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Abstract

This paper presents an architecture for programmable systolic arrays that pro-
vides simple and efficient systolic communication. The Brown Systolic Array is
a linear implementation of this Systolic Shared Register architecture; a working
470-processor prototype system performs 108 MOPS. A 32-chip, 1504-processor
implementation could provide 5 GOPS of systolic co-processing power on a single
board.
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Introduction

The systolic array is perhaps the most significant architectural development in-
spired by the revolution in VLSI fabrication technology. By pumping data through
a regular network of hundreds or thousands of simple processing elements, compu-
tationally intensive problems can be solved many times faster on systolic arrays
than on traditional machines. Since the introduction of the systolic paradigm,
systolic co-processors have been proposed to solve a wide variety of problems.
However, new VLSI single-purpose processing elements can require many months
to design, simulate, fabricate, and test. Because of this great effort required to
construct new arrays, research has turned to programmable systolic arrays. In
this paper, we present both a general architecture for programmable systolic ar-
rays and a working implementation based upon it. This Systolic Shared Register
(SSR) architecture preserves the simple communication of single-purpose systolic
arrays while providing the user with a fully programmable systolic co-processor.
To evaluate the SSR model, the Brown Systolic Array (B-SYS) has been de-
signed, simulated, fabricated, tested, and used. B-SYS is particularly well suited
to combinatorial problems: those requiring only integers and simple operations.
These problems present large potential gains from systolic processing since small
processing elements are sufficient, and the smaller each individual processing ele-
ment, the easier it is to construct massively parallel machines. Many combinato-
rial problems (including data compression, dynamic programming, graph, image
processing, and other problems) can efficiently use hundreds of thousands or even
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millions of processing elements; to achieve such high processor densities in a rea-
sonable amount space, small and simple processing elements must be used.

A B-SYS prototype system has been running since the early fall of 1990. Ten
B-SYS chips are linked together to form a small one-board, 470-processor linear
systolic array which has been used to run various combinatorial algorithms. This
prototype performs 108 million 8-bit operations per second (MOPS). We estimate
that an easily expandable, low-cost single-board system of 1504 processing ele-
ments could perform five billion 8-bit additions each second (5 GOPS). The two
major sections of this paper are devoted to the Systolic Shared Register paradigm
and the Brown Systolic Array, respectively.

Systolic Shared Register Architectures

Perhaps the most critical issue in the design of programmable systolic arrays is
that of systolic communication; the simple methods of single-purpose systolic sys-
tems should be maintained, but the architecture must be fully programmable.
To address this issue (and others), the Systolic Shared Register architecture fea-
tures a regular topology, broadcast instructions, systolic shared registers, and a
stream model of data flow. The first two items follow directly from the algorithmic
requirements of the class of systolic algorithms. The third provides efficient sys-
tolic communication and more flexible dispositions of computation and memory
throughout the VLSI chip. Finally, the stream model of data flow is an elegant
method for programming systolic co-processors.

Regular Topology

To support systolic algorithms, all of which use a regular topology by definition,
the systolic co-processor itself should have a regular topology [1]. A fixed-degree
regular network with nearest-neighbor connections (such as a line, square mesh,
or hexagonal mesh) provides for the orderly and extensible mapping of algorithms
to the systolic array.

Broadcast Instructions

Per-processor programmability currently requires too much area for inclusion in
high-density systolic arrays, a result of both the size of the program store and the
complexity of the instruction sequencer. To form arrays with hundreds of thou-
sands of processing elements, there should be many processing elements on each
chip; otherwise, the physical space used by the co-processor would be excessively
large. Typical independently programmed systolic processing elements, such as
iWarp, only have one processing element per chip [2]. Additionally, when large
numbers of MIMD processors (hundreds or thousands) are used for systolic algo-
rithms, the programs stored in each processor tend to be similar: by definition,
systolic algorithms require only a small number of cell programs [1]. Thus, the
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Figure 1: Linear SSR processor array with data stream.

inherent power of a MIMD machine is often not used for systolic algorithms.
Shared Registers for Communication
In a programmable systolic array, data cannot be moved automatically since differ-
ent applications require different types of data movement; data movement must be
explicitly specified. Several machines provide this ability with special instructions
and special queues or registers for data movement [2, 3]. In an SSR architecture,
however, data moves through the array as a natural result of the user’s program.
Figure 1 shows a segment of a linear SSR array. Each functional unit (F;) is
adjacent to two register banks. Each functional unit can access data values from
the register banks directly to its west and east for both input and output. Input to
and output from the array can take place at either end. Systolic communication
in an SSR architecture uses these shared register banks. There are no internal
registers in the functional units, though a small number of flag bits may be present.
This separation of computation and storage is a hallmark of the SSR architecture.
The use of broadcast instructions and relative addressing of register banks
prevents contention; dual-ported memory is not required since no two functional
units attempt to access the same register bank simultaneously. Simple switches
between functional units and register banks can control the flow of information.
With Systolic Shared Registers, data flow takes place concurrently with com-
putation. For example, the instruction

EQ — miH(Wo, Wl)

not only performs a minimization but also moves data through the array from
west to east.

The SSR paradigm also does not arbitrarily limit the number of communication
channels between processors; the user may decide to use the first few registers
of each register bank for local storage, the next for transmission of data from
west to east, the next for another data stream, and so on. In summary, shared
registers provide a small, fast, flexible, and elegant implementation of systolic
communication.

Stream Programming

Finally, SSR machines are programmed using a data stream paradigm, allowing
the inputs and outputs at both sides of a linear array to be linked to file streams
or functions by the host program. In mesh architectures, all edge processing
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Figure 2: SSR networks.

elements, singly or in groups, may be linked to data streams. For example, a data
stream of n-element vectors forming an n X n matrix could be linked to the entire
west side of a mesh. The use of a logical data stream is crucial. It is possible

that a single stream of data may use different physical registers at different times,
changing register meanings to produce a more efficient program. This stream
model of data flow allows the programmer to ignore such detail.

Other SSR Networks

The Systolic Shared Register paradigm is not restricted to linear arrays. Figure 2
shows abstract designs for hexagonal and octagonal mesh SSR machines. In the
octagonal mesh, each functional unit can communicate with eight neighboring
functional units through its four adjacent register banks. Although there are two
boundary edges on corner memory nodes in the hexagonal mesh and three in the
octagonal mesh, just one 1/O interface for each boundary register bank is needed
since only one value is written to any specific register bank during the execution of
an instruction. This is a result of using SIMD broadcast instructions and relative
addressing of the register banks.

The Brown Systolic Array

As mentioned above, the Brown Systolic Array is a working implementation of a
linear SSR machine. Its original purpose was to provide a programmable string
comparison co-processor suitable for the Human Genome Project, which is ana-
lyzing the three billion nucleotides of human DNA [4]. The need for inexpensive
yet powerful hardware for this project is clear, and B-SYS is well suited to the
task of performing many different comparison algorithms for the computational
biologist. As a side advantage, B-SYS (being programmable) is able to perform
any combinatorial problem suitable for a linear systolic array.

The architecture of an array segment is shown in Figure 3. As can be seen,
each 8-bit functional unit has local flags (8) and buffers as well as access to two 16-
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Figure 3: Segment of the B-SYS array.

word register banks via complementary 8-bit switches. A context flag can control
conditional instruction execution. The B-SIM behavioral simulator (with both
TEX snapshots and array animation using the Tango system [5]) proved crucial
for algorithm development and early evaluation of this architecture.

The fully custom Brown Systolic Array chip was designed using Berkeley’s
Magic design suite and the COSMOS simulator [6, 7]. The 86-pin, 6.9 mmx6.8 mm
chip was tabricated by MOSIS using a 2 pm CMOS process in May, 1990.

As is illustrated by the floor-plan (Figure 4), the B-SYS chip contains 47 func-
tional units, each layed out with its west register bank (identical to the structure
shown in the expanded processor) and one additional register bank. Each row of
the chip has its own control circuitry, including a finite state automata (FSA) for
control signal generation and two decoders, one for the 16-element register banks
and one for the eight flags. Also visible are row buffers for the 16 bits of function
information associated with each instruction.

Because of the simplicity of the SSR architecture, the 1730 transistors of the
functional unit and register bank pair are densely packed in a 999 ym x 607 pm
cell. The modestly sized chip with 47 functional units has 85000 transistors. A
larger die with a smaller technology could fit well over 500 functional units and
register banks on a single chip.

Because sending information on and off chip is relatively slow, it is not practical
for end functional units to read operands from adjacent chips. For this reason, the
register bank shared by the rightmost processing element of one chip (block 47
in Figure 4) and the leftmost of the next (block 1) is duplicated. This performs
the function of a write-through cache so that chip I/O does not take place during
the loading of instruction operands. Whenever a result is written to the right,
the value is sent both to the shadow register bank (above the B-SYS logo) and
off-chip. At the same time, an input is received (either from an adjacent chip or
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Figure 4: Floor-plan of the Brown Systolic Array.

the board) for the leftmost register bank (part of block 1 in Figure 4).

The B-SYS ALU is loosely based on the OM1 ALU described in Mead and
Conway [8]. Logic for calculating arbitrary functions computes the propagate
and generate signals which control the Manchester carry chain. The carry chain
requires approximately 4 ns to evaluate.

The 38-bit B-SYS instruction word is shown in Figure 5. Fight bits specify the
3:1 function of the result logic block (C'R) and four bits specify 2:1 functions for
each of the carry logic blocks (C'GG; C'P). Register bank addresses require five bits
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Figure 5: B-SYS Instruction word.
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Figure 6: B-SYS clocking for sequence comparison

to specify a register bank (east or west) in addition to the register number (A, B,
R), while flag addresses require three bits (C', 7). A single bit indicates whether
or not the context flag should be obeyed (!).

B-SYS’ 84 pins are grouped into five categories: clocking (4), instruction (38),
data (9 for each side, including a control line for masking), diagnostic output (6),
and source voltages (12). The remaining 6 pins are unused. B-SYS is controlled
with three clocks (K1-K3) and an initialization signal (init). The clocks corre-
spond to decoding the memory address and precharging memory (or evaluating
the carry chain), accessing the register bank, and clearing the register selection.
Figure 6, a transcription of logic analyzer data, illustrates clocking on the proto-
type. Lowering the init signal sends the chip through the three phases of reading
two operands (CA and CB) and writing the result (CRI). The majority of time
is spent copying the instruction to the board, as indicated by the IOW line. The
decay of B-SYS output from the previous instruction in 2ms can also be seen.

Timing simulation produced the conservative estimate that an entire instruc-
tion evaluation could be accomplished within 320ns (20ns clocks with various
times between pulses). The chips were tested with a Hewlett Packard 16500A
logic analysis system. The simplicity of the SSR architecture led to a fast testing
scheme. Of the twenty-four chips delivered, ten performed satisfactorily at 400 ns
per instruction (and could be run at faster speeds), though the complete array is
run at a slower speed (Figure 6). The remaining chips suffered assorted fabrication
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Figure 7: Many-against-one sequence comparison.

defects which were individually pinpointed to specific rows, processing elements,
and bits.

A wire-wrap ISA board buffers instructions between the B-SYS chips and the
Intel 80386 (25 MHz) host. Each instruction requires three 16-bit ISA I/O bus
cycles (Figure 6); this instruction transfer time dominates the prototype’s 108
MOPS performance. Simple board modifications could increase the array speed
to 200 MOPS, while a truly sophisticated board with its own controller could run
the B-SYS array at full speed, increasing performance to 400 MOPS, or perhaps
even closer to the chip’s maximum of 3.3 MOPS per functional unit (1.8 GOPS
for a 470-element array).

B-SYS was evaluated with a one-against-many sequence comparison algorithm
appropriate to the Human Genome Project. The B-SYS prototype performs 470-
character one-against-many sequence comparison 81 times faster than its 80386
host. Figure 7 compares B-SYS to several systolic co-processors and supercom-
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puters. P-NAC, Splash, Cray-2, and Trace timings are extrapolated from exper-
imental 100 x 100 data [9]. CM-2 timings are from experimental data. P-NAC
is a single-purpose nMOS co-processor. Splash is a 2-board linear array of field-
programmable gate arrays. B-SYS* is a proposed 32-chip (1504-element) board
with its own controller. The Splash programmable hardware system is twice as
fast as B-SYS™ when n < 400, but the higher processor density on the single-
board B-SYS* system lets it perform 1.8 times faster than Splash when n > 1500.
With a redesigned 500-processor B-SYS chip, a 32-chip (16000-element) B-SYS
system would perform 2500 times faster than P-NAC and 20 times faster than
Splash when n > 16000.

Splash is the only programmable competitor to B-SYS* but it does not feature
full or simple programmability; even slight algorithmic changes require complete
reconfiguration, often lowering the systolic cell density. For example, B-SYS per-
formance will not change for 7-bit ASCII characters, while Splash cell density will
drop by a third, moving Splash’s bend between O(n) and O(n?) performance to
n = 250 and increasing the performance factor difference to 2.7 when n > 1500.
Other variations, such as the affine cost functions used by computational biolo-
gists, will produce even starker contrasts.

Ease of programmability is also a concern. For this problem, P-NAC requires
no lines of code, B-SYS requires tens of lines of code, the Connection Machine and
other supercomputers require slightly more lines, and the Splash system requires
nearly 3000 lines of code. With the development of programming tools for the
automatic support of systolic streams, the programming and testing of new B-SYS
applications requires little additional time beyond that required for selection of
an appropriate systolic algorithm [10].

Conclusions

The Brown Systolic Array features regular interconnections for systolic data flow;
SIMD broadcast instructions for control; shared registers for communication and
computation; and data streams for the ease of programming. The working 470-
processor prototype provides over 100 MOPS of systolic co-processing power.

Programs for several more B-SYS applications have been generated, including
data compression, sequence comparison variations, and graph algorithms [10]. The
power of B-SYS is its simple and efficient programmability and high concentration
of processing elements. A more sophisticated co-processor board board could
increase the Brown Systolic Array’s performance to a limiting 5 GOPS for a 32-
chip board, or even 50 GOPS with a redesigned, 500-element B-SYS chip. The
Systolic Shared Register architecture forms a strong basis for the construction of
small and powerful systolic co-processors.
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