
PICTOGRAPHIC NAMING

Daniel P. Lopresti and Andrew Tomkins
Matsushita Information Technology Laboratory

182 Nassau Street
Princeton, NJ 08542-7072

dpl@mitl.com
andrewt@cs.cmu.edu

609-497-4600

ABSTRACT

We describe pictographic naming, a new approach
to naming for pen-based computers, in which
filenames are pictures rather than ASCII strings.
Handwriting recognition (HWX) of a name is de-
layed as long as possible. We show that most
file system operations can be accomplished with-
out HWX. Since pictographic names are sets of
strokes, they can never be reproduced exactly so
name lookup becomes an approximate matching
problem. We give efficient algorithms for this
problem, and present results for name matching
in English and Japanese.

KEYWORDS: handwriting recognition, naming paradigms.

INTRODUCTION

Pen-based computers are becoming increasingly prevalent.
Many users find that interacting with a computer using a pen
is more familiar and less intimidating than using a keyboard.

We believe that replacing a keyboard by a pen should cause
a basic change in the philosophy of naming. Traditionally,
a name is a short string of alphanumeric characters with the
property that it can be easily stored, recognized and remem-
bered. However, the current approach to specifying names
using a pen has received widespread criticism: the user writes
the name letter-by-letter into a comb or grid and the computer
tries to perform HWX on each character. The HWX error
rates are high enough that the user must often pause to re-
draw an incorrectly recognized letter, sometimes multiple
times, without knowing why the algorithm is making mis-
takes. Critics of pen-based computing claim that many users
find the HWX too frustrating to use.

Instead, we propose extending the space of acceptable names
to include arbitrary hand-drawn pictures of a certain size,
which we call pictographic names. The precise semantics of
the pictures are left entirely to the user. Intuitively, the major
advantages of this approach are the ease of specification and
the larger namespace. A disadvantage is that people cannot
be expected to recreate perfectly a previously drawn picture,

so search techniques must deal with approximate (“fuzzy”)
matches. The motivation behind pictographic naming is to
allow the user to perform the name recognition wherever
possible, since he or she is far more skilled at this than the
computer. This leaves the user free to choose complex and
varied pictographic names, but forces the operating system
to provide additional functionality so the user will be able to
find the names at a later time.

Note that in the common case in which the user names most
objects with handwritten English words, the matching prob-
lems becomes a small-dictionary online handwriting recogni-
tion problem. Similarly, if the user’s natural choice of names
is Chinese or Japanese symbols, the matching problem be-
comes a recognition problem over those alphabets.

Written words, sketches, non-ASCII characters, cursive
script, symbols, Greek or Cyrillic letters, Kanji or other
Eastern characters, or any combination of these are all valid
names, as long as the user can recognize what he or she drew
at a later time.

PICTOGRAPHIC NAME LOOKUP

Graphical User Interfaces have demonstrated that in many
situations users can look up files with a mouse and a direc-
tory browser, without having to touch the keyboard. This
mode of file searching is natural for pictographically named
filesystems. Nonetheless, any successful system must allow
the user to search for a file by specifying the name. Many
users today like the speed and power of this direct approach.
But perhaps more importantly, as filesystems grow and users
manage increasingly large amount of data, visual searches
will become increasingly inefficient.

As we noted above, in a pictographically named system, the
new name will not be identical to the old name, so the oper-
ating system must be capable of performing an approximate
match to recognize the name. There are several characteris-
tics of this problem that set it apart from traditional recogni-
tion tasks:

1. Our directories are much smaller than databases used in
typical word recognition tasks.

2. We have access to no trainingdata — each word has been
drawn precisely once, and new words must measure
their similarity to each existing word in the directory.

3. The system must be capable of searching a directory
without appreciable delay.

4. An exact match is not the only measure of success —
if the system can present the user with a small set of

“guesses,” one of which is the correct filename, the user
will be able to choose easily.

We have analyzed several algorithms for this problem, in-
cluding two traditional techniques: Hidden Markov Models
with and without Vector Quantization, and Neural Networks.
However, we have found that a new algorithm described be-
low performs markedly better than these other techniques.
For space reasons, please see [1] or contact the authors di-
rectly for more details. We present an overview of the algo-
rithm, and a brief statement of our results.

THE WINDOW ALGORITHM

If we knew that the same picture drawn twice by the same in-
dividual would tend to line up point-for-point, then we could
measure similarity between pictures by adding the distances
between corresponding points. Unfortunately, for two large
pictures, the points are not likely to correspond so closely.
We follow two procedures to overcome this difficulty. First,
we compress the curves down to a small number of points.
Second, we allow the two curves to “slide” along one another.
Given two sequences � and � , each resampled to contain �
points, and an integer � representing the maximum “slide”
we are willing to allow between the images, define the dis-
tance � between them by:

��� ��� �
	��
� � � 1

����� ��� ��� ��� � � � � � ��� � 	��
We assume that the point-wise distance function � returns 0
for the boundary conditions in which � �"!$#%'& 1 ()(�+* . The
values for � � are a parameter — we have been using � � �1 ,-�/. !-./� 1 	
This procedure is similar to the dynamic programming “tem-
plate matching” algorithms used in character recognition
([2]). However, it is computationally more efficient, and
allows us to use the fact that given two similar sequences �
and � , we would expect some similarity between � � and all
of 0
� � � 1

� � � � � ��� 1 1 .
Results for the windowing algorithm are given in Figure 1.
Each of four subjects created a database of sixty names. The
first database is in Japanese; the last three are in English.
Each subject then redrew each of the sixty names three times
to create a 180-word test set. For each element of the test set,
we used the Windowing algorithm to select and rank the eight
most similar-looking words in the database. On average, this
operation took 1 , 3 of a second to complete for each element
of the test set (on a mono NeXTStation running at 40MHz
with a 68040). The table shows how often the correct element
of the database was ranked in these eight choices (“Ranked
In Top 8”) and how often the correct element of the database
was ranked first among the eight choices (“Ranked First”).

CONCLUSIONS

We believe pictographic naming is an attractive new
paradigm for pen-based computing, and that our window-
ing algorithm provides a viable solution to the name-search
problem. There are many situations in which an effective
pen-based naming scheme like pictographic naming might

Success percentages of the Windowing algorithm
Database 1 2 3 4 All
Ranked First 97% 83% 94% 88% 90.5%
Ranked In Top 8 100% 95% 99% 98% 98%

Figure 1: Evaluation of the Windowing Algorithm

be preferred to standard text-based approaches, even if a
keyboard is present. Some of these are summarized below:2 Certain languages are difficult to render using just a key-

board, and certain applications require the simultaneous
use of multiple alphabets.2 Keyboards are more expensive and more cumbersome
than pens, and require modification in inhospitable en-
vironments (in deserts, underwater, etc.)2 Many people have had years of experience using a pen,
but little or no training using a keyboard.2 Pictographic names naturally support language-
independent systems for multilingual communities, or
text-independent systems for young children or illiterate
adults.

In the applications we have created, users name documents
pictographically, and retrieve documents via a pen-based
browser using approximate matching when required. The
power of our browser is comparable to that of mouse-based
interfaces to standard operating systems. However for pen-
based computing, documents can now be stored and retrieved
without HWX. We believe that, while HWX will always be
a critical component of pen-based systems, deferring or even
eliminating the recognition when possible will improve the
effectiveness of these systems.

Perhaps the most appealing aspect of this approach is that
exactly the same code is used for any application domain.
We have tested English and Japanese script, with similar
accuracy and no changes to any parameters of the system.

In the future, we plan to address the following questions:2 How can pictographic search be improved to allow gen-
eral matching of parts of names, stroke-order indepen-
dence, and writer independence?2 How do users, both expert and novice, react to pic-
tographic names as opposed to text names, and what
added functionality do they require to be able to use
such systems effectively?

REFERENCES

[1] Lopresti, D. P. and Tomkins, A. Pictographic Naming.
No. MITL-TR-21-92, MITL, August 1992.

[2] Tappert, C. C., Suen, C. Y., and Wakahara, T. The
State of the Art in On-Line Handwriting Recognition.
IEEE Transaction on Pattern Analysis and Machine
Intelligence, vol. Volume 12, No. 8 (August, 1990),
pp. 179–190.

