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Abstract

Pen-based computers and personal digital assistant’s (PDA’s) are growing in
popularity. An important issue that arises when ink is treated as a first-class
datatype concerns the searching of large quantities of pen-stroke data. In this
paper, we examine the problem of finding all occurrences of an ink pattern in
a longer ink text. We present an algorithm based on a dynamic programming
technique, and evaluate its performance under a variety of circumstances. Our
results show that ink can be searched effectively. They also raise new questions
in pen computing and the manipulation of ink data.

1 Introduction

Pen-based computers and personal digital assistants (PDA’s) are a synthesis of new
hardware and software technologies. As such, they raise many systems-level issues,
including the possibility of new paradigms for human-computer interaction. In two
earlier papers, we presented a philosophy we have come to call “Computing in the Ink
Domain” [4, 5]. Here, the need for traditional handwriting recognition (HWX) is often
deferred and sometimes even eliminated. Instead, much of the functionality that users
require is realized by treating ink as a first-class datatype.

One of the most important issues that arises under this model concerns the searching
of large quantities of pen-stroke data. While efficient, well-known techniques exist for
matching text strings exactly (e.g., Knuth-Morris-Pratt, Boyer-Moore), approximately
(e.g., Levenshtein or edit distance), and with wild-cards (e.g., Unix grep), there is no
comparable body of work for the problem of matching ink “strings.” In this paper, we
examine a particular instance of this problem which can be stated as follows: given an
ink pattern and a longer ink text, search through the text and find as many occurrences
of the pattern as possible without overwhelming the user with false hits.

1Presented at the Fourth International Workshop on Frontiers of Handwriting Recognition, Taipei,
Taiwan, December 1994.



2 Definitions

We view ink as a sequence of time-stamped points in the plane:

mk = (21,y1,t1), (22,92, t2), - - -, (Tky Yy Tk (1)

For two ink sequences P (the pattern) and T (the tezt), the ink search problem consists
of determining all locations in 7" where P occurs. This differs significantly from the
exact string matching problem in that we cannot expect perfect matches between the
symbols of P and T'. Ambiguity exists at all levels of abstraction: points can be drawn
at slightly different locations; pen-strokes can be deleted, added, merged, or split;
characters can be written using any of a number of different “allographs,” etc. Hence,
approximate string matching is the appropriate paradigm for ink search.

A standard model for approximate matching is provided by edit distance, also known
as the “k-differences problem” in the literature. In the traditional case [11], the follow-
ing three operations are permitted: (1) delete a symbol, (2) insert a symbol, and (3)
substitute one symbol for another. Each of these is assigned a cost, cgel, Cins, and coup,
and the edit distance, d(P,T'), is defined as the minimum cost of any sequence of basic
operations that transforms P into 7. This optimization problem can be solved using a
well-known dynamic programming algorithm. Let P = p1ps ... pm, T = t1t5...1,, and
define d; ; to be the distance between the first « symbols of P and the first ; symbols
of T. Note that d(P,T") = d,» n. The initial conditions are

doo = 0
dio = di—1,0+ Caer(ps) 1<2<m (2)
do’j = dO,j—l + cins(tj) 1< _] <n

and the main dynamic programming recurrence is

di1;  + caa(p:)
di,j = min di,j—l + Cm_g(tj) 1 S ) S m, 1 S .7 S n (3)
di_1’j_1 -+ csub(pi7 tJ)

When Equation 3 is used as the inner-loop in an implementation, the time required is
O(mn), where m and n are the lengths of the two strings.

As it stands, this formulation aligns the two strings in their entirety. The variation
we use for ink search is modified so that a short pattern can be matched against a longer
text. The initial edit distance is made 0 along the entire length of the text (allowing a
match to start anywhere), and the final row of the edit distance table is searched for
its smallest value (allowing a match to end anywhere). The initial conditions become

dop = 0
dio = di—1,0+ Caer(ps) 1<2:<m (4)
do; = 0 1< <n

The inner-loop recurrence (i.e., Equation 3) remains the same.
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Lastly, we must specify evaluation criteria. It seems inevitable that an ink search
algorithm will miss some true occurrences of P in T', and report false “hits” at locations
where P does not really occur. How can we quantify the success of an algorithm
under such conditions? The field of Information Retrieval concerns itself with a similar
problem in a different domain, and has settled on the following two measures [9]:

Recall The percentage of true matches that are reported.
Precision The percentage of reported matches that are in fact true.

It is desirable to have both of these measures as close to 1 as possible. There is,
however, a fundamental trade-off between the two. By insisting on an exact match,
the precision can be made 1, but the recall will undoubtedly suffer. On the other hand,
if we allow arbitrary edits between the pattern and the matched portion of the text,
the recall will approach 1, but the precision will fall to 0. For ink to be searchable,
there must exist a point on this trade-off curve where both the recall and the precision
are sufficiently high.

3 Approaches to Searching Ink

Ink can be represented at a number of levels of abstraction, as indicated in Figure 1. At
the lowest level, ink is a sequence of points. At the highest, it is text in a predetermined
character set (e.g., ASCII). Proceeding upwards in the hierarchy, some information is
lost, while a new representation is created that (hopefully) captures all that is relevant
from the lower level in a more concise form. So, for instance, it may be impossible
to deduce from the final word which allographs were used, or from the feature vectors
exactly what the ink looked like.

An ink search algorithm could perform approximate matching at any level of repre-
sentation. At one end of the spectrum, the algorithm could attempt to match individual
points in the pattern to points in the text. At the other extreme, it could perform full
HWX on both the pattern and the text, and then apply “fuzzy” matching on the re-
sulting ASCII strings (to account for recognition errors). Each level has its attendant
advantages and disadvantages.

The next section presents the primary contribution of this paper: an algorithm we
call ScriptSearch that performs matching at the level of pen-strokes. This approach
has the advantage of allowing us to do well against a broad range of handwriting,
including some so poor that it is effectively illegible. ScriptSearch also makes possible
the matching of strings with no obvious ASCII representation, including equations,
drawings, doodles, etc.

4 The ScriptSearch Algorithm

Figure 2 shows an overview of ScriptSearch, which consists of four phases. First, the
incoming points are grouped into strokes. Next, the strokes are converted into vectors
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v : : v

Matching Problem

Figure 1: Handwriting recognition stages and potential matching problems.

of descriptive features. Third, the feature vectors are classified according to writer-
specific information. Finally, the resulting sequence is matched against the text using
approximate string matching over an alphabet of “stroke types.” We now describe
each of the phases in more detail.

Stroke Segmentation. We have investigated several common stroke segmentation
algorithms used in handwriting recognition. Currently we break strokes at local y-
minima. Figure 3 shows a handwritten text sample, with the stroke segmentation
depicted in the lower half of the figure.

Feature Extraction. Rather than propose another new feature set, we have adopted
the one used by Rubine in the context of gesture recognition [8]. This particular feature
set, which converts each stroke into a real-valued 13-dimensional vector, seems to do
well at discriminating single strokes and can be updated efficiently as new points arrive.
Some of the features it incorporates include the length of the stroke, the total angle
traversed, and the angle and length of the bounding box diagonal.

Vector Quantization. In the VQ stage, the complex 13-dimensional feature space
is “quantized” into 64 clusters. From then on, we represent a feature by the index of
the cluster to which it belongs. Thus, instead of having to maintain 13 real numbers,
we need only keep six bits. This technique is common in speech recognition and other
related domains [2]. Quantization makes the remaining processing much more efficient,
and seeks to choose clusters so that useful semantic information about the strokes is
retained by the index.

We begin by collecting a small sample of handwriting from the user in advance.
This is segmented into strokes, each of which is converted into a feature vector v =<
v1,Va,...,v13 >L. We use this sample to calculate the average value, p;, of the 7t?
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Figure 2: Overview of the ScriptSearch algorithm.

feature, and use these averages to compute the covariance matrix 3 as defined by

Y = E(vi — pa)(vj — 5)] (5)

The main diagonal of 3, for instance, contains the variances of the features. We employ
Mahalanobis distance [10] defined on the space of feature vectors as follows:

[513 = o787 (6)

d(v,w) = |(v—v)lu (7)

With a suitable distance measure for the feature space, we can now proceed to
describe our vector quantization scheme. We cluster the feature vectors of the ink

CelQ e (bt
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Figure 3: Stroke segmentation example.



sample into 64 groups using a technique from the literature known as the k-means
algorithm [7]. The feature vectors of the sample are processed sequentially. Each
vector in turn is placed in the appropriate cluster, which is represented by its centroid,
the element-wise average of all the vectors it contains. A new vector is placed in
the cluster with the nearest centroid, as determined using Mahalanobis distance. The
resulting 64 clusters can be thought of as an alphabet of stroke types, and the feature
extraction and VQ phases can be viewed as a stroke classification process.

After these steps are completed, the text and pattern can be represented as se-
quences of quantized stroke types:

< stroke type 7> < stroke type 42> < stroke type 20> ...

Recall that P = p1p3...0m and T = t1t5. .. 1,; from now on, we shall assume that the
p;’s and t,’s are vector-quantized stroke types.

The operations just described can be computed without incurring significant over-
head from the Mahalanobis distance metric. First, note that the inverse covariance
matrix is positive definite. We perform a Cholesky decomposition to write:

yt=ATA (8)
The new distance simply represents a coordinate transformation of the space:
7Te 15 =5 T(AT Ao = (3T AT) - (A7) = v Tw (9)

where w = Av. Hence, once all the points have been transformed, we can perform
future calculations in standard Euclidean space.

Edit Distance. In the last phase, we compute the similarity between the stroke
sequence associated with the pattern ink and the pre-computed sequence for the text
ink. As noted previously, we use dynamic programming to determine the edit distance
between the sequences. The cost of a deletion or insertion is a function of the “size” of
the ink involved; this is defined as the length of the stroke type representing the ink,
again using Mahalanobis distance. The cost of a substitution is the distance between
the two stroke types in question.

We also add two operations to the three listed earlier: (4) split one symbol into
two, and (5) merge two symbols into one. These account for imperfections in the stroke
segmentation. We build a split/merge table that contains information of the form “an
average stroke of type o merged with an average stroke of type [ results in a stroke
of type «.” The cost of splitting stroke § into a pair of strokes a3 is a function of the
distance between § and merge(a, ) = v. We compute edit distance using these costs
and operations to find matches for the pattern in the text ink.

Again, recall that d;; represents the cost of the best match between the first ¢
symbols of P and a substring of T' ending at symbol ¢;. The recurrence, modified to



account for these new operations, is

di1,; +  caa(pi)
dij—1  + cins(tj)
d;j =min{ di_1;-1 + csun(Di, ;) l<ism,1<j<n (10)
dis1j-2 +  Coplit(Pi, tj-1t5)
di_g’j_1 +  Crmerge (pi—lpia tj)

As before, the computation takes time O(mn). If the pattern and text are long, this can
be appreciable. There exist, however, asymptotically faster algorithms for computing
edit distance, as well as parallel versions that are orders of magnitude faster than the
obvious sequential implementation [3].

5 Experimental Procedure

In this section, we describe our procedure for evaluating the ScriptSearch algorithm.
The two authors each wrote a reasonably large amount of English text drawn from Her-
man Melville’s famous novel Moby-Dick. We refer to these two datasets as “Writer A”
and “Writer B.” Table 1 presents some basic statistics.

‘ Text H Characters ‘ Words ‘ Lines H Pen Strokes H Style ‘

Writer A 23,262 | 4,045 625 34,560 || Cursive
Writer B 12,269 | 2,194 363 19,324 || Printed

Table 1: Summary of the ink texts used to evaluate ScriptSearch.

The authors then each wrote 30 short words and 30 longer phrases (2-3 words),
taken from the same passages of Moby-Dick. These served as our search strings, which

’ Table 2 provides details concerning this

we also refer to as “patterns” or “queries.’
data. Since ScriptSearch is writer-dependent (i.e., no attempt is made to account
for the natural variation in stroke-order from person-to-person), we were primarily

interested in matching patterns and text from the same writer.

Characters Pen Strokes
Patterns Min. ‘ Maz. ‘ Ave. || Min. ‘ Maz. ‘ Ave. Style
Writer A | Short 5 11 8 8 23 13 || Cursive
Long 12 24 16 23 45 30
Writer B | Short 5 11 8 9 26 15 || Printed
Long 12 24 16 23 41 29

Table 2: Summary of the ink patterns used to evaluate ScriptSearch.

The goal of the algorithm is to identify all the lines of the text that contain the
pattern. To establish our “ground-truth,” we started with an ASCII representation of



the text. We then annotated this with the locations of the line breaks that arose when
the text was handwritten. Using exact string matching, we found all occurrences of
the patterns in the ASCII text, and recorded which lines contained matches. We then
segmented our ink texts into lines using a straightforward approach, and associated
each stroke with a line number.

Using the ScriptSearch algorithm, we matched the ink patterns to the ink text
and, from the line segmentation information, determined the lines on which matches
occurred. Since the ground-truth ASCII text corresponded line-for-line to the ink text,
we could check to see which matches were missed, and which of the reported matches
were true. We used this data to compute the recall and precision of our ink search
procedure.

6 Results and Discussion

The results of an ink search can be formulated in two different ways. First, all hits
exceeding a fixed threshold can be returned. Recall and precision are then calculated
by determining the number of true matches that are found, and the number of reported
matches that are valid. Second, hits can be returned in ranked order. In this case,
precision is calculated as a function of recall by proceeding down the ranking and
determining the number of false matches above a certain recall point.

There is a relationship between these two formulations. If a “perfect” threshold
could be chosen in advance for each search, then a system that returns all matches
above the threshold would have the same precision as a ranked system. Thus, in some
sense, a ranked system represents an upper bound on performance. In contrast, a
thresholded system has the advantage that hits are returned as soon as they are found,
in sequential order, without having to wait for the entire search to complete. If ink
search is the first step in a multi-stage process, then thresholding may be unavoidable.
Hence, our analysis is in terms of both formulations.

Table 3 gives results for Writer A’s searches for a range of edit distance thresholds.
The table shows recall and precision values for each threshold, further broken down by
the length of the pattern. Table 4 presents the same information for Writer B. Note that
the choice of threshold is critical and, not surprisingly, a function of the pattern length.
This data suggests that the threshold should be determined dynamically based on the
pattern, and that length is a key criterion. If less than perfect recall is acceptable,
then ink appears to be quite searchable using a technique such as this. If it is not, the
user can expect to see up to 50 false hits for every true match, a scenario that would
undoubtedly lead to great frustration.

The performance of ScriptSearch when returning ranked data is shown in Table 5.
Note that ink appears to be far more searchable under this formulation. This is because
the process of generating a ranking automatically determines an optimal threshold for
each pattern (as opposed to using the same, predetermined threshold across multiple
patterns). This presentation also makes clear the fundamental difference between short
and long patterns; the latter can be searched with approximately two to four times



Edit Writer A

Distance Short Patterns Long Patterns All Patterns

Threshold | Recall ‘ Preciston | Recall ‘ Precision | Recall ‘ Precision
10 0.023 0.916 0.000 n/a 0.011 0.958
30 0.632 0.299 0.011 1.000 0.321 0.649
50 1.000 0.010 0.322 0.910 0.661 0.460
70 1.000 0.010 0.783 0.431 0.891 0.220
90 1.000 0.010 0.961 0.115 0.980 0.062
110 1.000 0.010 1.000 0.024 1.000 0.017

Table 3: Average recall and precision as a function of threshold for Writer A.

Edit Writer B

Distance Short Patterns Long Patterns All Patterns

Threshold | Recall ‘ Preciston | Recall ‘ Precision | Recall ‘ Precision
10 0.041 0.973 0.000 n/a 0.020 0.986
30 0.539 0.383 0.017 1.000 0.278 0.691
50 0.946 0.041 0.195 0.948 0.570 0.494
70 1.000 0.010 0.626 0.398 0.813 0.204
90 1.000 0.010 0.931 0.103 0.965 0.062
110 1.000 0.010 1.000 0.006 1.000 0.008

Table 4: Average recall and precision as a function of threshold for Writer B.

better precision at a given recall rate. For example, at 100% recall there is a 318%
difference between long and short patterns for Writer A, and a 380% difference for
Writer B. This confirms our intuition that more context (data) should result in a

better (tighter) search.

Writer A Patterns Writer B Patterns

Recall || Short ‘ Long ‘ All || Short ‘ Long ‘ All
0.2 0.494 | 0.983 | 0.738 || 0.493 | 0.826 | 0.659
0.4 0.431 | 0.973 | 0.702 || 0.440 | 0.814 | 0.627
0.6 0.349 | 0.917 | 0.633 || 0.272 | 0.721 | 0.496
0.8 0.268 | 0.873 | 0.571 || 0.217 | 0.681 | 0.449
1.0 0.215 | 0.684 | 0.450 || 0.179 | 0.681 | 0.430

Table 5: Average precision as a function of recall for Writers A and B.

We have also investigated the degree to which ScriptSearch is writer-dependent by
performing cross-writer searches. As expected, its performance is markedly worse in

this case; see [6] for further details.




7 Conclusions and Future Research

In this paper, we have presented a technique for searching through an ink text for
all occurrences of an ink pattern. Using recall and precision as figures of merit, our
pen-stroke matching algorithm performs quite well, especially when hits can be output
in ranked order. In the future, it would be interesting to investigate approaches that
treat ink at other levels of abstraction (recall Figure 1). Moreover, since the amount
of ink to be searched will undoubtedly grow as pen computers proliferate, it may be
important to consider sub-linear techniques that employ more complex pre-processing
of the ink text. Some of these are described in [1].

An intriguing extension of this work concerns searching languages other than En-
glish as well as non-textual ink. If the VQ classes are trained on a more general set
of strokes, it may be possible to run ScriptSearch on different alphabets, drawings,
figures, equations, etc. Finally, the issue of writer-independent ink matching remains
an important open problem.
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