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Abstract

The accurate and automatic segmentation of tissue regions in cervigram images can aid in the iden-
tification and classification of precancerous regions. We implement and analyze four GPU (Graphics
Processing Unit) based clustering algorithms: k-means, mean shift, deterministic annealing, and spa-
tially coherent deterministic annealing. From our results, we propose a novel parallel algorithm using
the CUDA programming language for digital cervigram segmentation and clustering. The first step of
our fully automatic method is to compute the number of modes in the feature space of a color cervigram
image using the mean shift clustering algorithm. Next, we use the number of modes in a novel spatially
coherent deterministic annealing optimization technique to produce an approximate optimal solution for
the clustering problem. Our GPU based methods perform approximately 38x (deterministic annealing),
134x (mean shift), and 276x (spatially coherent deterministic annealing) faster than an equivalent CPU
solution. Our implementation decreases the computational time of an annealing method on a 1280x872
pixel image from 5 hours 3 minutes to 72.12 seconds, enabling the use of this optimization method in
clinical settings and on large cervigram datasets.
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1 Introduction

Clustering is an important technique in image segmentation. In consideration of an archive of 60,000 color
uterine cervix images created by the National Library of Medicine (NLM) and the National Cancer Institute
(NCI), we require a fast, accurate, and automatic segmentation method to analyze these images. Specifi-
cally in the area of cervigram image analysis, the most important observed area to segment is the Acetowhite
(AW) region, which is caused by the whitening of potentially malignant regions of the cervix epithelium.
The segmentation of this area and other tissue regions is particularly challenging due to high variability
where tissue color distributions frequently overlap with different classes [16, 7]. Segmentation using simple
clustering algorithms like K-means and fuzzy c-means [9], run quickly but are highly sensitive to initial-
ization. Mean shift [4] is a more advanced algorithm able to detect the number of modes in an image,
but, similarly cannot guarantee a globally optimal clustering. Other more complex methods can achieve
a globally optimal clustering (e.g. deterministic annealing (DA) [13]), but are computationally expensive
and require many iterations, preventing their practical use in clinical segmentation or for processing large
medical image archives. Indeed, in image processing techniques, it is typical to have a trade-off between
complexity, robustness, automation, and speed [8]. Fast segmentation methods are often not sufficiently
robust or require large amounts of user interaction, whereas, complex methods are often robust, but are
computation and time prohibitive.

Thus, some researchers have explored parallelization of clustering techniques to achieve fast execution
times. Several implementations of a parallel K-Means clustering [14, 5, 2, 15] have been analyzed and
have achieved good speed up results. Other research has attempted to exploit algorithmic parallelism of
mean shift [1, 15, 18] and deterministic annealing [12] on grid computing or SIMD architectures. On medi-
cal images, Gammage et. al [6] has used fuzzy connectedness to perform a segmentation using OpenMP on
a SMP system resulting in a speed up of nearly 50x using four processors. Although many grid or multi-core
implementations scale fairly well, they become power, cost, and resource limited at high speedup factors.
For instance, in [15], the speed up factor of several parallelized algorithms is linearly related to the number
of processors. On the other hand, K-means [14] and mean shift [18] have been analyzed on GPU archi-
tectures, but unanswered questions remain regarding the adoption of complex clustering algorithms on the
newest CUDA (Compute Unified Device Architecture) enabled GPU architectures.

In this paper, we use the CUDA [10] programming language and GPU infrastructure to implement four
clustering algorithms: k-means, mean shift, deterministic annealing (DA), and a novel spatially coherent
adaptive deterministic annealing method (spatial DA). Next, we analyze these methods to realize trends and
identify where computational bottlenecks exist. Finally, we combine several of these methods together to
produce a robust algorithm called Parallel Mode Deterministic Annealing (PMDA) and apply PDMA to
our cervigram image segmentation problem. The proposed approach uses a mean shift algorithm to detect
the modes of an image and a spatial DA method to render a globally optimal clustering, unaffected by
cluster initialization. Our method resembles [3], but incorporates spatial continuity features and exploits
the inherent parallelism of mean shift and spatial DA. Our spatial DA method has roots in [17, 9], but the
previous methods presented a spatial constraint that is either too general (single scalar for the entire image)
or too specific (constrained to small window). Thus, our contributions are to,

1. provide a comparative analysis of four clustering algorithms on the GPU using CUDA
2. utilize the massively parallel architecture of GPUs to produce results nearly 38x (DA), 134x (mean

shift), and 276x (spatial DA) faster than equivalent CPU implementations for a 1720x1172 pixel image
3. present PMDA, an unsupervised, automatic segmentation method for color medical images which is

able to achieve an accurate globally optimal clustering in a time frame suitable for clinical use and on
large scale medical image data sets

4. introduce an adaptive, spatially coherent clustering GPU extension to DA
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2 Compute Unified Device Architecture
CUDA is a parallel programming model and software environment that is able to leverage the computational
power of the latest generation Nvidia GPU processors.

CUDA Hardware Model: A GPU is a collection of stream processors that can be thought of as a massively
multi-core processor. In the case of our experiment, one of the GPUs we used was a Nvidia Geforce 280
GTX. This card has a total of 240 streaming processing cores and 1 GB of total graphics memory. Each
stream processor executes the same instruction but on different areas of memory. Additionally, each mul-
tiprocessor has local register memory, fast shared memory, and unrestricted access to texture and global
memory. However, use of different types of memory incur different access times. One of the more recent
modifications for GPUs is the addition of 64-bit support which has shown to be crucial when dealing with
high precision algorithms (e.g. deterministic annealing).

CUDA Software Model: The CUDA software model and execution model can be most easily described from
the bottom up. The most basic computational elements are threads. A collection of threads, called a block,
runs on a multiprocessor and the block size is defined by the user. Threads within the block are able to
share resources such as registers and shared memory. The combination of all the blocks makes up the grid.
Typically, the grid covers the entire area of computation for your GPU program (in our case, the image
size). A single GPU program is called a kernel. Kernel programs are frequently launched by a standard
CPU program where many parallel operations can be executed. These kernel programs do the bulk of our
computation which we describe in detail in later sections.

3 Clustering Methods on the GPU
In this section we first describe our implementation of four clustering methods on the GPU. Then, we
present our proposed PDMA method for a fast, automatic segmentation of cervigram images. For all of our
clustering methods, we use L∗a∗b∗ color space because the L∗a∗b∗ space has been shown to be better for
clustering and classification [4]. Each color channel is stored in texture memory as a 2D texture. The reason
for using texture memory rather than global or constant memory is because texture fetches, i.e. reads from
texture memory, can exhibit higher bandwidth. The GPU architecture is better able to hide the latency of
the addressing calculations and there is 2D spatial locality in texture fetches.

3.1 K-means and CUDA implementation

The K-means algorithm is a very popular clustering algorithm that is quite fast; however, it is sensitive to
outliers, initialization of cluster centers, and needs to be given a predetermined number of clusters.

K-means CUDA Implementation and kernel description: The K-means CUDA implementation begins with
a random initialization of cluster centers. Each pixel is assigned a thread on the GPU and each thread
belongs to the kernel grid. The dimensions of the grid for the K-means kernel encompass the entirety of the
cervigram image.

1. over the entire grid, compute the distance of each pixel to each cluster center in feature space
2. choose the minimum distance centroid (cluster center) and store all width×height labels in a 1D GPU

global memory array of size width×height
3. on the CPU, update the centroids based upon the minimum distance labels

3.2 Mean Shift Mode Detection and CUDA implementation

The mean shift [4] procedure is a non-parametric density estimation method that finds the modes, or local
maxima of the empirical probability density function (p.d.f). This is a more complex clustering method that
has the advantage of not needing to know the number of clusters a priori. It uses a density distribution kernel



3.3 Deterministic Annealing (DA) 4

to shift a window of size h in the direction of higher density, where the direction is defined by the mean shift
vector. Thus, the kernel will eventually converge at the local density maxima in feature space. Our radially
symmetric profile at data point x is defined as,

g(x) =−1
2

exp
(
−1

2
x
)

x ≥ 0 (1)

Using g(x), the kernel used in our mean shift procedure, G(x) is defined as,

G(x) = cg,dg(‖x‖2) (2)

where cg,d is the normalization constant. The mean shift procedure involves successive computation of the
mean shift vector mh,G(x) and translation of the kernel window G(x) by mh,G(x). This process repeats until
the magnitude of the mean shift vector converges to 0. Given n data points xi, i = 1, . . . ,n, and window size
h, the mean shift vector can be defined as,

mh,G(x) =
∑

n
i=1 xig(‖ x−xi

h ‖2)

∑
n
i=1 g(‖ x−xi

h ‖2)
− x (3)

where x is the center of the kernel window.

Mean Shift CUDA Implementation and kernel description: The dimensions of the grid for the mean shift
kernel encompass the entirety of the cervigram image. Each pixel is assigned a thread on the GPU and each
thread runs the mean shift procedure to convergence;

1. over the entire grid, compute the mean shift vector mh,G(x) as in equation (3) and translation of the
kernel window G(x) in the color feature space

2. store all width×height modes in a 1D GPU global memory array of size width×height
3. on the CPU, merge all width×height modes within a provided bandwidth parameter, h

3.3 Deterministic Annealing (DA)

The DA method [13] is a globally optimal clustering method that introduces an element of randomness to a
clustering problem to avoid being stuck in local minima. Similar to simulated annealing, the procedure does
not always take the greedy decision and is able to jump out of local minima. The amount of jumping can
be thought of as the temperature and as the temperature cools and decreases the randomness, the clustering
should converge to a global minimum. The mass-constrained clustering DA method that is independent of
cluster center initializations is defined as the minimization of,

F = D−T H (4)

where H is defined as the Shannon entropy in equation (5), T , temperature, is the Lagrange multiplier, and
D is the distortion in equation (6). H is defined as,

H(X ,Y ) =−∑
x

∑
y

p(x,y) log p(x,y) (5)

where x ∈ X is the set of data points and y ∈ Y is the set of clusters. D is the expected distortion,

D = ∑
x

∑
y

p(x,y)d(x,y) = ∑
x

p(x)∑
y

p(y|x)d(x,y) (6)

Our distortion measure d(x,y) was defined as the Euclidean sum of squared differences between x and the
center of cluster y in each color channel. Similar to fuzzy membership, our x data points are associated with



3.4 Spatially Coherent Deterministic Annealing (spatial DA) 5

(a) Original (b) Deterministic Annealing (c) Spatially Coherent DA

Figure 1: Example of DA clustering without (b) and with (c) spatial constraints. σ2 = 1.0.

some probability to every cluster y with probability magnitude p(y|x). When T is a large value, the equation
maximizes the entropy; however, as T is lowered, the equation minimizes D. Given y j as the distinct cluster
center, the association probabilities are calculated by,

p(y j|x) =
p(y j)exp

(
−d(x,y j)

T

)
Zx

(7)

where Zx is defined as the normalization constant,

Zx =
k

∑
i

p(yi)exp
(
−d(x,yi)

T

)
(8)

Here, k is the number of cluster centers. To minimize the distortion with respect to the cluster center, y, the
gradients can be set to zero, yielding,

∑
x

p(x)p(y|x) d
dy

d(x,y) = 0 ∀y ∈ Y (9)

3.4 Spatially Coherent Deterministic Annealing (spatial DA)
In many image clustering problems, including our cervigram application, regions of similar features tend to
appear together spatially [17]. However in the basic DA method, these spatial features are ignored in the
global optimization problem. To incorporate spatial coherency to the DA method, we introduce a weighting
function that influences the DA distortion measurement to incorporate the membership of the current pixel
as well as its surrounding 3x3 neighborhood. The idea is that neighboring pixels can influence the current
pixels’ cluster membership based on their feature space similarity. Thus, neighboring pixels with similar
features have a greater probability to belong to the same cluster. Let (r,s) represent a pixel location and
(rn,sn) represent the neighbor. The weighting function of the neighboring pixels on (r,s) is defined as,

λ
r,s(δ) =

1

1+ exp
(
−(δ−µ)

σ1

) (10)

where µ shifts λ and is defined in equation (13), and σ1 specifies the steepness of the sigmoid curve. The δ

value is computed by,
δ(r,s),(rn,sn) = (xr,s− xrn,sn)

T (xr,s− xrn,sn) (11)

where xr,s is the feature vector and xrn,sn is the neighbor’s’s feature vector. This equation (11), computes
the Euclidean distance between the two feature vectors. We can now use the following distortion term as a
substitute for d(x,y) in equations (7),(8), and (9),

d′(x,y) =
1
8

1

∑
l1=−1

1

∑
l2=−1

[
d(xr,s,y)λ

r,s
l1,l2 +d(xr+l1,s+l2 ,y)(1−λ

r,s
l1,l2)

]
(12)
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Figure 2: PMDA Method

where λ
r,s
i, j = λ(δ(r,s),(ri,s j)).

Research presented in [17, 9], describes spatial constraints either too general (single scalar for the entire
image) or too specific (constrained to small window). Our method approximates µ, while parameterizing a
Gaussian smoothing technique to encompass as large an area as desired. This term is able to be precomputed
and stored in texture memory for fast fetching on our GPU implementation. Our µ is defined as,

µ(r,s) = 1−||5Gσ2 ∗ I(r,s)||2 (13)

where our image is convolved with a smoothing Gaussian,Gσ2 . There is an inverse relationship between
pixel busyness and image gradient. If the gradient at a pixel is high, this can be thought of as high busyness
and thus the µ would be small. The high gradient would be present in non-homogeneous regions and would
shift the weight influence on the center pixel to a smaller value. Given our parameterized method, we can
adjust the amount of spatial continuity desired at each pixel. Fig. 1 contrasts the results between the basic
DA method and the new spatial DA method.

3.5 DA and spatial DA CUDA Implementation

Because the framework of the DA and spatial DA methods differ only by their distortion terms, we represent
both methods in this section. At each temperature state, the DA algorithm consists of three steps,

1. fix the cluster centers and use equation (7) in a GPU kernel to compute the association probabilities.
2. fix the association probabilities and optimize the cluster centers using (9). The maximum association

probabilities are stored in a 1D GPU global memory array of size width×height, one array for each
color channel. The current individual cluster centers are stored in a 1D GPU global memory array of
size k.

3. use the CUBLAS libraries (CUDA Basic Linear Algebra) to compute the parallel reduction of the
arrays to find the final vector positions and probabilities.

This kernel is computed ∀y ∈ Y until the cluster centers converge. Upon convergence, the cooling schedule
will determine the next value of T and will continue until T < ε.

3.6 PMDA Methodology

Our Parallel Mode Deterministic Annealing (PMDA) method is a combination of a mean shift mode detec-
tion followed by a spatial DA clustering algorithm. Since we cannot assume a fixed number of clusters for
our image segmentation, we use a mean shift algorithm to detect the number of color modes and we use this
characteristic, k, to initialize our spatial DA clustering method. The method consists of three steps (Fig. 2),

1. input the image in L∗a∗b∗ color space
2. compute the modes, k, of an image by a mean shift clustering algorithm.
3. compute the optimal clustering using spatial DA with parameter, k.
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(a) Several image examples (b) Cervigram image (c) Feature space

Figure 3: (a) Example cervigram images used in our experiments depicting the high variability present in
the data set. (b) a sample image with the corresponding 3D feature space plot in (c).

4 Experimental Results
For our experiments, we evaluate our method on 8 uterine cervix images obtained from the NLM/NCI (Fig.
3). The hardware for these experiments consisted of several machines equipped with different GPUs. Our
first machine is an AMD 4600+ dual core with a Nvidia 8800 GTS. The second machine is an Intel Xeon
3.0 Ghz dual core with a Nvidia 280 GTX. We evaluate our results on several aspects: computational speed,
analysis, optimality, and validity.

4.1 Computational Speed and Analysis

We present our timing and speed up results in Fig 4. Similar to the work by Cao[2] et. al, we find a
comparable speed up of 3-8x when implementing K-means on the GPU. With mean shift, we are able to
greatly outperform other parallelized methods [1, 15], mainly because these methods are implemented for
multi-core CPUs. Because their performance scales linearly to the number of processing cores, to match the
speed up factor of our GPU implementation, these systems would need nearly two hundred cores (based on
1720x1172 image). Similarly with DA, the performance of [12] scales approximately linearly. Our GPU
based method dominates these other methods in performance because of the number of streaming processors
and high memory bandwidth that are present on GPUs.

(a) K-means performance (b) Mean shift performance (c) DA performance

(d) Spatial DA performance (e) GPU Speed-up

Figure 4: Execution times of the four clustering implementations when mean shift determined 11 modes,
k=11 for all other methods. (e) Speed-up factor determined from slowest CPU to fastest GPU.
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Next, we analyze each method at each stage of the execution in a 880x600 pixel image to identify where the
computational bottlenecks exist. The CPU and GPU execution times of the individual methods are compared
in Fig. 5(a). From our results, we can deduce several key observations when parallelizing these clustering
algorithms. First, it can be seen from the utilization graphs of both the mean shift and spatial DA methods
that when the GPU time is highly utilized, the algorithm is offloading more computations to the GPU and
can attain an overall greater speed-up factor. Second, highly iterative methods can perform extremely well
on GPU architectures when data transfer between the CPU and GPU can be minimized. For example, in
our K-means implementation, this data transfer is unavoidable, which limits our speed up factor. Third, the
utilization of specific memory structures, such as shared memory and texture memory rather than global
memory can help in lowering the total execution time. We frequently benefit from texture memory in our
implementations but would like to explore shared memory in future work. A detailed breakdown of the GPU
executions is presented in Fig. 5(b).

(a) Comparison of Computation Time (b) Breakdown of GPU execution time

Figure 5: Percentage of execution time for each process

4.2 Optimality of Cluster Centers

We define an optimal clustering as the minimization of the Euclidean sum of squared differences (SSD)
between the pixel cluster assignment and location of the final cluster center in feature space. We compare
different clustering methods and present our results in Table 1. From our mean shift clustering with window
sizes, hl = 0.08,ha = 0.03,hb = 0.03, we detect 17 modes in a 1280x872 cervigram image. In 250 K-means
trials we randomly initialized the cluster centers, set the k = 17 and the convergence criteria to ε < 0.001.
For the DA method, we ran 50 randomized inputs, set the k = 17 and the cooling schedule to 0.8T , and
computed the annealing steps until T < 5× 10−5. We also ran our spatial DA method on 50 randomized
inputs with σ1 = 0.25 and σ2 = 1 to demonstrate its optimality. The presented SSD energy is slightly higher
than the spatial distortion energy, but for direct comparability, the SSD energy is reported.

Because the mean shift method takes every pixel as an input, there is no initialization randomization to the
method and the average energy is static. From our results, the simplistic K-means method has very high
variance, and is highly sensitive to its initialization as seen in Fig. 6(b). Conversely, our DA algorithm
always produces an approximate globally optimal result regardless of initialization (Fig. 6(c)).

Table 1: Energy comparisons between different methods, (σ = standard deviation)
Method # of Trials Min Energy Max Energy Average Energy σ = sd
Mean Shift n/a1 n/a1 n/a1 9,019.59 n/a1

K-Means 250 1,521.43 10,824.08 3,325.92 1,695.15
Determinstic Annealing 50 884.51 1,264.13 1,044.14 86.28
Spatially Coherent DA2 50 1,276.59 2,780.63 1,791.61 375.01

1Mean shift is initialized with every pixel, thus, there is no deviation between trials
2Spatially Coherent DA distortion energy is calculated differently than the other methods. Basic SSD shown here.
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(a) Original (b) K-Means (c) Spatially Coherent DA

Figure 6: K=13 for the different methods. (b) K-Means result from a poor initialization. (c) Spatial DA
method with the same initialization as K-Means but reaches optimal clustering.

4.3 Validity

To measure the validity of our clustering results, we compared selected AW tissue clusters with expertly
segmented ground truths obtained from the NLM/NCI. We evaluated the p and q (sensitivity and specificity)
and also the dice similarity coefficient (DSC) for 8 randomly chosen samples. The calculations of p, q, and
dsc can be found in Popovic et. al [11]. Depending on the variation within each image, the number of
modes detected by our PMDA method varied from 4 to 19. On average, our results are as follows: for the
basic DA method, p = 0.723, q = 0.875, and dsc = 0.731. When we applied spatial coherency, our averages
improved across all measurements. This was typically because the spatial method eliminated outliers and
better delineated boundary conditions as seen in Fig. 7(c)(d). The most significant improvement was a 4.3%
increase in the sensitivity. Our spatial coherent DA results were p = 0.756, q = 0.885, and dsc = 0.738.

5 Conclusion
In conclusion, we implemented and analyzed four clustering algorithms on the GPU using the CUDA pro-
gramming language. We combined several of these methods and introduced a robust method, PMDA, for
automatically segmenting cervigram images. We exploited the parallelism inherent in two algorithms, mean
shift and deterministic annealing, using the GPU to achieve significant speed increases. We were able to
achieve an approximate globally optimal clustering with relatively few resources (time and hardware). Also,
a new spatially coherent extension to the deterministic annealing algorithm was introduced. Although we
used cervigram images for our process, this clustering method can be extended for use on many different
applications (e.g. histology images). In our future work, we would like to extend our algorithm to auto-
matically classify cluster results and explore the use of a priori knowledge to more accurately segment and
cluster image regions.
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