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Abstract. We present a novel framework for learning a joint shape and
appearance model from a large set of un-labelled training examples in ar-
bitrary positions and orientations. The shape and intensity spaces are uni-
fied by implicitly representing shapes as “images” in the space of distance
transforms. A stochastic chord-based matching algorithm is developed to
align photo-realistic training examples under a common reference frame.
Then dense local deformation fields, represented using the cubic B-spline
based Free Form Deformations (FFD), are recovered to register the train-
ing examples in both shape and intensity spaces. Principal Component
Analysis (PCA) is applied on the FFD control lattices to capture the vari-
ations in shape as well as on registered object interior textures. We show
examples where we have built coupled shape and appearance prior mod-
els for the left ventricle and whole heart in short-axis cardiac tagged MR
images, and used them to delineate the heart chambers in noisy, cluttered
images. We also show quantitative validation on the automatic segmenta-
tion results by comparing to expert solutions.

1. Introduction

Learning shape and appearance prior representations for an anatomical struc-
ture of interest has been central to many model-based medical image analysis
algorithms. Although numerous methods in the literature have been proposed to
integrate shape and appearance in learning prior models, most are hampered by
the automated alignment and registration problem of training examples. In the
seminal work of Active Shape and Appearance Models (ASM [2] and AAM [3]),
models are built from analyzing the shape and appearance variabilities across a
set of labelled training examples. Typically landmark points are carefully chosen
and manually placed on all examples by experts to assure good correspondences.
This assumption leads to a natural framework for alignment and statistical mod-
eling, yet it also makes the training process time-consuming. Yang & Duncan
[16] proposed a shape-appearance joint prior model for Bayesian image segmenta-
tion. They did not deal with registration of the training examples, however, and
assumed the training data are already aligned.

A number of automated shape registration and model building methods have
been proposed [7], [4], [5], [6]. These approaches either establish correspondences
between geometric features, such as critical points of high curvature [5]; or find
the “best” corresponding parametrization model by optimizing some criterion,



such as minimizing accumulated Euclidean Distance [4], [6], Minimum Descrip-
tion Length [7], or Spline Bending Energy [6]. Both geometric feature based and
explicit parameterization based registration methods are not suitable for incor-
porating region intensity information. In [10], the implicit shape representation
using level sets is considered, and shape registration algorithms using this repre-
sentation have been proposed [13, 8].

Non-rigid registration is a popular approach to build statistical atlas and to
model the appearance variations [11, 12]. The basic idea is to establish dense
correspondences between textures through non-rigid registration. However, few
of the existing methods along this line are able to register training examples in
arbitrary poses or to be coupled with shape registration.

In this paper, we introduce a new framework for learning statistical shape and
appearance models that addresses efficiently the above limitations. This frame-
work is an extension of our work on MetaMorphs, a new class of deformable mod-
els that have both shape and interior texture statistics [9], to incorporate prior
information. We work in a unified shape and intensity space by implicitly repre-
senting shapes as “images” in the space of distance transforms. A novel stochastic
chord-based matching algorithm efficiently aligns the training examples through a
similarity transformation (with rotation, translation and isotropic scaling), consid-
ering both shape and gray-level intensity information. Then the complementary
local registration is performed by deforming a Free Form Deformations (FFD)
control lattice to maximize mutual information between both “shape” and inten-
sity images. we apply principal component analysis on the deformed FFD control
lattices to capture variations in shape and on registered object interior textures
to capture variations in intensity. This learning framework is applied to build a
statistical model of the left ventricle as well as an articulated model of the whole
heart in short-axis cardiac tagged MR images, then the prior models are used for
automated segmentation in novel images.

2. Data Description and Algorithm Outline

2.1. Description of the training data

The training data are from spatial-temporal short-axis cardiac tagged MR images.
A 1.5T GE MR imaging system is used to acquire the images, and an EGG-gated
tagged gradient echo pulse sequence. Every 30ms, 2 sets of parallel short axis (SA)
images are acquired; one with horizontal tags and one with vertical tags. These
images are perpendicular to an axis through the center of the LV. A complete
systole-diastole cardiac cycle is divided into 24 phases. We collected 180 images
from 20 phases, discarding the beginning and ending two phases. An expert is
asked to segment the epicardium (Epi), the left ventricle (LV) endocardium and
the right ventricle (RV) endocardium from the images.

2.2. Learning and Segmentation algorithm outline

Our overall learning and segmentation framework is outlined by the flow-chart
in Fig. (1). There are two major components in the framework. The procedures
described in the rectangular boxes are the algorithmic steps that are generic to
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Fig. 1. (a) The learning framework. (b) The segmentation framework. (Rectangular
boxes) Generic algorithmic steps. (Oval boxes) Specific designs for the cardiac segmen-
tation problem.

all learning and segmentation problems. Additional procedures described in the
oval boxes involve specific domain knowledge about the heart anatomy and the
characteristics of the tagged MR images.

We utilize prior knowledge of the segmentation problem in devising the domain-
specific procedures. First, since the images are acquired perpendicular to an axis
through the center of the LV, the LV shapes appear relatively stable and near
circular, and the LV interior intensities are also relatively homogeneous. Thus we
learn a joint shape and texture model for the LV, which can be used for auto-
mated detection as well as segmentation. Second, for the alignment of training
examples however, the LV’s near-circular shape and homogeneous interior become
unreliable in estimating the transformations. Thus we do the alignment based on
an articulated heart model with both the epicardium (shape only) and LV en-
docardium (both shape and texture). Third, during segmentation in an unseen
cardiac image, the LV shape and appearance model is used for automatically
detecting the rough position of the heart. This position constraint and a Gabor-
filter bank based method [14] are used to approximate the position of the RV.
The positions of LV and RV centers determine the rough orientation of the whole
heart model, which is thus transformed and further registered to the image us-
ing our statistically constrained deformable registration algorithm. The converged
registration result defines the final segmentation of the heart chambers.

In the next two sections, we focus on presenting the generic algorithmic steps
in our framework.

3. Learning the Shape and Appearance Statistical Model

3.1. Unified Shape and Intensity Feature Space

Within the proposed framework, we represent each shape using a Euclidean dis-
tance map. In this way, shapes are implicitly represented as “images” in the space



(a) (b) (c) (d) (e) (f) (g)

Fig. 2. The aligned training examples based on the stochastic chord-based alignment
algorithm. (a) All aligned contours overlaid together. (b-g) Some examples of the globally
aligned textures.

of distance transforms where shapes correspond to the zero level set of the dis-
tance functions. The level set values in the shape embedding space is analogous
to the intensity values in the intensity (appearance) space. As a result, for each
training example, we have two ”images” of different modalities, one represent-
ing its shape and another representing its intensity (grey-level appearance). The
shape and intensity spaces are conveniently unified this way.

We use the Mutual Information criterion as the similarity measure to be op-
timized. Suppose A and B are two training examples. Let us denote their level
set value random variables in the shape space as XA

S and XB
S , and their inten-

sity random variables in the intensity space as XA
I and XB

I . Then the similarity
between the two examples in the joint shape and intensity space can be defined
using a weighted form of Mutual Information:

MJ(A, B) = MS(A, B) + αMI(A, B)

= H(XA

S ) + H(XB

S ) −H(XA

S , X
B

S ) + α
[

H(XA

I ) + H(XB

I ) −H(XA

I , X
B

I )
]

(1)

where H represents the differential entropy and α is a constant balancing the
contributions of shape and intensity in measuring the similarity. In our experi-
ments, we have set the values for α between [0.2, 0.6]. For brevity, we will use MJ

to represent the mutual information in the joint space, MS in the shape space,
and MI in the intensity space.

3.2. Chord-based Global Alignment

When aligning the training examples under a common reference frame, we pursue
an alignment that is ”optimal” in the sense that the mutual information criterion
in the joint feature space is optimized. Our solution is a novel alignment algo-
rithm based on the correspondences between chords. Given a training example,
A, suppose its un-ordered set of boundary points is {PA

i = (xA
i , yA

i )}, i = 1, ...,m,
a chord is a line segment joining two distinct boundary points. Some references on
the use of chords can be found in [1, 15]. Our observations here are: (i) each of the

total
(m

2

)

− m chords defines an internal, model-centered, normalized reference

frame for the example, in which the midpoint of the chord is the origin, the chord
is aligned with the x axis, and the chord length is scaled to be of unit length
1.0; (ii) One pair of chord correspondences between two examples is sufficient to
recover an aligning similarity transformation. So the basic idea of our algorithm
is that, instead of finding correspondences between individual feature points as in



most other matching algorithms, we find correspondences between chords, hence
the correspondences between internal reference frames of two examples, and align
the examples by aligning the best matching pair of internal reference frames.

Suppose we have an example A, as describe above, and a second example B

with unordered set of boundary points {PB
i′ = (xB

i′ , y
B
i′ )}, i

′ = 1, ..., n. Let us
denote a chord joining two points Pi and Pj ( i 6= j) as cij . The chord-based
matching algorithm can be outlined as follows:

1. For every chord cA
ij on example A,

Find its corresponding chord cB
i′j′ on example B as:

cB
i′j′ = argmaxcB

kl

[

MS

(

Aij , Bkl(c
B
kl)

)

+ αMI

(

Aij , Bkl(c
B
kl)

)]

(2)

where Aij is the representation of A in its internal reference frame FA
ij defined

by the chord cA
ij ; Bkl(c

B
kl) represents B in its internal reference frame FB

kl

defined by the chord cB
kl.

2. Among all hypothesized alignments between A and B, suppose the one based
on a pair of corresponding chords, cA

IJ and cB
I′J ′ , gives rise to the maximal

mutual information in the joint shape and intensity space:
[

MS

(

AIJ , BI′J ′

)

+

αMI

(

AIJ , BI′J ′

)]

, then the internal reference frames defined by this pair of
chords, FA

IJ and FB
I′J ′ , are chosen to be the best matching reference frames.

3. Align example A and B into a common reference frame by aligning the two
reference frames FA

IJ and FB
I′J ′ using a similarity transformation.

In practice, we find the chord correspondences using a stochastic algorithm
based on the Chord Length Distribution (CLD) [15]. The algorithm is very efficient
by considering only those chords with lengths greater than a certain percentile in
the CLD of each example. On average, the computation time for aligning one pair
of examples on a 3GHz PC workstation is around 15ms using the 85th percentile
in our experiments. The chord-based alignment algorithm can handle structures of
arbitrary topology since it does not require the explicit parameterization of shapes.
Also it is invariant to scaling, rotation and translation, thus the training examples
can be aligned robustly regardless of their initial poses. In Fig. 2, we show the
aligned examples for our articulated whole heart model. Here we randomly pick
one example as the atlas, and align all other examples to it.

3.3. Local Registration using FFD and Mutual Information

After global alignment, the next step towards building a statistical model is to
solve the dense correspondences problem. We proposed a nonrigid shape regis-
tration framework for establishing point correspondences in [8]. In this paper,
we extend this framework to perform non-rigid registration in the unified shape
and intensity space, thus achieving simultaneous registration on both shapes and
textures of the training examples. This joint registration provides additional con-
straints on the deformation field for the large area inside the object.

We use a space warping technique, the Free Form Deformations (FFD), to
model the local deformations. The basic idea of FFD is to deform an object by ma-
nipulating a regular control lattice overlaid on its volumetric embedding space. We
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Fig. 3. Local FFD registration between training examples. (1) Each training shape (in
solid line) deforms to match a target mean atlas (in dotted line). The FFD control lattice
deformations are also shown. (2) The registered textures. Note that each training texture
is non-rigidly deformed based on FFD and registered to a mean texture. All textures
cover a same area in the common reference frame. Dense pixel-wise correspondences are
established.

consider an Incremental cubic B-spline FFD in which dense registration is achieved
by evolving a control lattice P according to a deformation improvement δP . Let
us consider a regular lattice of control points Pm,n = (P x

m,n, P y
m,n); (m,n) ∈

[1,M ]× [1, N ] overlaid to a region Γc = {x} = {(x, y)|1 ≤ x ≤ X, 1 ≤ y ≤ Y } that
encloses a training example. Suppose the initial configuration of the control lattice
is P 0, and the deforming control lattice is P = P 0 + δP . Then the incremental
FFD parameters are the deformations of the control points in both x and y direc-
tions: Θ = {(δP x

m,n, δP y
m,n)}. The incremental deformation of a pixel x = (x, y)

given the deformation of the control lattice from P 0 to P , is defined in terms of a
tensor product of Cubic B-spline: δL(Θ;x) =

∑3

k=0

∑3

l=0
Bk(u)Bl(v)(δPi+k,j+l),

where i = ⌊ x
X

· (M − 1)⌋ + 1, j = ⌊ y
Y

· (N − 1)⌋ + 1; δPi+k,j+l consists of the
deformations of pixel x’s sixteen adjacent control points; Bk(u) is the kth basis
function of the cubic B-spline.

To register an atlas T and a rigidly aligned training example R, we consider
a sample domain Ω in the common reference frame. The mutual information
criterion defined in the joint shape and intensity space can be considered to recover
the deformation field δL(Θ;x) that registers R and T :

MJ

(

R, T (δL(Θ))
)

= MS

(

R(Ω), T (L(Θ; Ω))
)

+ αMI

(

R(Ω), T (L(Θ; Ω))
)

(3)

In the equation, L(Θ;Ω) represents the deformed domain of the initial sample
domain Ω, i.e. L(Θ;x) = x + δL(Θ;x), for any x ∈ Ω. A gradient descent
optimization technique is used to maximize the mutual information criterion, and
to recover the parameters of the smooth, one-to-one registration field δL. Then
dense pixel-wise correspondences can be established between each point x on
example R, with its deformed position L̂(x) on the atlas T . The correspondences
are valid on both the “shape” images and the intensity images. We show some
example results using this local registration algorithm in Fig. (3).

3.4. Statistical Modeling of Shape and Appearance

After registration in the joint shape and intensity space, we apply Principal Com-
ponent Analysis (PCA) on the deformed FFD control lattices to capture variations
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Fig. 4. PCA modeling. (1.a) The mean FFD control lattice configuration and mean
shape. (1.b-c) Varying first mode of FFD deformations: −2σ reconstruction in (b) and
2σ in (c). (1.d-e) Second mode of FFD. (1.f-g) Third mode of FFD. (2.a) The mean LV
texture (based on pixel-wise correspondences). (2.b-c) Varying first mode of LV texture.
(2.d-e) Second mode of LV texture. (2.f-g) Third mode of LV texture.

in shape. The feature vectors are the coordinates of the control points in x and
y directions in the common reference frame. We also use PCA on the registered
object interior textures to capture variations in intensity. Here the feature vectors
are the image pixel intensities from each registered texture. Fig. 4 illustrates the
mean atlas and three primary modes of variation for both the shape deformation
fields (Fig. (4).1) and intensities (Fig. (4).2). The shape model uses the articulated
heart model with Epi and LV, and the texture model is for the LV interior texture
only (due to the presence of tagging lines in heart walls and RV irregularity).

4. Segmentation via Statistically Constrained Registration

Given an unseen image, we perform segmentation by registering the learned prior
model with the image based on both shape and texture. The mutual information
criterion to be optimized is the same as Equation 3, except that here R consists of
the new intensity image and a “shape” image, which is derived from the un-signed
distance transform of the image’s edge map (computed by the Canny edge detec-
tor). Another difference from the learning process is that, during optimization,
instead of using directly the recovered FFD parameter increments to deform the
prior model, we back-project the parameter increments to the PCA-based feature
space, and magnitudes of the allowed actual parameter changes are constrained
to have a 2σ upper bound. This scheme is similar to that used in Active Shape
and Appearance Models.

4.1. Results and Validation

Using the statistical model learned as shown in Fig. 4, we conduct automated
segmentation via statistically constrained registration on two novel sequences of
4D spatial-temporal tagged MR images. Each sequence consists of 24 phases, with
16 slices (images) per phase. Since we do not use the first and last two phases
in the new sequences, we have 320 images for testing from each sequence. The
segmentation framework is depicted in Fig. 1.b. Example segmentation results
are shown in Fig. 5. In all the experiments, following the LV detection and rough
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Fig. 5. Coupled prior based segmentation results on two novel tagged MR image se-
quences. (1) Example results from sequence 1. (2) Example results from sequence 2.

model pose estimation, the registration-based segmentation process takes less than
2s to converge for each image on a 3GHz PC workstation.

Quantitative validation is performed by comparing the automated segmen-
tation results with expert solutions. Denote the expert segmentation results in
the images as ℓtrue, and the results from our method as ℓprior. We define the
false positive fraction (FPF) to indicate the amount of tissue falsely identified
by our method as a fraction of the total amount of tissue in the true segmen-

tation: FPF =
|ℓprior−ℓtrue|

|ℓtrue|
. And the true positive fraction (TPF) describes the

fraction of the total amount of tissue in the true segmentation result that is

overlapped with our method: TPF =
|ℓtrue∩ℓprior|

|ℓtrue|
. On the novel tagged MR

sequence 1, our segmentation results produce the following average statistics:
FPF = 5.1%, TPF = 97.9%. On the novel sequence 2, the average statistics
are: FPF = 5.5%, TPF = 96.2%.

5. Discussions and Conclusions

In this paper, we have proposed a novel, generic algorithm for learning coupled
prior shape and appearance models. Our main contributions in this paper are three
folds. First, we work in a unified shape and intensity feature space. Second, we de-
velop a novel stochastic chord-based matching algorithm that can efficiently align
training examples in arbitrary poses, considering both shape and texture informa-
tion. Third, a local registration algorithm based on FFD and mutual information
performs registration both between shapes and between textures simultaneously.
In our future work, we will learn a 3D coupled prior shape and texture model for
the heart in tagged MR images. It is also important to explore the use of other
learning techniques, such as Independent Component Analysis, in our framework.
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