.009, 2.4) 144 s

Table 5.2:Quantitative simulation study of the performance of the method when images are corrupted
by different levels of Gaussian noise. Three different cases are shown in three rows. The cases differ
by the range of the standard deviationλ of the Gaussian noise added. For each case, three statistical
measures are given in the same format as in Table 5.1.

In the second controlled experiment, we study the robustness of the method toimage noise.

We use the original PD image as the fixed image, then generate test moving imagesby adding

different levels of Gaussian noise to the original T1 image, and transforming the noise corrupted

images according to random transformations. The Gaussian noise we add has zero mean with

standard deviationλ. In Table 5.2, we show the three performance measures for three test

cases. The three cases differ by the range of the standard deviation of the Gaussian noise

added. (All possible values for the standard deviation are between[0, 255]). For each case,30

noise corrupted T1 images are generated and randomly transformed, where the transformation

parameters vary in the same ranges as in the first controlled experiment. From the results, one

can see that, the method is quite robust to high levels of noise. This is partly dueto the stability

of the entropy-based region feature detector and the robustness of theintensity-based Entropy

Correlation Coefficient (ECC) similarity measure. It is also due to the fact that our algorithm
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(I)

(II)
(a) (b) (c) (d)

Figure 5.5:Registering a pair of real brain images from the Vanderbilt Database. (I.a) The fixed image.
(I.b) Salient region features detected on the fixed image. (I.c). The moving image. (I.d) Salient region
features on the moving image. (II.a-b) The corresponding feature pairs chosen by the algorithm upon
convergence. (II.c) The transformed moving image. (II.d) The edge superimposed map after registration:
edges (in yellow) from the transformed moving image superimposed on the fixed image.

requires only a small number of good matched features to register the images.One pictorial

example selected among all simulated experiments is shown in Fig. 5.4(II-III).In this example,

the moving imageIm (see Fig. 5.4, II.c) is generated by adding Gaussian noise with zero mean,

standard deviation25 to the original T1-weighted image, then scaling down the image by20%,

and rotating by20 degrees.

5.4.2 Qualitative Results on Real images

Experiments with the simulated moving images in the previous section provide a quantitative

study on the performance of our registration method. Real world images oftenhave significant

levels of noise and intensity inhomogeneity. Furthermore, between the pair ofimages to be reg-

istered, structures may appear or disappear, and intensities for the same structure may change.

We have shown the result of our algorithm on a pair of real aerial images inFig. 5.1. In this

section, we apply our method to more real world medical images from severaldomains. These

results demonstrate the effectiveness of our method on image registration problems that could

be difficult to be solved using either pure intensity-based or pure feature-based methods.

Figure 5.5 shows the result of registering two real brain images. This pair of images is from

the Vanderbilt Database [117]. Note that the algorithm successfully picksup several distinctive

region features, and is able to recover the large rotation between the two images.

Another example on registering two MR chest images is shown in Fig. 5.6. This pair
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(I)

(II)
(a) (b) (c) (d)

Figure 5.6: Registering a pair of chest MR images from the Visible Human project database. The
layout of the images is the same as those in Fig. 5.5.

(I)

(II)
(a) (b) (c) (d) (e) (f)

Figure 5.7:Registering brain images with tumor. (I.a) The fixed image. (I.b) Salient region features
detected on the fixed image. (I.c). The moving image. (I.d) Salient region features on the moving image.
(I.e-f) The first corresponding feature pair chosen. (II.a-b) The corresponding feature pairs chosen by
the algorithm upon convergence. (II.c-d) The registrationresult: (II.c) the fixed image, and (II.d) the
transformed moving image. (II.e-f) Comparison of the edge superimposed maps: (II.e) edges from the
original moving image superimposed on the fixed image, and (II.f) edges from the transformed moving
image superimposed on the fixed image.

of images is from the Visible Human Project database. The fixed image is a T1-weighted MR

image, and the moving image is a PD-weighted MR image. Despite the different tissue intensity

characteristics between the two images, the salient region feature pairs chosen by the method

to recover the transformation parameters correspond very well both in scale and location (see

Fig. 5.6, II.a-b).

To demonstrate the performance of our algorithm on images with appearing and disap-

pearing structures, we use a pair of brain images, with one of which contains a tumor. The

two images are from two different subjects, and the tumor in one of the images changes its

appearance significantly. The results produced by our method are shown in Fig. 5.7. Here
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(I)

(II)

(III)
(a) (b) (c) (d)

Figure 5.8:Registering two curved human retinal images. (I.a) The fixedimage. (I.b) Salient region
features on the fixed image. (I.c). The moving image. (I.d) Salient region features on the moving
image. (II.a-b) The hand picked feature pairs that seem to correspond well. (II.c) The transformed
moving image using the seven hand-picked feature correspondences. (II.d) Edges of the transformed
moving image (in yellow) superimposed on the fixed image. (III.a-b) The corresponding feature pairs
automatically chosen by the algorithm upon convergence. (III.c) The transformed moving image. (III.d)
Edges of the transformed moving image superimposed on the fixed image.

the feature-based aspect of our algorithm enables it to focus on regions of similar appearance

within a natural scale, thus being robust to the appearance and disappearance of local structures.

Last, but not least, we show the effectiveness of the proposed method on robust partial

matching and mosaicing applications. We use a pair of curved human retinal images, as in

[13]. The results are shown in Fig. 5.8. In this experiment, we also demonstrate the importance

of the EM procedure in incrementally selecting good feature correspondences that increase the

matching similarity and guaranteeing convergence. In Fig. 5.8, row II, we handpicked the

feature pairs that seem to correspond to each other well. This results in seven feature pairs,

and we transform the moving image using the transformation recovered by these feature pairs

(see Fig. 5.8, II.c-e). In the last row III of Fig. 5.8, we show the feature correspondences

automatically chosen by the method. There are only three best feature pairschosen, and the

transformation result can be seen in Fig. 5.8(III.c-e). Comparing the edge superimposed map

in Fig. 5.8(II.d) and that in Fig. 5.8(III.d), one can see that the three feature pairs chosen by

the method in fact produce better transformation than using all the seven handpicked feature
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pairs. The comparison can be seen more clearly from the two zoom-in views of the edge

superimposed maps: Fig. 5.8(II.e)vs.Fig. 5.8(III.e).

5.5 Discussion and Summary

In our current implementation of the geometric configural constraints, it is worth noting that

the measure for the “goodness” of a candidate feature correspondence is based on its likelihood

value and whether its addition will increase the global image “alignedness”. On one hand,

this permits us to efficiently recover the few best feature correspondences and to detect a con-

vergence without explicitly setting hard thresholds. On the other hand, the strictness of the

constraint also eliminates feature pairs that essentially correspond to eachother individually

(e.g. some handpicked good feature pairs in Fig. 5.8, row II, which are not chosen by the

algorithm), but could deteriorate the overall global image alignment once added to the joint

correspondence.

To summarize, in this chapter we have presented a novel image registration method based

on the region component and configural matching using scale-invariant salient region features.

The proposed method possesses characteristics of both feature-based and intensity-based meth-

ods. While the overall framework is based on finding correspondencesbetween features, all the

feature correspondence likelihoods and decisions are made accordingto intensity-based simi-

larity measures between region features and images. The method is efficientin that it recovers

a transformation using sparse salient region feature correspondences. It is also very robust

because it exploits strict global geometric constraints when finding a joint correspondence be-

tween multiple feature pairs. The algorithm can be extended to deal with more complicated

transformation models such as affine, projective transformations as well as non-rigid deforma-

tions in both 2D and 3D.
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Chapter 6

Applications in Medical Image Analysis, Computer Vision, and

Graphics

The deformable models, segmentation, registration and visual learning algorithms introduced

in previous chapters can be applied to a wide range of real-world applications. In this chapter,

we present two such applications. In the first application, the Metamorphs deformable models

introduced in Chapter 3 are applied to heart wall segmentation and motion tracking in noisy,

tagged MRI images of the heart. In the second application, we extend the Global-to-local

shape registration algorithm introduced in Chapter 4 to 3D and use it for high-resolution facial

expression tracking. The dense correspondences established by thetracking and registration

algorithms are then applied to facial expression learning, synthesis and re-targeting.

6.1 Metamorphs Deformable Models and Tunable Gabor Filters for Robust Seg-

mentation of 4D Cardiac Tagged MRI Images

Cardiovascular diseases are the main cause of death in the western countries. Many heart

diseases, such as ischemia and RV hypertrophy are thought to correlatestrongly to the shape

and motion of the heart. Tagged cardiac magnetic resonance imaging (MRI) isa well-known

technique for non-invasively imaging the regional cardiac function by enabling visualization of

detailed myocardium motion and deformation. It has great potential to help early diagnosis and

analysis of many cardiovascular diseases.

One example of tagged MRI imaging is the Spatially non-selective Spatial Modulation of

Magnetization (SPAMM) technique [5, 4]. In SPAMM, a set of equally spaced parallel tag-

ging planes are generated within the myocardium to leave identifiable landmark bands at end-

diastole through spatial modulation of magnetization. The imaging planes are perpendicular to

the tagging planes, so that the tags appear as parallel dark stripes in MRI images at end-diastole.



115

Figure 6.1:Example tagged MRI images of heart in a cardiac cycle, in short axis view.

As the underlying myocardium deforms during the cardiac cycle in vivo, thetags deform with

it accordingly. Since the tags move with the myocardium, they can record myocardium motion

in the direction that is normal to the tagging stripes, making it possible to establish dense point

correspondences over time. Some example tagged MRI images of the heart inshort axis view

can be seen from Fig. 6.1.

A set of spatio-temporal (4D) tagged MRI images of the heart provides qualitative and

quantitative information about the morphology, kinematic function and material properties of

the heart. However, before this technique can be used in routine clinical evaluation, we need to

solve several image analysis tasks. The first task is to extract the heart wall boundaries and the

tagging stripes. The second task is to analyze the Left Ventricle (LV) and Right Ventricle (RV)

shapes and their motion. Third, given LV and RV motion information, we can perform my-

ocardium strain analysis. And finally, intracavitary blood flow can be modelled and analyzed.

Among these image analysis tasks, several researchers have noted thatone of the rate-limiting

steps which prevents tagged MR from clinical use is the robust extraction and tracking of car-

diac contours and myocardium tags. Although there have been intensive research efforts on

automated LV and RV segmentation in tagged MRI images [76, 77, 2], efficientand robust seg-

mentation still remains a difficult task due to the common presence of image noise, cluttered

objects, object texture, as well as the complexities added by the tagging lines.

In this section, we present a robust method for segmenting and tracking ofcardiac contours

and myocardium tags in 4D tagged MRI images of the heart via spatio-temporalpropagation.

The method consists of two main techniques: the Metamorphs segmentation for robust bound-

ary extraction, and the tunable Gabor filter bank [88] for tagging lines enhancement, removal

and myocardium tracking. The Metamorphs segmentation algorithm has been introduced in

Chapter 3. Next we describe the tunable Gabor filter bank technique and itsapplication to
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tagging line enhancement, removal and myocardium tracking. We then present the integration

of Metamorphs with Gabor filter bank methods to provide a robust and efficient framework for

contour segmentation and tag tracking in tagged MR images, with minimal human intervention.

Based on the framework, a prototype system is built and experimental results from the system

will be shown.

6.1.1 The Tunable Gabor Filter Bank Technique for Tagged MRI Analysis

Basic Definitions

Gabor filters have been widely used in image processing applications, suchas texture segmen-

tation [33] and edge detection [73]. The 2D Gabor filter was first introduced by Daugman [27].

It is basically a 2D Gaussian multiplied by a complex 2D sinusoid, as shown below:

h(x, y) = g(x′, y′) · s(x, y) (6.1)

In the above equation (6.1),s(x, y) is a complex 2D sinusoid function, i.e.,

s(x, y) = exp−j2π(Ux+V y) (6.2)

where(U, V ) are the 2D frequencies of the complex sinusoid, and the orientation of the sinusoid

in the frequency domain is given by:

φ = arctan(V/U) (6.3)

Also in Eq. (6.1),g(x′, y′) is a 2D Gaussian,

g(x′, y′) =
1

2πσx′σy′
exp

− 1
2

(
( x′

σ
x′

)2+( y′

σ
y′

)2
)

(6.4)

wherex′ = x cos(θ) + y sin(θ), y′ = −x sin(θ) + y cos(θ) represent the 2D Gaussian spatial

coordinates after rotating by an angleθ, andσx′ , σy′ are the standard deviations of the Gaussian
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which give the approximate spatial extent of the 2D Gaussian envelop. The2D Gaussian en-

velop need not be symmetric, henceσx′ , σy′ may not be equal. In our application, an asymmet-

ric Gaussian envelop fits the tagging line pattern better: we can set theσ along the direction

that is perpendicular to the tagging lines to be larger than that in the direction parallel to the

tagging lines. In practice, we experimentally set the Gaussian envelop to be an ellipsoid whose

long axis is 4 times as long as the short axis, and theσ’s in Eq. (6.4) are set to be:

σx′ =
1

√

(U2 + V 2)

σy′ =
1

4
√

(U2 + V 2)

The orientation of the Gaussian envelopθ need not be the same as the orientation of the

sinusoidφ. But for the purpose of normalization, we set these two angle to be the same in

our application. That is, the sinusoid is always perpendicular to the long axis of the Gaussian

envelop.

Gabor Filtering of 4D Tagged MRI Images

At time 1 of the tagged MR imaging process, when the tagging lines are initially straight and

equally spaced, in the spectral domain of the input tagged MR image, there exist several iso-

lated harmonic peaks representing its frequency characteristics. And thefirst harmonic peak

represents the main patterns of the image, which are the un-deformed tagginglines. We set

the frequency parameters(U, V ) of the Gabor filter to capture the un-deformed tag pattern by

automatically finding the coordinates of the image’s first harmonic peaks in the spectral do-

main. Over time, the tagged MR images are taken during a heart beat cycle, and the tagging

lines move along with the underlying myocardium, hence the spacings and orientations of the

tagging lines change accordingly. These changes in the spatial domain leadto corresponding

changes in the frequency domain. So the new frequenciesU ′ andV ′ are tuned as follows:

U ′ = R(U + iV ) ·m · exp(i∆φ+ω)

V ′ = I(U + iV ) ·m · exp(i∆φ+ω)
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Figure 6.2:Extracted tagging lines after convolution with the tunableGabor filter bank, for the MR
image in Fig. 6.1. The myocardium contours are drawn for better readability.

wherem,∆φ andω are the magnitude, angle, and phase modulation, respectively in the fre-

quency domain.R denotes the real part, andI denotes the imaginary part of the complex

equation. By modulatingm, we can change the gabor filter to capture changes in tagging line

spacing; by modulating∆φ, we can change the gabor filter to capture changes in tagging line

orientation; and by modulating the phase angleω, we can change the gabor filter to capture

changes in the relative position of the current pixel with respect to the nearby tagging line.

Tunable Gabor Filter Bank for Tagging Line Enhancement and Removal

To process the 4D tagged MR images, we modify the parametersm,∆φ, andω of the initial

Gabor filter derived at time 1 to fit the deformed tag patterns over time in a cardiac cycle. The

initial un-tuned Gabor filter and the modified Gabor filters make up a tunable Gabor filter bank.

By convolving the input tagged MRI images with anm and∆φ tunable Gabor filter bank, we

are able to extract out the pixels that are on the tagging lines, regardless of the different tag-

spacings and orientations. Examples of the extracted tagging lines after this step can be seen

from Fig. 6.2.

A tunable gabor filter bank also allows the “removal” of tagging lines by filling in areas

that are between or near the deformed tagging lines. This is achieved by themodulation of

all three parametersm,∆φ, and phase angleω. In particular, since the modulation of phase

angleω represents position shifting of the current pixel with respect to the nearest tagging line,

tuningω makes the enhanced region shift away from the tagging lines. By tuning all three

parameters and always returning the highest response from the Gaborfilter bank, we get high

response not only on or near tagging lines, but also in the regions between the tagging lines.

Hence we get similar high response in areas both on and between tagging lines, and achieve

the effect of tagging line “removal”. This tag “removal” step is especially useful after time
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Figure 6.3: De-tagged images at mid-systolic phase and Metamorphs segmentation of
LV/RV/epicardium boundaries. (1) segmentation at mid-systolic time 7, slice position 7. (2) segmenta-
tion at time 7, slice position 10. (a) original image. (b) image with tags removed by gabor filtering. (c)
cardiac contours segmented by Metamorphs on detagged images. (d) contours projected on the original
image.

1 (end-diastole), because over time, the tag patterns in the blood are flushed out very soon,

and this tag removal method can then enhance the blood-myocardium contrastand facilitate

myocardium segmentation. As shown in Fig. 6.3, the de-tagged images in a mid-systolic phase

make the LV/RV/epicardium boundary segmentation much easier, we can then use Metamorphs

deformable models to reliably segment out the boundaries at this mid-systolic phase before

propagating the segmented contours to other time points.

Myocardium Tracking

At each pixel in an input image, we apply the tunable Gabor filter bank and find out the optimal

filter parameters,m,∆φ andω that maximize the Gabor filter response at that pixel. This gives

us three parameter maps when considering all pixels in the image, and from theparameter maps,

we can acquire information about image region properties. Fig. 6.4 shows the three optimal

parameter maps for an example input tagged MR image. We can clearly see the differences in

tagging line spacing (m), orientation (∆φ) and position shift from tagging line (ω) from the

parameter maps. The flat-gray areas in the parameter maps correspond to regions in the image

that have maximum gabor filter response values below a threshold, which are also regions

without tagging line patterns.

From them parameter map and theω parameter map, we can acquire a tissue point’s relative
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Figure 6.4: Optimal parameter values that give the maximum gabor filter response in a gabor filter
bank. The first image is the original input MR image. The second image is the optimal spacingm map;
the bright color indicates small spacing, and dark color indicates large spacing. The third image is the
optimal orientation∆φ map; the bright color means the orientation of the tagging line is from lower left
to upper right, and dark color means the orientation is from lower right to upper left. The fourth image
is the phaseω map; the color varies from dark to bright as the phase angle varies from−π to +π. The
last figure illustrates the relationship between tag spacing and phase shift.

distance with respect to the nearest tagging line. That is, at a certain pixel,the distance between

this pixel and the nearby tagging line center is determined by:

D = Doriginal · ω/(2π ·m) (6.5)

whereDoriginal is the original spacing between two un-deformed tagging lines. If the deforma-

tion of a certain material point between two consecutive time points in a tagged MRsequence

is not bigger than half of the spacing between two nearby tagging lines, which is true in almost

all the tagged MR sequences because of the high imaging speed, the change in theω maps cou-

pled with the change in them maps can be used to estimate the displacement of the underlying

material point:

∆D = Doriginal · ∆ω/(2π ·m)

= Dxoriginal
· ∆ωx/(2π ·mx) +Dyoriginal

· ∆ωy/(2π ·my) (6.6)

For a typical short axis (SA) view tagged MRI sequence, we have two sets of data whose

tagging lines are initially perpendicular to each other. Thus we can use Eq. (6.6) to calculate

the deformations in the two perpendicular directions from the two datasets respectively. In this

way, we get the complete deformation information about the myocardium in the cardiac cycle,

and achieve myocardium tracking.
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6.1.2 Segmentation and Tracking Framework with Experimental Results

We integrate Metamorphs segmentation (Chapter 3) with the Tunable Gabor Filtertechnique

(Section 6.1.1) to construct a 4D spatio-temporal integrated tagged MRI imageanalysis system.

By using the two techniques in a complementary manner, exploiting specific domainknowledge

about the heart anatomy and temporal characteristics of the tagged MR images, we can achieve

efficient, robust segmentation with minimal user interaction. The algorithm consists of the

following main steps.

1. Tag removal for images at the mid-systolic phase. Given a 4D spatio-temporal tagged

MR image dataset of the heart, we start by filtering using a tunable Gabor filterbank on images

of a 3D volume that corresponds to a particular time point in the middle of the systolicphase,

which we term the ’center time’. For a typical dataset in which the systolic phase is divided

into 13 time intervals, we apply Gabor filtering on images in the 3D volume acquired at time 7,

when tag patterns in the endocardium are flushed out by blood but tag linesin the myocardium

are clearly visible.

2. Metamorphs segmentation using the de-tagged images. Given the de-tagged Gabor

response images at time 7 (e.g., see Fig. 6.3), we use Metamorphs to segment the cardiac

contours including the epicardium, the LV and RV endocardium. As shown in Chapter 3,

the Metamorphs deformable models can be initialized far-away from the objectboundary and

efficiently converge to an optimal solution. Hence to segment the LV and RV endocardium, the

user only needs to initialize a circular model by clicking one point (the seed point) inside each

object of interest (LV or RV), then the surrounding region intensity statistics and the gradient

information automatically drive the model to converge to the endocardium boundaries. We

then automatically initialize a Metamorphs model for the epicardial contour by merging the

endocardial contours and expanding the interior volume according to myocardium thickness

statistics. The model is then allowed to evolve and converge to the epicardium boundary on the

original image1.

3. Spatial propagation at the mid-systolic center time. At the mid-systolic center time,

1During our experiments, we find the epicardium boundary is better estimated using Metamorphs on the original
image rather than on the de-tagged image, because the epicardium boundary is often blurred with neighboring
structures on the de-tagged image.
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we perform segmentation at several key frames which correspond to transition frames in terms

of heart topology, then let the segmented contours propagate to their nearby frames in space.

In short axis cardiac MR images, from the apex to the base, the topology ofthe 2D cardiac

contours goes through the following variations: (1) one epicardium, (2) one epicardium and

one LV endocardium (in some cases of the RV hypertrophy patients, one epicardium and one

RV endocardium are also possible), (3) one epicardium, one LV endocardium and one RV

endocardium, and (4) one epicardium, one LV endocardium and two RV endocardium. The

key frames that we segment using Metamorphs include one center frame from images with

the third topology and three transition frames to other topologies. This spatial propagation

actually provides a quick initialization method (rather than manually clicking the seed points

as mentioned in step 2) for all the rest of the non-key frames in the 3D volume.

4. Boundary tracking using tunable Gabor filters over time. Once we have segmented the

cardiac contours at time 7, we keep tracking the motion of the myocardium and the segmented

contours over time using the gabor filter technique (see Section 6.1.1). This temporal prop-

agation of the cardiac contours significantly reduces computation time, since itenables us to

do supervised segmentation at only one time point, then fully automated segmentation of the

complete 4D dataset can be achieved. It also improves segmentation accuracy because we cap-

ture the overall trend in heart deformation more accurately by taking into account the temporal

connection between segmented boundaries.

5. User interaction to improve boundary contours. In practice, we provide the option

to further refine the automatically segmented boundaries by manual correction. Doctors are

provided with easy-to-use manual correction tools so that they can modify the contours until

satisfied.

6. Tagging lines tracking within the heart wall (myocardium). The tagging linesare straight

lines at time 0 (preparing for image acquisition). They are equally spaced atan interval of

1/
√
U2 + V 2. Starting from time 1, we keep tracking the tagging lines only within the my-

ocardium by considering only the heart wall regions bounded by the segmented cardiac con-

tours. The model for tagging lines is basically a set of initially parallelSnakes[62] which

deform over time under the influence of external forces that come from the dark lines in the

original images and the enhanced tagging lines in the tag-enhanced images.
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Figure 6.5: Screen snapshots of the 4D tagged MR analysis system. (1-a) reading in the SA and
LA volumes. (1-b,1-c,2-a) examining the data sets. (2-b) de-tagged image at the center time. (2-
c,3-a) Metamorphs segmentation on the de-tagged images. (3-b,3-c) segmentation results at the center
time. The papillary muscle is excluded from the myocardium by manual interaction. (4-a,4-b) temporal
propagation of the segmented contours. (4-c) tagging linestracking.
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Figure 6.6:Contours and tagging lines segmented and tracked by the tagged MR analysis system. The
results are for a short axis (SA) horizontal-tagged data setat a center location at times 1, 3, 5, 7, 9, and
11.

A prototype of our 4D spatial-temporal tagged MRI image analysis system is implemented

in the Matlab GUI environment. The user first loads in the raw MRI data of the short axis and

long axis volumes first (see Fig. 6.5(1-a)). Then the user is allowed to examine the whole data

sets, which consist of two short axis and one long axis volumes, and determine the slice index

of the center time (Fig. 6.5(1-b, 1-c, 2-a)). The Gabor filtering based tagremoval step is done

on the 3D volume at the center time (Fig. 6.5(2-b)). Then the user can choose the key frames

in this 3D volume, and run Metamorphs segmentation on the key frames (Fig. 6.5(2-c, 3-a,

3-b, 3-c)). The segmented LV endocardium, RV endocardium and Epicardium contours are

then propagated spatially (optional) and temporally (Fig. 6.5(4-a, 4-b)). In practice the spatial

propagation step is optional because for most clinical analysis, segmentation and tracking on

one typical slice is enough unless a full 4D model is required. The users can always use manual

interaction to correct the contours during the whole segmentation and propagation process.

After the heart boundaries are segmented in all time points, the tagging lineSnakesmodels can

be automatically initialized, and tagging lines within the myocardium heart wall are tracked

automatically throughSnakesdeformations (see Fig. 6.5(4-c)). Also in Figure 6.6, we show a

typical set of contour segmentation and tagging line tracking results generated by our system.
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6.2 High-resolution 3D Facial Expression Tracking

In this section, we present a second real-world application that uses the global-to-local shape

registration and learning algorithms that we introduced in Chapter 4.

6.2.1 Introduction

Synthesis and re-targeting of facial expressions is central to facial animation and often in-

volves significant manual work in order to achieve realistic expressions.Recent technological

advances have made possible the acquisition of high resolution dynamics 3D shape data that

capture very accurate geometry at speeds that exceed video frame rate. such ranging tech-

niques include structured light [52, 51, 95], and spacetime stereo [124,30]. The high quality

that such data provides is very attractive in analysis of facial expressions. However, the dense

data samples returned by these 3D face scan techniques are not registered in object space and

hence there is no guarantee of intra-frame correspondences. Thus touse such data for tempo-

ral study of the subtle dynamics in expressions and for expression synthesis and re-targeting,

efficient facial expression tracking and shape registration algorithms are needed in order to es-

tablish correspondences between data in different frames for the same face as well as between

different faces. Facial expression tracking and face geometry registration are also essential for

a variety of other applications such as facial expression recognition, classification, detection of

emotional states, among others.

In the literature, there are few tracking algorithms proposed for the high-resolution 3D

facial expression data. Most existing facial motion or expression tracking algorithms utilize

image data from 2D video sequences [31, 37, 45, 67, 119], and focuson the accurate tracking

of a low number of facial features such as points located around the brows, eyes, nose, mouth,

etc. While the movements of these feature points in an expression can often beused effectively

in classification, they are hardly sufficient in most recognition applications,since many distinct

characteristics of a person’s expression lie in the subtle details such as wrinkles and furrows. In

video sequences, it can be very difficult to capture these details due to thelost of information

in projection, lighting, shadow, and other conditions. Among the few 3D methods that estab-

lish intra-frame correspondences between face range scans, some depend on markers that are
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attached on the face performing an expression [48] or depend on facial feature correspondences

manually selected by users [123]; others use 3D shape registration algorithms such as [9, 125]

to establish correspondences based on facial geometry. However, when used for expression

tracking, both marker-based and geometry-based methods lack a propermodelling of the mo-

tion style in an expression, which results from the combined effect of global facial motion that

is caused by muscle action, and subtler expression details such as wrinklesthat are generated

by highly local skin deformations.

In the following subsections, we introduce a novel hierarchical trackingframework for

3D dynamic expression data, which can both track global facial motion and fit to expression

details, providing a tight coupling between global and local deformations. The high quality

moving face range scans we use are acquired using the system described by [52]. In order to

track facial features and establish dense intra-frame correspondences, we use a multi-resolution

deformable face model. On the coarse level we use a mesh with one thousand(1K) nodes that

was first developed for robust face tracking in low quality 2D images [45]and extend it to deal

with 3D range data. This method is fast, and the deformation parameters for each facial motion

are few and intuitive. However it cannot capture the large amount of local deformations and

so we use it for a coarse-level tracking. The local deformations and details in expressions are

captured in a higher level fitting process. For each frame of the range scan, the resulting mesh

from the coarse-level tracking is used to initialize a subdivided fine mesh withsixteen thousand

(16K) nodes. This fine mesh is registered to the frame using the 3D extensionof the local

non-rigid shape registration algorithm that we introduced in Chapter 4 and in[57, 55]. This

algorithm integrates an implicit shape representation [81] and the cubic B-spline based Free

Form Deformations (FFD) model [102, 94], and generates a registration/deformation field that

is smooth, continuous and gives dense one-to-one correspondences.

Using our hierarchical framework, we did tracking experiments on dynamicfacial scan

of seven different subjects, and conducted both qualitative and quantitative validation on the

tracking accuracy. The results are very promising, showing the potentialof our algorithm to

serve as an efficient way to parameterize high resolution 3D dynamic expression data in order to

make it easy to use while preserving the accuracy and visual quality that such data guarantees.
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(a) (b) (c)

Figure 6.7:(a) The generic face model with manually selected feature points. (b) The face model and
the face scan data are roughly aligned. (c) The result of the initial fitting to a 3D face scan data.

6.2.2 System Overview: A Hierarchical Tracking Framework

To track the facial motion in an expression, we use a multi-resolution deformable face model.

The face model has two resolutions: a coarse-level mesh with 1K nodes and a fine-level mesh

with 16K nodes.

We use the 16K node mesh for the initial fitting between the face model and an actor’s face

scan before performing an expression (i.e., the first frame). Figure 6.7demonstrates this initial

fitting process. First, the face model and the 3D scan data are roughly aligned by hand (Figure

6.7(b)). Then the 3D extension of the local FFD based non-rigid shape registration algorithm

is used to register the face model with this range scan, achieving a complete surface match

(Figure 6.7(c)). Also in order to constrain the initial dense correspondences established by

the registration algorithm, we define a small set of feature points on the face model (typically

around 30, see Figure 6.7(a) as an example), then manually select their correspondences on

the range data. These feature correspondences are incorporated as hard constraints during the

optimization process of the registration algorithm (see Section 6.2.4 for details). As a result, the

initial correspondences established, especially between facial features such as tip of the nose

and corners of the eyes, are very reliable.

After the initial fitting, a hierarchical scheme is adopted to track the intra-framedeforma-

tions in an expression. In the coarse level, we use the 1K node face modeland extend the

deformable tracking system in [45] to track 3D dynamic range scans. In order to fit to expres-

sion details, for each frame of the range data, we use the coarse level tracking result to initialize
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the subdivided 16K node mesh in a higher level. Then this 16K node refinedmesh is registered

to the frame using the same variational non-rigid shape registration algorithm used for initial

fitting. This hierarchical tracking/fitting protocol provides a tight coupling between global and

local deformations, and results in efficient and very detailed fitting to the 3D face scan data (see

Figure 6.8 for examples).

Next we describe in detail the global tracking and local non-rigid 3D shape registration

algorithms.

6.2.3 Global Deformation

According to [75], we can express the positionp(t) of a point on the 3D model as the sum of a

reference models(t) and a displacementd(t), i.e.

p = s + d (6.7)

The shape, position, and orientation of the reference models can also change. We define

the reference shape as

s = T(q; e) (6.8)

wheres is the result of a geometric primitivee undergoing theglobal deformationT. T

depends on a set ofn control parametersq = (q1, q2, . . . , qn)T [45]. Some of these parameters

affect the general position of the object (global rotation and translation), some affect the shape

(like a global scaling), and some affect only parts of the object. Since theyhave a common

mathematical formulation as defined in Eq. (6.8), we do not need any distinctionbetween these

parameters.

Assuming the global deformationsT is differentiable [75], for every pointsi on the surface

of the reference models, the derivative ofsi with respect toqi is the JacobianJi:

Ji =









...
...

∂si

q1
· · · ∂si

qn

...
...









(6.9)
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where each columnl of the JacobianJi is the gradient ofsi with respect to the parameterql.

To keep updating the parametersq to track the global deformations in an expression, we use

the following dynamic system updating formula:

~̇q = ~fg + Finternal(~q) (6.10)

where~fg is a n-dimensional displacement calledgeneralized forceandFinternal(~q) is the result

of the internal forces of the model (e.g. elasticity). For each frame, the following steps are done

iteratively to derive the parameter values at equilibrium:

1. Calculate the 3D external force~fi on each pointsi of the deformable model’s surface.

This force is derived from the 3D displacements between the model point and its closest

data point on the face scan.

2. Calculate the generalized force

~fg =
∑

i

~fgi
=
∑

i

JT
i
~fi (6.11)

3. Compute the generalized internal forceFinternal(~q).

4. Calculate the derivativė~q as defined in Eq.(6.10).

5. Do an Euler integration step:

~q = ~q + λ~̇q (6.12)

whereλ is the learning rate.

6. Repeat step 1 to 5, until~̇q is close to zero.

In our system implementation of the algorithm, we first use a Iterative Closest Point (ICP)

method [9] to rigidly align the model and face scans, taking advantage of the dense 3D scan

data. Then the face model is divided into several deformable regions whose shape and motion

are represented by a few control parameters. Typically, for a smiling expression the face model

is divided into 10 small regions with a total of 17 parameters. The changes in these parameters

during global tracking are derived from the dynamic system updating scheme described in this
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section. Because of the small parameter set, the global tracking step is veryfast, though it can

not capture detailed local deformations.

6.2.4 Local Deformations

To further recover the local deformationsd(t), as in Eq. (6.7), we use the 3D extension of the

local FFD based shape registration algorithms introduced in Chapter 4. Since the algorithm

in Chapter 4 was presented for the 2D case, we give the formulation in 3D below. In the

formulation, we refer to the deforming 3D face mesh model as the source surface, and the

face range scan as the target surface. We use the16K fine-level mesh model for the local

registration.

The Implicit Shape Representation

Both the 3D face model and the range images, which are surfaces, are implicitly represented

in a higher dimensional volumetric space. Given a surfaceS, the Euclidean distance transform

is used to embed this surface as the zero level set of a distance functionΦS defined in the

embedding spaceΩ:

ΦS(x, y, z) =







0 , (x, y, z) ∈ S

D((x, y), S) , (x, y, z) ∈ [Ω − S]
(6.13)

whereD((x, y, z), S) refers to the min Euclidean distance between the grid location(x, y, z)

and the shapeS. In shape registration, such a representation facilitates the imposition of con-

straints on smoothness and coherent correspondence, since one would align the original sur-

faces as well as their clones that are positioned coherently in the volume plane.

IFFD local registration

To achieve local registration between a source surfaceS and a target surfaceD, we aim to

recover a deformation field that creates correspondences between theimplicit representations

ΦS andΦD. We model such a local deformation fieldL(x),x = (x, y, z), using the incremental

Free Form Deformations (IFFD) in 3D.
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Let us consider a 3D lattice of control points,

Pm,n,o = (P x
m,n,o, P

y
m,n,o, P

z
m,n,o) (6.14)

where(m,n, o) ∈ [1,M ] × [1, N ] × [1, O], overlaid to a regionΓ = {x} = {(x, y, z)|1 ≤

x ≤ X, 1 ≤ y ≤ Y, 1 ≤ z ≤ Z} in the embedding space that encloses the source surfaceS.

Suppose the initial configuration of the control latticeP 0 is regular, and the deforming control

lattice isP = P 0 + δP , then in our approach, the local deformation parameters are the IFFD

parameters, which are the deformations of the control points in all directions:

Θ = {(δP x
m,n,o, δP

y
m,n,o, δP

z
m,n,o)} (6.15)

where(m,n, o) ∈ [1,M ] × [1, N ] × [1, O]. Under these specifications, the deformed position

of a pointx = (x, y, z) in the sample domain2 given the deformation of the control lattice

from P 0 to P , is defined in terms of a tensor product of Cubic B-splines:

L(Θ;x) = x + δL(Θ;x)

=
∑3

q=0

∑3
l=0

∑3
r=0[Bq(u)Bl(v)Br(w)

(P 0
i+q,j+l,k+r + δPi+q,j+l,k+r)]

i = ⌊ x
X

· (M − 1)⌋ + 1

j = ⌊ y
Y
· (N − 1)⌋ + 1

k = ⌊ z
Z
· (O − 1)⌋ + 1

(6.16)

The terms of the deformation component refer to:

• δPi+q,j+l,k+r, (q, l, r) ∈ [0, 3] × [0, 3] × [0, 3] are the deformations of pixelx’s 64

adjacent control points.

• Bq(u) is theqth,Bl(v) is thelth andBr(w) is therth basis function of a Cubic B-spline.

• δL(x) =
∑3

q=0

∑3
l=0

∑3
r=0Bq(u)Bl(v)Br(w) δPi+q,j+l,k+r is the incremental defor-

mation for pixelx.

2We use a narrow band around the zero level set surface as the sampledomain to ensure efficiency.



132

(a) (b) (c) (d)

Figure 6.8:
[

Top Row
]
: Snapshots of thesmileexpression of subject 1.

[
Second Row

]
: Thesmile

expression of subject 2.
[

Third Row
]
: Thesmileexpression of subject 3.

[
Bottom Row

]
: TheRaising

eyebrowexpression of subject 3.
[

Column a
]
: Front view of frame 1.

[
Column b

]
: Close-up view of

Column a (without range scan - for showing details; with range scan - for showing correspondences).
[

Column c
]
: Front view of frame 2.

[
Column d

]
: Close-up view of Column c.

Having defined the form of the local deformation fieldL(x) with respect to the IFFD pa-

rametersΘ = δP , local registration is now equivalent to finding the control lattice deforma-

tion δP such that the deformed source surface coincides with the target surface. The Sum-of-

Squared-Differences (SSD) criterion is used as a data-driven term torecover the parameters:

Edata(Θ) =

∫∫

Ω

(
ΦD(x) − ΦS(L(Θ;x))

)2
dx (6.17)

In order to further preserve the regularity of the recovered registration flow, one can consider

a smoothness term on the local deformation fieldδL. We consider a computationally efficient
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smoothness term:

Esmooth(Θ) =
∫∫

Ω

(
∣
∣
∣
∣ ∂
∂x
δL(Θ;x)

∣
∣
∣
∣
2
+
∣
∣
∣

∣
∣
∣

∂
∂y
δL(Θ;x)

∣
∣
∣

∣
∣
∣

2

+
∣
∣
∣
∣ ∂
∂z
δL(Θ;x)

∣
∣
∣
∣
2
)

dx

(6.18)

An additional implicit smoothness constraint is also imposed by the B-Spline FFD,which

guaranteesC1 continuity at control points andC2 continuity everywhere else.

We can also enhance the accuracy of the tracking system by imposing correspondence con-

straints on certain feature points such as tip of the nose and corners of theeyes. Assuming we

havenc features, and for each of them, there is a pair of corresponding points,xsi on the source

surfaceS andxdi on the target surfaceD, wherei = 1, . . . , nc. Then the feature correspon-

dence constraints can be expressed as

Efeature(Θ) =
∑

i

(L(Θ;xsi) − xdi)
2; i ∈ [1, nc] (6.19)

The data-driven term, the smoothness constraint term, and the feature correspondence con-

straint term can be integrated in a single objective function,

E(Θ) = Edata(Θ) + αEsmooth(Θ) + βEfeature(Θ)

=
∫∫

Ω

(
ΦD(x) − ΦS(L(Θ;x))

)2
dx

+ α
∫∫

Ω

(
∣
∣
∣
∣ ∂
∂x
δL(Θ;x)

∣
∣
∣
∣
2
+
∣
∣
∣

∣
∣
∣

∂
∂y
δL(Θ;x)

∣
∣
∣

∣
∣
∣

2

+
∣
∣
∣
∣ ∂
∂z
δL(Θ;x)

∣
∣
∣
∣
2
)

dx

+ β
∑

i(L(Θ;xsi) − xdi)
2

(6.20)

wherei ∈ [1, nc], nc is the number of feature points, andα andβ are the constants balancing

the contributions from different terms. Using the calculus of variation and agradient descent
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method, such an objective function can be optimized to recover the deformation parametersΘ,

∂E(Θ)
∂θi

= −2
∫∫

Ω

[(
Φ

D̂
(x) − ΦS(L(Θ;x))

)

·∇ΦS(L(Θ;x)) · ∂δL(Θ;x)
∂θi

]
dx

+ 2α
∫∫

Ω

[
∂
∂x
δL(Θ;x) ∂

∂θi

(
∂
∂x
δL(Θ;x)

)

+ ∂
∂y
δL(Θ;x) ∂

∂θi

(
∂
∂y
δL(Θ;x)

)

+ ∂
∂z
δL(Θ;x) ∂

∂θi

(
∂
∂z
δL(Θ;x)

)]
dx

+ 2β
∑

i

[
(L(Θ;xsi) − xdi)

∂
∂θi

(
L(Θ;xsi)

)]

(6.21)

and consequently the local registration fieldL(Θ;x). Correspondences thus can be established

between pointsx = (x, y, z) on the source surface and the pointsL(x) on the target surface.

And the displacements between the corresponding points consist of the local deformationsd(t)

in Eq. (6.7).

6.2.5 Facial Expression Tracking Experimental Results

We conducted tracking experiments using the dynamic facial scans of7 different subjects.

These data are acquired using the 3D high resolution shape acquisition system described by

[52]. For each subject, data for two different expressions are collected: thesmileexpression

and theraising eyebrowexpression. On each data sequence, we first register its first frame with

the face model (at fine level16K nodes), then we keep tracking the intra-frame deformations

using the tightly coupled global and local tracking algorithm. This hierarchical tracking pro-

tocol results in efficient and very detailed fitting to the 3D face scan data. Example tracking

results are shown in Figure 6.8. The fine details in an expression capturedusing our method

is demonstrated in Figure 6.8(a-b), and the high accuracy of the intra-frame correspondences

established during tracking is demonstrated in Figure 6.8(c-d).

Our system is implemented using C++ under the Linux environment. All our experiments

run at interactive rate on a Pentium Xeon 3GHz dual processor platform.

For qualitative evaluation of the model point tracking results, we compare thetexture of

the original scan data with the synthesized texture based on the tracking results. We generate

synthetic texture for the16K-node face control mesh that tracks the range scans, by applying
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(a) (b) (c) (d)

Figure 6.9:
[

Top Row
]
: Comparison between original texture of a subject’s colored range scans and

synthesized texture of the tracking face control mesh, for theraising eyebrowexpression.
[

Second row
]
: Comparison for thesmileexpression. (a) Snapshot 1 from the original scan data. (b) Snapshot 1 from

the synthesized rendering of the tracking result. (c) Snapshot 2 from the original scan data. (d) Snapshot
2 from the synthesized rendering of the tracking result.

(a) (b) (c) (d)

Figure 6.10:Selected tracking results of a ’smile’ sequence, with 50 frames in total. The resulting
meshes are illustrated in blue color and white dots are attached markers for verification purposes only.
(a) frame 1, (b) frame 5, (c) frame 10, and (d) frame 37.

the texture retrieved from the registered first frame to the remaining frames of each sequence,

adding in shading and shadow effects considering the change in facial geometry during the

expression. The comparison results on frames from example tracking sequences are shown

in Figure 6.9. Ideally, we should have compared the reflectance maps of theoriginal scans

with the synthesized reflectance maps. But our comparison of direct luminance-based textures

provides sufficient evidence on the validity of the tracking result.

To further conduct quantitative validation on the accuracy of the trackingalgorithm, we

perform a number of experiments on 3D facial expression sequences with attached markers.

The markers are for validation purpose only. In order to be detected successfully, the size

of markers is around 4mm by 4mm. An example tracking result is demonstrated in Figure
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Figure 6.11:Tracking error of the marker on a mouth corner.
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Figure 6.12:Tracking error of the marker on the upper mouth.

6.10, where the blue meshes are resulting coarse level control mesh, andthe white dots are

the attached markers for verification purposes only. Figures 6.11-6.14 show the algorithm’s

tracking error estimations on the mouth corner, upper mouth, cheek, and nose tip respectively.

As we can see, in most cases the tracking error is around 1mm. This error isvery low given

that the resolution of the 3D range scan data is around0.5mm.

6.2.6 Discussion

The hierarchical facial expression tracking system we implemented can beused to efficiently

parameterize the large amount of high-resolution 3D dynamic range scan data, by dealing with
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Figure 6.13:Tracking error of the marker on a cheek.
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Figure 6.14:Tracking error of the marker on the nose tip.

both large-scale deformations and free-form style fine-details existing in the facial expressions.

The accuracy and resolution of our method allow us to capture and track subtle expression

details and hence to use the tracking parameters for motion analysis and expression recognition.

The dense intra-frame correspondences established by the system canalso be used to learn

the mapping between dynamic facial motion and expression style, hence enabling the synthe-

sis of new expressions and re-targeting of one person’s expressionstyle onto another person’s

facial geometry. Our work published in [115] explores this idea by using anonlinear dimen-

sionality reduction framework, the Local Linear Embedding (LLE) [91], tolearn the most

discriminating characteristics of an individual’s expression as that person’s “expression style”.

Then new expressions can be synthesized, either as dynamic morning between individuals or
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Figure 6.15:Low dimensional representation of a “smile” expression. Anembedding of the smile
motion by LLE shows that the smile motion can be well embeddedin a one dimensional manifold
located in the 3-D Euclidean space. Manifold points for similar faces are located nearby in the manifold.

as expression transfer (re-targeting) from a source face to a targetface. One example of the

learned low dimensional manifold for a “smile” expression is shown in Fig. 6.15. And an

example of expression synthesis and re-targeting is shown in Fig. 6.16. More details of the

learning, synthesis and re-targeting methods can be found in [115].

6.3 Summary

In this chapter, we presented one application of the Metamorphs deformablemodels introduced

in Chapter 2 to 4D tagged MRI images analysis, and another application of the 3D local IFFD

shape registration algorithm to high-resolution 3D facial expression tracking. There are a lot of

other applications of the algorithms proposed in this thesis. For instance, Metamorphs segmen-

tation can be applied to shape reconstruction, object tracking, and organ(e.g. heart) modelling.

The shape and image registration algorithms can be used for motion correction, establishing

correspondences between diagnosis imaging scans at different time points. And other than the
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Figure 6.16:(First Column) Subject 1. (Second Column) Subject 2. (ThirdColumn) Subject 1 with
synthetic smile transferred from Subject 2. (Fourth Column) Detail of the synthesized smile.

heart and face, the algorithms can be applied to images of the brain, chest, and many other

types of images.
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Chapter 7

Conclusions

This thesis proposed shape, appearance and deformation representations that are suited for

shape and appearance information integration to better solve computer visionand medical im-

age analysis problems. Using the proposed representations, several novel algorithms are devel-

oped for robust model-based segmentation, shape and/or image registration, coupled shape and

appearance prior model learning, and the potential of the algorithms are demonstrated through

extensive experiments and real-world applications.

Integrating information from multiple sources to solve computer vision and medical image

analysis problems more robustly is an important and challenging research topic. This thesis

aimed to contribute to integrating shape and appearance information, which aretwo key as-

pects of an image or an object of interest. The combination of implicit shape representation,

nonparametric image/object appearance representation, and space-warping Free Form Defor-

mations provided a fresh framework in which deformable models and statisticalshape and

appearance models can be defined and learned naturally in the joint shapeand intensity spaces.

There are future work to pursue however toward the goal of informationintegration for robust

image interpretation in medical image analysis and computer vision.

First, the learning technique used in this thesis for statistical shape and appearance models

is Principal Component Analysis (PCA). There are other nonlinear generative models, such

as Local Linear Embedding (LLE) and nonlinear Independent Component Analysis (ICA),

to be investigated since they may be more appropriate to model the shape and appearance

variations. Another direction is to learn discriminate classifiers using shape features and/or

appearance features and combine the classifiers based on our confidence level on each source

of information.

Second, in medical image analysis, it is often important to register images of multiple
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modalities so that complementary information from them can be fused and visualized on a

single platform for the purposes of diagnosis and discovery. One type of multi-modal image

registration is particularly attractive, which is the registration between functional (e.g. PET,

fMRI) and structural (e.g. CT, MRI) images. The image registration algorithms proposed in

this thesis need to evaluated on registering functional and structural images, and new algorithms

can be developed to exploit the constraints in this type of image registration.

Third, the Metamorphs deformable models generalize traditional shape-onlydeformable

models and represent a class of deformable models that have both boundary shape and interior

region statistics. It will be intriguing to extend Metamorphs to also include model material

properties for the purposes of organ modeling and surgery simulation.
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