FPGA Implementation of Systolic Sequence Alignment*

Dzung T. Hoang'

Department of Computer Science
Brown University, Providence, Rl 02912, USA
email: dth@cs.brown.edu

Daniel P. Lopresti?

Matsushita Information Technology Laboratory
182 Nassau Street, Princeton, NJ 08542-7072, USA
email: dpl@mitl.com

Abstract

This paper describes an implementation of a novel sys-
tolic array for sequence aignment on the SPLASH re-
configurable logic array. The systolic array operatesin
two phases. In the first phase, a sequence comparison
array due to Lopresti [2] is used to compute a matrix
of distances which is stored in local RAM. In the sec-
ond phase, the stored distancesare used by thealignment
array to produceabinary encoding of the sequencedign-
ment. Preliminary benchmarks show that the SPLASH
implementation performs several orders of magnitude
faster than implementation on supercomputers.

1 Introduction

The work presented in this paper was begun during
one co-author’s summer internship at the National Can-
cer Ingtitute's Laboratory of Mathematical Biology in
Fredrick, Maryland. The goa was to develop genetic
sequence analysis algorithmsfor the SPLASH reconfig-
urable logic array [3]. A systolic sequence compari-
son agorithm that computes the edit distance between
a pair of sequences had already been implemented on
SPLASH [4]. Certain applications of interest to biol-
ogists at the laboratory, such as multiple aignment of
genetic (DNA and RNA) sequences, however, require
more than just the edit distance: a more informative
analysis of the similarity, or homology, of the sequences
in the form of an alignment is required. In this paper,
we describe an implementation of a systolic algorithm

*A longer version of this paper can be foundin [1].

t Supported during Summer 1991 by an NIH Summer Internship
and afterwards by an NSF Graduate Fellowship.

t supported by NSF grant M1P-9020570.

for computing sequence alignments on SPLASH. Prior
to our work, we know of no systolic array for computing
sequence alignments.

1.1 Sequence Comparison and Alignment

Given a source sequence S = s182 - - - S5, and a target
sequence T' = t4t5 - - - 1, the edit distance between S
and 7" is defined to be the minimum cost of transforming
S to 1" through a series of thefollowing edit operations:
deleting a character, inserting a character, and substitut-
ing one character for another?.

In some applications, such as approximate multiple
sequence comparison [5] and protein folding [6], in ad-
dition to the edit distance, we need to know the series
of edit operationsthat leads to a minimum cost transfor-
mation. A standard way to represent the transformation
is with an alignment. In an alignment, the characters
of the source and target sequences are arranged in a
matrix with two rows. The source sequence, possibly
with embedded null characters, ' —’, isplaced in thefirst
row. Similarly, the characters of the target sequence
are placed in the second row. The matrix is anayzed
column-wise. A column containing [f] indicates dele-
tion of the character «; a column containing [;] in-
dicates insertion of the character y; and a column [;]
indicates subgtitution of y for . A column consisting of
two nullsisnot allowed. Hereisan example of an aign-
ment: [2 & 2 & I 4 2 ¢ ¢&] Foragiven
cost function, there may be more than one minimum-
cost alignment. The aignment algorithm presented here

1A different set of edit operationsmay bedefined to suit aparticular
application. For example, in text processing, a swap of two adjacent
characters may be considered an edit operation. However, a different
agorithm than presented here may be required to accomodate these
additional edit operations.

A G A CTAG GG
i*%ﬂﬁﬁ‘ﬂ*“?%
4

X XA /? XA XA
N

O >» >» 4 0 0 -+

4 4 +4<+5+6
4 \4« i\ 4
SINSE RS
SN i\;
SRV N

Figure 1: Dynamic programming table with minimiza-
tion pointers

computes one such aignment.

1.2 Dynamic Programming

The edit distance can be computed sequentialy with a
well-known dynamic programming agorithm [7,8] in
O(mn) time. Let S = s1s283- - - s, be the source se-
quence, 1" = t1tat3 - - - t,, bethetarget sequence, and d; ;
betheedit distance between the subsequences sys, - - - s;
and t1to - - ~t]'. Then

doo = 0,
di—10+ Caer(s;), 1<i<m,

S
o
|

doj—1+ Cinstyy, 1< 7 <m,
and
di—1j + Caei(si),
dij = min & dij1+4 Cinst;),
i<ign | dic1j-1+ Csub(sit;)-

Here cgei(s,) isthecost of deleting s;, ¢ (1) iSthecost
of inserting ¢;, and c,ys(s,,¢,) ISthe cost of substituting
t]' for S;.

An aignment can be constructed by creating pointers
to indicate the minimization choices when evauating
the dynamic programming recurrence. An example dy-
namic programming table augmented with pointers is
shown in Figure 1. By tracing a path from the lower-
right corner to the upper-left corner, we can construct
an dignment in reverse. The bold pointersin Figure 1
show the path that correspondsto theaignment givenin
aprevious example.

2 SPLASH Reconfigurable Logic
Array

SPLASH isareconfigurablelogicarray devel oped at the
Supercomputer Research Center (SRC) as a coprocessor
card for the Sun VME bus. The SPLASH board con-
tains 32 Xilinx XC3090 field-programmabl e gate arrays
(FPGA) [9] with local connections to 32 1M-bit (128K
by 8) static RAM chips. The FPGA's are connected lin-
early in a ring with input coming from a 32-bit FIFO
gueue connected to chip 0 and output going to a 32-bit
FIFO queue connected to chip 31. A RAM chip iscon-
nected between each pair of adjacent FPGA chips and
can be accessed by either FPGA. The data path connect-
ing the FIFO'sto the array consists of 36 unidirectional
lines, 32 for data and 4 for control signals. Adjacent
FPGA's, except for chips 0 and 31, are joined by a 68-bit
programmable bidirectional bus, which shares connec-
tions to the local RAM. Chips 0 and 31 are connected
with a 35-bit data path. This “wrap-around” connection
allows data flow through the array in either direction.

At the heart of the SPLASH board are the Xilinx
XC3090 FPGA's. Each FPGA contains 320 configurable
logicblocks(CLB'’s) arranged ina 20 x 16 grid and sur-
rounded by 144 input/output blocks (IOB’s). The 144
IOB’s surrounding each XC3090 FPGA provides con-
nectionsto the control bus and programmable intercon-
nections between adjacent chips and local RAM. Each
OB can be configured as either an input port, an output
port, or a bidirectional input/output port, with optional
latch or flip-flop operation. The programmability of the
|OB’sdlowsfor flexibility in the interchip connections.
For example, when the local RAM is not needed, it
can be disabled and the IOB’s connected to the RAM’s
address and data lines can be used for communication
between adjacent FPGA's.

The reader is referred to [3] for a more complete de-
scription of SPLASH.

Using the FPGA technology in SPLASH, we were
ableto rapidly prototypethe systolic array without hav-
ing to construct any additional hardware. Thisapproach
also has advantages over software-only simulations in
that it allowed us to detect and correct race conditions
present in early prototypes.

3 Systolic Array for
Alignment

Sequence

Our systolic array for sequence aignment operates in
two phases. In the first phase, the systolic array oper-
atesin sequence comparison mode to compute entriesin
the dynamic programming table and store them in local
RAM. In the second phase, the stored table is used to
construct an alignment with a marker passing systolic

Target Character
Traveling Distance

Stored Distance
0 @

— |:| — |:| i

L

Source

@\

[~d®
|

f
i

©
[]
[]

¢
JESe
|
;

=

Figure2: Systolic array for sequence comparison

To I?AM

MemDstOut

SrcDstin —»
TgtDstOut <—

Finite State [SrcDstOut
Machine | TgtDstIn
Match

|
Srcl$\lull I T9t$ ull

— SrcChrOut
«— TgtChrin

SrcChrin —
TgtChrOut «—

Character
Comparator

Figure3: Block diagram of the sequence comparison PE

array.

Since the data path to loca RAM is 8-bits wide,
for convenience, eight processing el ements (PE's) were
placed on each FPGA chip, except for X0 and X31,
where only four PE's were placed to leave room for
I/O logic. This puts a total of 248 PE's on SPLASH,
allowingfor alignment of sequences upto 123 in length.

3.1 Phase One: Dynamic Programming

The dynamic programming recurrence can be mapped
onto alinear systolicarray that computes asingle antidi-
agona of the dynamic programming table at each step,
with each PE in the array computing the distances along
one diagona. The resulting systolic array (Figure 2)
and its implementation on SPLASH is described in [4].
The array ismodified to save the dynamic programming
table in local RAM. The first phase ends just after the
edit distance, d,, ,,, has been computed.

Figure 3 shows a block diagram of a sequence com-
parison PE. Each PE isimplemented in 13 CLB's, eight
for the character comparator and five for the finite state
machine.

dn, -2 3 dn— n—1 3 dn—Z,n

? dn7 -1 % dn—l,n
o N
I
gl (61 e (67 e [L
ke . o] |- o3t
Maker Flag—() () (@ () @O

Figure 4: Systolic array for generating alignment

3.2 Phase Two: Marker Passing

The pointer traceback procedure for constructing an
alignment, as described earlier, is performed systoli-
caly in the second phase. We can think of the trace-
back as a marker passing process in which the marker
hopsalongsapath created by the minimization pointers.
Using the same antidiagonal mapping of the dynamic
programming table to PE's as in phase one, we seek
to move the marker from the lower-right corner of the
table to the upper-left. Following a horizontal pointer
would correspond to moving the marker left one PE.
Similarly, following a vertical pointer corresponds to
moving the marker right one PE. Findly, followingadi-
agonal pointer corresponds to keeping the marker in the
same PE. Where there are multiple pointers, oneis arbi-
trarily chosen. In phase one, the minimization pointers
were never actually computed. However, we can de-
duce the pointers originating from position (¢, j) given
diyj, di_]_’j, di_]_y]'_]_, Si, and tj. Therefore, by reading
back the distances saved in local RAM and streaming
the source and target sequences backwards through the
array, the minimization pointers, and thusthe movement
of the marker, can be computed. The agorithm out-
lined above is redlized by the systolic aignment array
diagrammed in Figure 4.

The sequence alignment PE is diagrammed in Fig-
ure 5. The sequence alignment array uses the same
character comparator in the sequence comparison array.
The additional finite state machine is implemented in
eight CLB’s, bringing thetotal number of CLB’s per PE
for both phasesto 21.

Since at any step, the marker can move at most one
PE from its current position, the marker can be regis-
tered on a systolic stream that moves across two PE's
at each step. The output of the marker stream encodes
the movement of the marker. Two consecutive 1's in-
dicate that the marker moved right. Two 0's between
successive 1's indicate that the marker moved left. A
pattern of 10101 indicates that the marker did not move.
The binary pattern exiting the marker stream can be de-
coded into a series of edit operations by a simple finite

datai_l datai+1

data;

— MarkerStrmOut
«— SeedInRight

— SeedOut

«— MarkerInRight
— MarkerOutRight

Match

o
Srcl¢\lull T Tgt$ ull

+— SrcChrOut
— TgtChrin

MarkerStrmin —
SeedOut +—
SeedInLeft —»
MarkerOutL eft <—
MarkerInLeft —

Finite State
Machine

SrcChrlin <—
TgtChrOut —|

Character
Comparator

Figure 5: Block diagram of aignment PE

state automaton that counts the number of 0's between
successive 1's.

4 Benchmarks

For timing, we performed 10,000 aignments of 100-
long sequences on SPLASH. It took 0.50 seconds to
initialize the SPLASH array and 3.2 seconds to run the
alignments. Normaizing for 100 aignmentsgives0.032
seconds. For comparison, the benchmarks for 100 com-
parisons of 100-long sequences found in [4] are summa-
rized in Figure 6. We have not completed benchmarking
sequence alignment on conventional computers and use
these results for preliminary comparison. Computing
an alignment would require additional processing and
therefore take additional timein most implementations.
Even including initialization time, the SPLASH imple-
mentation performs at | east an order of magnitude better
than implementations on commercial supercomputers,
which, as tested, compute only the edit distance.

5 Conclusion

A systolicarray for sequence alignment is presented and
its implementation on SPLASH is described. Prelimi-
nary benchmarks show that the SPLASH implementa-
tionissevera ordersof magnitudefaster thanimplemen-
tations on supercomputers costing many times more.

System Time Speed-Up
SPLASH 0.020s 2,700
P-NAC 091s 60
Multiflow Trace 37s 14
Sun SPARCstation 1 5.8s 9.3
Cray 2 6.5s 8.3
Convex C1 89s 6.0
DEC VAX 8600 3ls 1.7
Sun 3/140 48s 11
DEC VAX 11/785 54s 1.0

Figure 6: Benchmarks of 100 comparisons of 100-long
sequences [4]

References

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]

D. T. Hoang, “A Systolic Array for the Sequence
Alignment Problem," Brown University, Providence,
RI, Technical Report CS-92-22, 1992.

R. J. Lipton and D. P. Lopresti, “A Systolic Array
for Rapid String Comparison,” in 1985 Chapel Hill
Conferenceon VLS, H. Fuchs, Ed. Rockville, MD:
Computer Science Press, pp. 363-376, 1985.

M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R.
Minnich, D. Sweely and D. Lopresti, “Building and
UsingaHighly Parallel ProgrammableLogic Array,"
Computer, 24, no. 1, pp. 81-89, January 1991.

D. P. Lopresti, “Rapid Implementation of a Genetic
Sequence Comparator Using Field-Programmable
Logic Arrays," presented at Advanced Research in
VLS| Conference, Santa Cruz, March 1991, Invited
paper.

B. A. Shapiro, “An Algorithm for Comparing Mul-
tiple RNA Secondary Structures," Comput. Applic.
Biosci., 4, no. 3, pp. 387-393, 1988.

H. Margdit, B. A. Shapiro, A. B. Oppenheim and
J. V. M. J., “Detection of Common Motifsin RNA
Secondary Structures,” Nucleic Acids Research, 17,
no. 12, pp. 4829-4845, 1989.

S. B. Needleman and C. D. Wunsch, “A Genera
Method Applicable to the Search for Similaritiesin
the Amino-Acid Sequence of Two Proteins," Journal
of Molecular Biology, 48, pp. 443-453, 1970.

R. A.Wagner and M. J. Fischer, “ The String-to-String
Correction Problem,” J. Assn. Comput. Mach., 1,
pp. 168-173, 1974.

Xilinx, Inc., The Programmable Gate Array Data
Book. SanJose, CA, 1991

