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Abstract

The biological visual system possesses the ability to com-
pute layered surface representations, in which one surface
is represented as being viewed through another. This abil-
ity is remarkable because, in scenes involving transparency,
the link between surface topology and image topology is
greatly complicated by the collapse of the photometric con-
tributions of two distinct surfaces onto image intensity. Pre-
vious analysis of transparency has focused largely on the
role of different kinds of junctions. Although junctions are
important, they are not sufficient to predict layered surface
structure. We present an algorithm that propagates local
junction information by searching for chains of polarity-
preserving junctions with consistent ‘sidedness,’ and then
propagates the transparency labeling into interior regions.
The algorithm outputs a layered representation specifying
(i) the distinct surfaces, (ii) their depth ordering, and (iii)
their surface attributes. We demonstrate the results of the
algorithm on a number of images—both synthetic and real.
We end by considering implications for related domains,
such as shading.

1. Introduction
Computational accounts of visual surface construction typi-
cally assume a one-to-one mapping from environmental sur-
face patches to image patches: With the exception of oc-
cluding boundaries, each image point is assumed to have
projected from a single surface point, and the goal is to com-
pute various intrinsic attributes of the surface at that point.
This assumption is violated in situations involving partially-
transmissive surfaces: Here, the photometric contributions
of two distinct surfaces—a farther opaque surface and an
occluding partially-transmissive one—collapse onto a sin-
gle intensity at each image pixel. As a result, a local image
patch can correspond to the combined projection of two sur-
face patches on distinct surfaces—thereby complicating the
link between surface topology and image topology. Despite
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Figure 1: Metelli’s episcotister model of transparency.

this, the biological visual system is able to decompose im-
age intensities and compute representations of two distinct
surfaces layered in depth. Indeed, many recent techniques
in medical imaging and data visualization rely on this ability
[1], [2]. In this paper, we present an algorithm that can de-
tect and separate transparent surfaces in static, achromatic
images.

1.1. Image Constraints in Transparency
In his influential theory, Metelli [3] modeled transparency
using an ‘episcotister’: A disk with an open sector of rela-
tive area α, and reflectance t, is rotated in front of a bipartite
surface, with reflectances a and b. With sufficiently fast ro-
tation, the episcotister appears as a homogeneous overlying
transparent layer (see Fig 1). The resulting ‘color mixing’
is thus described by:

p = αa + (1 − α)t, (1)

q = αb + (1 − α)t. (2)

These equations yield unique solutions for α and t:

α =
p − q

a − b
, (3)

t =
aq − bp

a + q − b − p
. (4)

Gerbino et al. [4] showed that the same equations follow
in the luminance domain, under the assumption of uniform
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Figure 2: X-junction classification: (a) non-reversing, (b)
single-reversing, and (c) double-reversing.

illumination. This luminance formulation is more natural
from the point of view of visual computation, since a vision
system is given luminances, not reflectances. Despite their
simplicity, Metelli’s equations also provide a reasonable ap-
proximation to more complex cases, including fog [5].

Based on restrictions on the solution (3) for α, Metelli
derived two qualitative constraints for transparency. First,
because α cannot be negative, p − q must have the same
sign (i.e., contrast polarity) as a − b:

Polarity constraint: a ≥ b ⇐⇒ p ≥ q.

In other words, the presence of a putative transparent
layer must preserve contrast polarity across an underlying
contour. Second, because α cannot exceed 1 (being a
proportion), the magnitude |p − q| must not exceed the
magnitude |a − b|:

Magnitude constraint: |p − q| ≤ |a − b|.

Similarly, based on the restriction that the term t in solution
(4) cannot be negative, Singh & Anderson [6] derived an
additional constraint:

Michelson-contrast constraint: |p−q|
|p+q| ≤

|a−b|
|a+b| .

Recent image analysis of transparency has adopted a
qualitative approach, developing simple constraints that
may be tested locally at junctions [7], [8]. A transparent
overlap leads, generically, to X junctions in the projected
image.1 Adelson & Anandan [7] classified X junctions
into non-reversing, single-reversing, and double-reversing,
depending on whether both, one, or none of the two seg-
ments of the X junction preserves contrast polarity. A non-
reversing junction is consistent with two different interpre-
tations of depth layering (see Fig 2(a)): either of the two
segments may be seen as bounding an overlying transpar-
ent layer. A single-reversing junction is consistent with a
unique transparency interpretation (see Fig 2(b)); whereas
a double-reversing junction is not consistent with trans-
parency (Fig 2(c)). Anderson [8] has articulated a rule that
combines the contributions of contrast polarity and magni-

1T junctions can also be produced by transparent overlay [8], but only
in special situations—e.g., if the color of the transparent layer happens to
match the color of one of the underlying surface regions.
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Figure 3: Demonstrating the insufficiency of local junc-
tions for transparency using (a) a non-reversing junc-
tion, and (b) a single-reversing junction.

tude, along with geometric continuity: When two aligned
contours undergo a discontinuous change in contrast mag-
nitude, but preserve contrast polarity, the lower-contrast re-
gion decomposes perceptually into two causal layers.

Although the Adelson & Anandan classification scheme
and the Anderson rule articulate important constraints for
the perception of transparency, these constraints are, by de-
sign, purely local. The computation of surface structure,
on the other hand, requires that local constraints, applied
to junctions, be integrated in a mutually consistent man-
ner. Indeed, one can demonstrate that these local con-
straints are not by themselves sufficient to predict percepts
of transparency. Fig 3(a), for example, shows the same non-
reversing junction placed in two different image contexts.
In the display on the right, this junction is perceived to result
from a transparent overlap, whereas no such transparency
interpretation is perceived at the identical junction in the left
display. Fig 3(b) similarly demonstrates the insufficiency of
a single-reversing junction in predicting a layered surface
percept. What is required, therefore, is a scheme for prop-
agating the influences of local junctions, and searching for
circuits (and maximal chains) of mutually-consistent junc-
tions. These circuits and chains then constitute boundaries
of candidate transparent overlays, and the transparency in-
terpretation can then be verified in interior regions.

2. Computing Transparent Overlays
Our algorithm consists of the following main steps:

1. Construct a scene graph data structure by detecting re-
gions, junctions, and edges in an input image, and rep-
resenting the relationships between them.
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Figure 4: Demonstrating the initial steps of the algorithm: (a) Original image. (b) Result of image segmentation. (c)
Estimated X junction clouds. (d) Scene graph consisting of edges, junctions, and regions.

2. Detect X junctions in the image, identify the polarity-
preserving ones, and classify them into non-reversing
and single-reversing.

3. Detect the boundaries of candidate transparent over-
lays by searching for all possible circuits and maximal
chains of polarity-preserving junctions with consistent
lower-contrast ‘sidedness.’ The regions adjacent to the
circuit—on its lower-contrast side—receive a tentative
transparency labeling.

4. Propagate the transparency labeling into interior re-
gions, by verifying the transparency interpretation in
regions on the lower-contrast side of the circuit, but
not immediately adjacent to it.

5. Compute a layered surface representation by separat-
ing the transparent overlays from the background sur-
face, and assigning surface attributes to both layers.

We present each step in turn, using the example display
shown in Fig 4(a).

2.1. Constructing the scene graph
We use a scene graph data structure to represent the scene
elements in an image, and the relationships between them.
The scene elements include edges, junctions, and regions.
Given an input image, the following algorithms are applied
to detect the scene elements:

1. Image Segmentation. We partition an image into re-
gions of similar color statistics. The image segmenta-
tion algorithm we use is based on active contour mod-
els (’snakes’) [9] with balloon forces [10]. Around the
boundary of a small patch of seed pixels, an active con-
tour is initialized and it inflates to include neighbor-
ing pixels until it nears a region boundary, where the
image gradient forces and balloon forces reach equi-
librium. The process is repeated originating from dif-
ferent patches of seed pixels until all sufficiently large

regions are found. At the end of this operation, some
pixels in the boundary areas may not be included in
any region. We then apply Dilation morphological op-
eration to all regions in parallel, in order to allow the
regions to grow into those pixels. This results in a fully
segmented image in which each pixel has a region la-
bel, as shown in Fig 4(b). (Each distinct region is ren-
dered using a different color.)

2. Junction Detection. A pixel location is considered to be
an X (or 4) junction candidate if pixels in its local
neighborhood have exactly four distinct region labels.
Applying this definition yields a cloud of candidate
pixels around each “true” junction. We then use a lo-
cal window with adaptive radius around each candidate
cloud to localize the cloud centers, and take these cen-
ters to be a detected X junctions. The X junctions thus
obtained in the example image are shown in Fig 4(c).

3. Edge Detection. The closed contour defining the
perimeter of each region is disconnected at the junc-
tion locations, to yield one or more edges. (Non-closed
edges are thus bounded by two junction terminators.)
An edge thus identified is aware of which region it
belongs to. For every boundary between two adjacent
regions, there are thus two side-by-side edges—one
from each region. Figure 4(d) shows all the edges and
junctions for the example image.

After the scene elements are detected, we construct a
scene graph data structure to represent their relationships
(Fig 4(d)). Each of the element types, Edge, Junction, and
Region consists of a set of attributes, specified as follows:

Edge: edge ID label, the chain of pixels on the edge, region
label of the region it belongs to, junction labels of its
two terminators (if it is a non-closed edge).

Junction: junction ID label, type (here we restrict the anal-
ysis to X junctions), center location, edge labels of its
incident edges, region labels of its adjacent regions.
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Figure 5: (a) A single-reversing X junction. (b) Its
polarity-preserving border, marked in black, and unique
depth ordering, indicated by arrows (as in [11]). (c) A
non-reversing X junction. (d) Its two polarity-preserving
borders, and the associated depth orderings.

Region: region ID label, mean intensity value of the
region, its perimeter consisting of edges and junc-
tions in counter-clock-wise order, e.g., “edge1 id →
junction1 id → edge2 id → junction2 id → ...”.

2.2. Finding polarity-preserving X junctions
With the scene graph data structure in place, we test for
contrast polarity relationships at each X junction, and clas-
sify them accordingly. If both edge pairs preserve contrast
polarity, the X junction is non-reversing. If only one pre-
serves polarity, it is single-reversing. Otherwise it is double-
reversing. Next, for each edge pair that preserves contrast
polarity, we determine which of its two sides has lower con-
trast. Based on the magnitude constraint and the Michelson-
contrast constraint (see Section 1.1), we require that both
luminance differences and Michelson contrast be lowered2

in order to make a local transparency interpretation.
Let the four adjacent regions at an X junction be

R1, R2, R3 and R4, with mean intensity values L1, L2, L3

and L4, respectively (see Fig 5). We test for contrast
polarity and magnitude relationships across the border
B12−34 (which separates R1, R2 from R3, R4) and, simi-
larly, across the border B13−24:

Sign Tests:
(I) Is Sign(L1 − L2) = Sign(L3 − L4)?

(II) Is Sign(L1 − L3) = Sign(L2 − L4)?

Magnitude Tests:

(IA) Is |L1−L2| ≤ |L3−L4| and |L1−L2|
|L1+L2|

≤ |L3−L4|
|L3+L4|

?

(IB) Is |L1−L2| ≥ |L3−L4| and |L1−L2|
|L1+L2|

≥ |L3−L4|
|L3+L4|

?

(IIA) Is |L1−L3| ≤ |L2−L4| and |L1−L3|
|L1+L3|

≤ |L2−L4|
|L2+L4|

?

(IIB) Is |L1−L3| ≥ |L2−L4| and |L1−L3|
|L1+L3|

≥ |L2−L4|
|L2+L4|

?

2This holds automatically for single-reversing junctions (see Appendix
C in [6]), but not necessarily for non-reversing junctions.

The sign tests determine which of the two edge pairs in
an X junction could correspond to the boundary of a trans-
parent layer, whereas the magnitude tests determine which
side of such a boundary could contain the transparent layer.
For example, the junction in Fig 5(a) satisfies Sign test (II),
but not Sign test (I). Thus only the vertical border preserves
contrast polarity. Then, applying the Magnitude tests (IIA)
and (IIB), we find that the junction satisfies test (IIA), but
not test (IIB). Thus, if this X junction maintains the sta-
tus of a transparent overlap in the global interpretation, it
would have a unique transparency interpretation (depicted
in Fig 5(b))—with the vertical border bounding a transpar-
ent layer on the left side (i.e., corresponding to regions R1

and R3).
Having applied the Sign and Magnitude tests, we gener-

ate the object type polarity-preserving X junction, which is
specified in the scene graph data structure as follows:

Preserving-Xjunc: junction ID label, subtype (single-
reversing or non-reversing), for each polarity-
preserving border: the labels of the two regions on its
lower contrast side, and the labels of the two (topolog-
ically) aligned edges that belong to these two regions.

2.3. Finding transparent overlays
In order to find candidate boundaries of transparent over-
lays, the algorithm integrates local junction information by
searching for all possible circuits, and maximal chains, of
polarity-preserving X junctions with consistent polarity and
consistent lower-contrast ‘sidedness.’ The transparency in-
terpretation of these candidate boundaries is then verified
by photometric checks on interior regions—i.e., regions that
are not bounded by any of the edges in the circuit, but that
lie on its lower-contrast side.

2.3.1 Initiating an X-junction chain

The junction integration process originates from polarity-
preserving X junctions, with single-reversing junctions hav-
ing higher priority than non-reversing ones. Starting from
a single-reversing X junction, there is only one chain to be
traced. The chain goes out along one edge—out of the pair
of aligned edges, on the lower contrast side of the polarity-
preserving border. Starting from a non-reversing X junc-
tion, there are two such chains to be traced, since there are
two polarity-preserving borders.

2.3.2 Criteria for chain continuation and termination

Following an edge currently being traced, several possibil-
ities can occur at the other end of the edge; see Figs 6(a)-
6(d). In all displays, the edge currently being traced is E1,



R1
E1

E2

J1

J2
R3

R2R4

(a)

R1

J2

J1

R3

R2R4

E3

E1

(b)

R1

R2R4
E3

E2

J1

J2

J3

E1
R3

(c)

R1

J1J2
E1

(d)

Figure 6: Demonstrating criteria for chain continuation (a)-(c), and chain termination (d).

and it belongs to region R1. The edge originates at junction
J1, and ends at junction J2.

The scenarios for chain continuation are illustrated in
Figs 6(a)-6(c).

(a) In Fig 6(a), the following conditions hold:
• R1 is on the lower-contrast side of junction J1.
• J2 is a polarity-preserving X junction (in this

case, with a single polarity-preserving border
B12−34).

• E1 is (topologically) aligned with edge E2, along
J2’s polarity preserving border.

• Region R2—which contains edge E2—is on the
lower-contrast side of junction J2.

With these conditions holding, junction J2 locally sup-
ports a transparency percept that is consistent with J1.
The chain thus continues across J2 along the aligned
edge E2 (which belongs to region R2).

(b) In Fig 6(b), the junction J2 is not a polarity-preserving
X junction. In this situation, the chain still continues,
but follows the contour of the current lower-contrast-
side region R1 to E3, rather than going across junction
J2, to the topologically aligned edge.

(c) The scenario shown in Fig 6(c) can occur only if J2 is a
non-reversing X junction. Here E1 is aligned with one
of J2’s polarity-preserving borders, i.e., B12−34, but
the ‘lower contrast’ side at this junction is ambiguous
(i.e., luminance difference and Michelson contrast do
not yield consistent results). In this case, the chain ten-
tatively follows E1’s topologically aligned edge E2 to
the next single-reversing X junction J3. At J3, it be-
comes clear that the lower-contrast side has reversed
from that at junction J1. Thus the three adjacent junc-
tions J1, J2, and J3 cannot support a consistent trans-
parency interpretation. Therefore, the chain contin-
ues as it did in situation (b), i.e., following along the
perimeter of R1, to edge E3.

The scenarios for chain termination are as follows.

(d) Let the originating X junction of the chain be J0 and
the first edge traced on the chain be E0. Suppose that:

• the junction at the end of the edge currently being
traced, is the same as the originating junction, J0.

• the edge currently being traced, is topologically
aligned with the originating edge E0.

This will occur, for example, in Fig 6(a) once the chain
has gone all the way around the disk; and in Fig 6(b)
once the chain has circumscribed the top-left quar-
ter disk. In this case, we have successfully found a
closed global circuit, consisting of polarity-preserving
X junctions with consistent ‘sidedness.’ We save the
circuit’s information using an Object Circuit:

Circuit: circuit ID label, the closed chain of junc-
tions and edges in the format “junction0 id →
edge0 id → junction1 id → ...,” the regions
adjacent to the chain, on its lower-contrast side,
in the format of “region0 id → region1 id →
....”

(e) If, during the tracing, the chain comes to include all
of the edges of region R1 (which contains the cur-
rent edge E1), the chain is stopped (see Fig 6(d)).
Although a loop is formed, it is not recognized as a
successful global circuit. (This is why no successful
circuit is obtained in the displays on the left of Fig
3.) If this chain contains the topologically aligned
edges of at least two X junctions, with consistent sid-
edness, these edges and junctions are saved as an open
maximal chain (along with the regions adjacent to it,
on its lower-contrast side). Such a chain may locally
generate a percept of transparency, but no globally-
consistent transparent-surface interpretation is possi-
ble (e.g., the top-left section of the disk’s perimeter in
Fig 6(c) or 6(d)).
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Figure 7: (a) The computed circuit for the example im-
age. (b) The layered decomposition: recovered back-
ground plus transparent overlay.

(f) If a chain encounters an edge that belongs to a previ-
ously discovered circuit, the chain is terminated and
discarded. This prevents the same chain from being
traced repeatedly, starting from different X junctions.

2.3.3 Verifying the transparency interpretations in in-
terior regions

A circuit is computed—by definition—based on image re-
gions that are immediately adjacent to it (i.e., that own at
least one of its edges). Before we assign a detected circuit
the status of a boundary of a transparent overlay, we must
verify that interior regions, that are not adjacent to the cir-
cuit (e.g., the four squares in the center of the display in Fig
6(a)), are also consistent with a transparency interpretation.
In particular, the contrast generated by these interior regions
must not greatly exceed the contrast values generated by the
regions adjacent to the circuit. We currently use a conserva-
tive way to ensure this, by requiring that the mean intensity
L of each interior region satisfies lmin ≤ L ≤ lmax, where
lmin and lmax are the minimum and maximum of the mean
intensity values, computed over the set of image regions that
own the edges of the circuit (i.e., on its lower-contrast side).
This criterion is clearly satisfied for the circuits computed
in Figs 6(a) and 7(a)—thus yielding a global interpretation
of a transparent overlay in these displays.

2.4. Computing layered surface representation
Once we have detected a transparent surface, we can sepa-
rate it from the background surface, and quantitatively as-
sign surface properties to both layers.

2.4.1 Transmittance and lightness of the overlay

Setting f = (1 − α)t in Metelli’s equations makes it clear
that the mapping from surface luminances in plain view (L)
to luminances projected through a transparent layer (Lt) is
a linear mapping (see, e.g., [14]):

Lt = αL + f

(a) (b) (c)

(d)

(e)

Figure 8: Result images for the “snake illusion” [14]. (a)
The original display. (b) The scene graph. (c) The four
detected circuits. (d-e) Two different interpretations of
transparency and depth layering

The parameters α and f can be computed at any X junc-
tion along the circuit. For example, for the single-reversing
junction in Fig 5(a)3:

α =
L1 − L3

L2 − L4

f =
L2L3 − L1L4

L2 − L4

If a global circuit contains N polarity preserv-
ing X junctions, we obtain N sets of values:
α1, f1, α2, f2, ..., αN , fN . If all sets of values recov-
ered at the local junctions are sufficiently close, we
recognize a balanced (i.e., homogeneous) transparent over-
lay enclosed by the circuit, with estimated transmittance
and luminance as:

α =
1

N

N∑

i=1

αi t =
1

N

N∑

i=1

fi

1 − αi

If, on the other hand, the sets of values differ from each
other, the transparent overlay enclosed by the circuit is un-
balanced, and we need to compute a dense surface property
map for the overlay. (Humans can readily perceive such in-
homogeneous transparency; see, e.g., [6].) Since we know

3It should be noted that the human perception of transmittance deviates
systematically from the physical solution (3), and is determined instead by
the ratio of contrasts; α =

p−q

p+q
/ a−b

a+b
(see [6]). Thus, either formula for

transmittance may be used, depending on the application.
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Figure 9: Result images for the sine-wave display [6].
(a) The original display. (b) The scene graph. (c) The
detected circuit. (d) The layered representation.

the properties of the overlay over those regions that are im-
mediately adjacent to the chain, we can compute the values
in interior regions using simple interpolation methods.

2.4.2 Background surface properties

At any pixel location p that contains a transparent overlay,
the background surface luminance (i.e., the luminance it
would project when seen in plain view) is determined by
Lp =

Ltp−fp

αp
, where αp and fp are the computed surface

properties of the transparent overlay at that pixel location.
(Human perception of underlying surface lightness accords
reasonably well with Metelli’s prediction; see [13].)

Thus, we are now in a position to separate the back-
ground surface from the overlying transparent layer, and as-
sign them separate attributes. Figure 7(b) shows the layered
decomposition for the example input image in Fig 4(a).

3. Experimental Results
We have applied the algorithm, with successful results, to a
number of images—including many of the commonly used
transparency displays as well as some real images. Some
typical results are shown in Figs 8 – 10.

1. In displays containing nonreversing junctions, such as
Fig 2(a), the algorithm outputs both possible inter-
pretations of transparency and depth layering. Fig 8
demonstrates this behavior on a more challenging dis-
play, Adelson’s snake illusion, in which either the rect-

(a) (b) (c)

(d)

Figure 10: Detecting transparent overlays in a real im-
age. (a) The original image after Gaussian smoothing.
(b) The computed regions, edges, and X junctions. (c)
The detected circuit. (d) The layered representation.

angular bars or the undulating “snakes” may be per-
ceived to be the transparent overlays.

2. Fig 9 demonstrates the results on an image containing a
sinusoidally-varying background, rather than sharply-
defined edges, junctions, and regions.

3. Fig 10 demonstrates the results of the algorithm on a
real image containing a transparent overlay—a stack
of overhead transparencies covering sheets of paper on
a desk. The algorithm finds and separates the trans-
parent overlay properly. However, the recovery of the
background luminance is not as good as in the syn-
thetic images, because of the very gradual variations
in intensity within each segmented region.

4. Conclusions
We have presented an algorithm that can detect transparent
overlays in images, separate the overlays from background
surfaces, and recover their surface properties. The algo-
rithm finds boundaries of candidate transparent overlays
by searching for circuits of polarity-preserving X junctions
with consistent ‘sidedness,’ and then verifies their trans-
parency interpretation by photometric tests on interior re-
gions. Once transparent overlays have been detected, their
surface properties, and those of the background surfaces,
are assigned using known formulas.

The algorithm performs well on standard transparency
displays—including those with multiple interpretations of
transparency and depth layering (e.g., Figs 2(a) and 8(a)).
It is also able to detect transparent overlays in real im-
ages. The image segmentation algorithm we use (active
contour models with balloon forces; see [9], [10]) is robust



to noise in natural images: The inflating balloon forces en-
able the evolving contours to surpass small spurious struc-
tures inside a region, while the internal forces (instantiating
smoothness constraints) prevent the contour from getting
trapped within gaps on boundaries. This robust segmen-
tation allows for successful detection of transparent over-
lays. However, the recovery of background luminance can
suffer somewhat due to gradual intensity variations within
segmented regions.

Given the simple, deterministic nature of the propagation
scheme, these results are very encouraging. Because the al-
gorithm relies solely on X junctions, however, it is not cur-
rently able to deal with cluttered scenes in which portions of
the transparent-layer boundary (edges and/or junctions) are
occluded behind other opaque surfaces, or where part of the
boundary is camouflaged by a background surface region
that happens to have the same color as the transparent layer
(see, e.g., [8]). Both of these situations generate T junc-
tions, and a more sophisticated, probabilistic, propagation
scheme would be required to distinguish between cases in
which a T junction arises from opaque occlusion, and cases
in which it arises from camouflaged transparency. Efficient
schemes for dealing with partly-occluded surfaces exist al-
ready (e.g., [11], [12]), and in future work these would need
to be integrated into the algorithm.

Future directions also include looking at implications for
shadows and shading. These domains are intimately re-
lated to transparency because they also generate polarity-
preserving X junctions. (The main photometric difference
being that Michelson contrast is preserved.) As a suggestive
example, consider the results of the algorithm on a shad-
ing display by [15] (see Fig 11). The algorithm finds two
circuits that correspond to reflectance change and shading,
respectively. Note that, for Adelson & Pentland’s class of
displays, a simple additional rule can distinguish between
these two cases: If the circuit meets the occluding contour
of the surface at a Y junction, interpret a shading boundary;
if it meets it at a T junction, interpret a reflectance change.
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