Ink as a First-Class Datatype in Multimedia Databases

Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

Matsushita Information Technology Laboratory
Panasonic Technologies, Inc.

Two Research Way

Princeton, NJ 08540

USA

{aref, daniel, dpl, andrewt}@mitl.research.pa.nasonic.com

1. Introduction

In this chapter, we turn out attention to databases that contain ink. The methods and techniques
covered in this chapter can be used to deal effectively with the NOTES database of the Medical
Scenario described in the Introduction of the book. With these techniques, doctors would be able
to retrieve the handwritten notes about their patients, by using the pen as an input device for their
queries.

The pen is a familiar and highly precise input device that is used by two new classes of machines:
full-fledged pen computers (i.e., notebook- or desktop-sized units with pen input, and, in some cases,
a keyboard), and smaller, more-portable personal digital assistants (PDA’s). In certain domains, pen-
based computers have significant advantages over traditional keyboard-based machines, including the
following:

1. As notepad computers continue to shrink and battery and screen technology improves, the
keyboard becomes the limiting factor for miniaturization. Using a pen instead overcomes this
difficulty.

2. The pen is language-independent — equally accessible to users of Kanji, Cyrillic, or Latin alpha-
bets.

3. A large fraction of the adult population grew up without learning how to type and have no
intentions of learning; this will continue to be the case for many years to come. However, everyone
is familiar with the pen.

4. Keyboards are optimized for text entry. Pens naturally support the entry of text, drawings,
figures, equations, etc. — in other words, a much richer domain of possible inputs.

In Section 2. of this chapter, we consider a somewhat radical viewpoint: that the immediate
recognition of handwritten data is inappropriate in many situations. Computers that maintain ink
as ink will be able to provide many novel and useful functions. However, they must also provide
new features, including the ability to search through large amounts of ink effectively and efliciently.
This functionality requires a database whose elements are samples of ink.

In Sections 3. and 4., we describe pattern-matching techniques that can be used to search linearly
through a sequence of ink samples. We give data concerning the accuracy and efficiency of these
operations. Under certain circumstances, when the size of the database is limited, these solutions are
sufficient in themselves. As the size of the database grows, however, faster methods must be used.
Section 5. describes database techniques that can be applied to yield sublinear search times.

L Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

2. Ink as First-Class Data

For the most part, today’s pen computers operate in a mode which might be described as “eager
recognition.” Using handwriting recognition (HWX) software, pen-strokes are translated into ASCII!
as soon as they are entered; the user corrects the output of the recognizer; and processing proceeds
as if the characters had been typed on a keyboard.

It can be argued, however, that pen computers should not be simply keyboard-based machines
with a pen in place of the keyboard. Rather than take a very expressive medium, ink, and immediately
map it into a small, pre-defined set of alphanumeric symbols, pen computers could be used to
support a concept we call Computing in the Ink Domain, as shown in Figure 2.1. Ink is a natural
representation for data on pen computers in the same way that ASCII is a natural representation for
data on keyboard-based machines. An ink-based system, which defers or eliminates HWX whenever
possible, has the following advantages:

1. Many of a user’s day-to-day tasks can be handled entirely in the ink domain using techniques
more accurate and less intrusive than HWX.

2. No existing character set captures the full range of graphical representations a human can create
using a pen (e.g., pictures, maps, diagrams, equations, doodles). By not constraining pen-strokes
to represent “valid” symbols, a much richer input language is made available to the user.

3. If recognition should become necessary at a later time, additional context for performing the
translation may be available to improve the speed and accuracy of HWX.

The second point — ink is a richer representation language — deserves further discussion. An
important advantage of computing in the ink domain is the fact that people often write and draw
patterns that have no obvious ASCII representation. With only a fixed character set available, the
user is sometimes forced to tedious extremes to convey a point graphically. Figure 2.2 shows an
Internet newsgroup posting that demonstrates this awkward mode of communication. Contrast this
with Figure 2.1, which illustrates the philosophy of treating all ink patterns as meaningful semantic
entities that can be processed as first-class data.

2.1 Expressiveness of Ink

OQur intuition tells us that ink is more expressive than ASCII. To test this assertion, we conducted
an informal survey of the notebooks of a small number of university students. We asked each to
provide examples of their handwritten notes, and broke the pages into three distinct categories:

1. ASClII-representable. This includes straight text, as well as text employing simple “typesetting”
conventions such as underlining, etc.

2. Special character set. This includes symbols not found in standard ASCII, but sometimes present
in extended character sets, such as mathematical symbols ([, >, [[,--.), unusual typographic
symbols (4,8, /,1,—"—), etc.

3. Drawings. This includes all ink not falling into one of the first two categories.

The results of our survey, shown in Figure 2.3, suggest that an electronic “notepad” dependent on
converting all input to ASCII would be limiting for these users.

! For concreteness, we assume HWX returns ASCII strings, but the reader may substitute whichever fixed
character set is appropriate.

Ink as a First-Class Datatype in Multimedia Databases 3‘

5 faj)
2} .
g CZ/W/O CZ/MWO
— @ E e @ E <P
go| D o [N YAa WF
cd . o =l | . Z i
=) k)= ; ¢ k)= i ; ¢
g % —&{/Uj X) ’JO /03 X —J({/cj X) ’JQ }oj ©
E =) Uda Uda
o
% M«ﬂ [~ oif M«{ |~ oat A§< U.
g Text
[ad . =
\ —<> Ink Processing <
/)
. Handwriting o
» Recognition W
8 (HWX) aB o
E &i Y Y (A i
T et e
L35 2 (oot) T T
B © dx j =0 7
=& 0
ao dd
g ME it ASC |
o Text
- AN J
Traditional Pen Computing Computing in the Ink Domain

Figure 2.1. Traditional pen computing versus computing in the ink domain.

2.2 Approximate Ink Matching

Ink has the advantage of being a rich, natural representation for humans. However, ASCII text has
the advantage of being a natural representation for computers; it can be stored efficiently, searched
quickly, etc. If ink is to be made a “first-class datatype” for pen computers, it must be:

— Transportable. The ASCII character set made a specific (and somewhat arbitrary) set of 128
characters essentially universal. Standards like JOT [Sla93] are now being developed to make ink
data usable across a wide variety of platforms.

— Editable. Years of research and development have led to text-oriented word processors that are
both powerful and easy-to-use. We need similar editors for ink data. It should be as easy to edit
ink (e.g. copy, paste, delete, insert) as it is to edit ASCII text.

— Searchable. Computers excel at storing and searching textual data — the same must hold for
ink. In particular, it should be possible for the user to locate previously saved pen-stroke data by
specifying a query and having the computer return the closest matches it can find.

While these three properties are all of fundamental importance, the last, searchability, is a pri-
mary topic of this chapter. Since no one writes the same word exactly the same way twice, we cannot
depend on exact matches in the case of ink. Instead, search is performed using an approzimate ink
matching (or AIM) procedure. AIM takes two sequences of pen strokes, an ink pattern and an ink
database, and returns a pointer to the location in the ink database that matches the ink pattern as
closely as possible.

L Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

This is from memory, but the schematic below should work. ..

10uF, 63V
———————— O-=—===—===——=| | === —— ===]
| | |-=--- 22K----- |
[0 ZEE e a it
| | | |-=--- 22K----- |
————— O-=|--0----0----| | ======—————————————————-——————————--- § L
+ | |+ 10uF, A3W
& | ¢ R
I
R o B 1 Attt 1

Z: Zener diode (I used 15V I think)
C: 10uF tantalum 25V, bypassed with 10nF plastic £ilm

Figure 2.2. An example of ASCII “graphics.”

Number of Pages Percent
Data Set || ASCII | Special | Drawings || Non-ASCII
A 54 0 58 52%
B 10 9 12 68%
C 0 33 78 100%
D 14 3 18 60%

Figure 2.3. Informal survey of paper notepad users.

Such a procedure is a surprisingly general tool for ink-based computing. We now give several
examples to show how AIM can be used to provide a wide range of functionality to the user:

— Andrew writes a short note to Bill. Using AIM, Bill’s address is located in a database of past
addresses to which Andrew has sent mail. The message itself is compressed and sent to Bill to be
read as ink — full HWX of the message body is never performed. Indeed, Bill will do a far better
job of reading the message than current HWX algorithms, especially if it contains cursive script,
diagrams, or other non-ASCII symbols. Figure 2.4 illustrates this. Figure 2.2, on the other hand,
is an example of a message that would have been more simply and effectively communicated via
digital ink.

— Martha runs an application on her pen computer and names all of her documents using pen strokes.
In many cases, she finds her documents by browsing through the names — HWX is not necessary.
In other cases, she enters a query for which the system searches using AIM. This particular AIM
problem is made simpler by the fact that the query must only be matched against the current
database of filenames instead of a larger, more general database.

— Joe has an on-line discussion with Martha about a mathematical idea they have been considering.
Later, he wishes to retrieve the document. He enters one of the equations he recalls from the
conversation. The system searches through his pen-stroke data and finds a similar-looking sequence
of strokes, returning the page in question.

Thus, AIM is central to computing in the ink domain. Of course, we can think of approximate ink
matching as exactly the problem of searching a database in which the keys are pen-strokes. Thus,
we expect ink to become an important new form of multimedia data.

Ink as a First-Class Datatype in Multimedia Databases 5

B Eomy SE
B2 L7 &

Sea oo thace

H/?ZN{MJ

Figure 2.4. A sample ink e-mail message.

3. Pictographic Naming

We now consider an application in which AIM can be applied to provide necessary functionality,
allowing a traditionally text-based operation to be performed entirely using ink. The domain is that
of file names. Traditionally, a name is a short string of alphanumeric characters with the property
that it can be easily stored, recognized, and remembered. However, the current approach to specifying
names using a pen has received widespread criticism: the user writes the name letter-by-letter into a
comb or grid and the computer performs HWX on each character. Error rates are high enough that
the user must often pause to redraw an incorrectly recognized letter. Other options seem even less
appealing: the user could follow a path through a menu system to specify a letter uniquely, or tap
a pen on a simulated keyboard provided by the system. None of these methods feels like a natural
way to specify a name, though.

Consider instead extending the space of acceptable names to include arbitrary hand-drawn pic-
tures of a certain size, which we call pictographic names, or simply pictograms [LT93c, LT93b]. The
precise semantics of the pictograms are left entirely to the user. Intuitively, the major advantages of
the pictogram approach are ease of specification and a much larger name-space. A disadvantage is
that people cannot be expected to re-create perfectly a previously drawn pictogram; hence, looking
up a document by name requires AIM. In this section we study techniques for performing ink search
in this limited domain, and present some experimental results.

3.1 Motivation

Broadly speaking, a computer user can specify the name of an existing file or document in either of
two ways:

1. Direct manipulation. Selecting the desired name from a list of possible options in a scrollable
graphical browser.

L} Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

2. Reproduction. Duplicating the original name by retyping or redrawing it, and then letting the
computer search for a match.

The motivation behind pictographic naming is the following: since users of graphical interfaces often
specify files through direct manipulation rather than reproduction, HWX of a name may never be
necessary and should be deferred whenever possible. A natural way to defer HWX is to leave the
name as ink, in the form of a pictogram, which the user can browse later. This leaves the user free
to choose complex and varied pictographic names, but forces the operating system to search for
reproduced names approximately rather than exactly, a more difficult problem.

As a concrete example, suppose the user has produced the note shown in Figure 3.1. Perhaps it is
part of a paper he/she is working on, a slide for a presentation, or something drawn to communicate
an idea to a friend. The user wants to store the document, and to be able to access it later on. A
natural idea is to write a small pictogram describing its contents — for example, Figure 3.2. When the
user wants to retrieve the set of equations, he/she can easily browse through the list of pictograms
to find the appropriate one, without resorting to the use of a keyboard, and without a complicated
and inaccurate translation to a computer representation of characters.

f?r L.CIM’S.I: - [:FP[EI Fr[ﬁj

S

fr [c:ta“ eﬂz}
=Prlacl pr o afo]
= .2b = (,Ej

EWIM

z [2%

Figure 3.1: An example document. Figure 3.2: Its pictographic name.

3.2 A Pictographic Browser

To implement a file naming paradigm such as this, consider providing the user with a document
browser, much like the browsers used in traditional mouse-based graphical user interfaces. However,
rather than select a text string, the user selects an appropriate pictographic name. Such a browser
is shown in Figure 3.3.

Ink as a First-Class Datatype in Multimedia Databases 7‘

Open Open
9
1 Hmrl Jdoc 2 Olgep oo
[y e

. (& of v L7 CR . 3 lﬁ:#aofe‘ 4

g G s G pmla irap Bgpad

Hrel doo o oot 5 3

Gl vngy Bmppect

A o - :
Ad Ad

Cancel | Open <""| Cancel | Open <""|

Figure 3.3: Pictographic browser. Figure 3.4: Ranked browser.

Note that pictographic names are very simple, and provide the user with far more flexibility
than character strings. When new users are first introduced to standard file systems, they some-
times have difficulty adapting to the rigid conventions of traditional document storage and retrieval.
Pictographic names allow the user to specify names rapidly and easily, while making available a
much larger name space than traditional ASCII strings. Written words, sketches, non-ASCII char-
acters, cursive script, symbols, Greek or Cyrillic letters, Kanji or other Eastern characters, or any
combination of these are all valid names, as long as the user can recognize what he/she drew at a
later time.

When the number of names becomes too large to browse manually, automatic search methods
must be employed. We now consider an algorithm for solving this pictogram matching problem.
While simple, this approach can produce results better than those obtained using nominally more
powerful techniques such as Hidden Markov Models and Neural Nets. This seems appropriate for
domains of moderate complexity (e.g., the browser of Figure 3.3). As the complexity increases,
however, more advanced tools may be necessary; in later sections, we examine a number of these
more difficult tasks.

3.3 The Window Algorithm

If we knew that the same pictogram drawn twice by the same individual would tend to line up
point-for-point, we could measure similarity between pictograms by summing the distances between
corresponding points. Unfortunately, for real-world samples the points are not likely to correspond
so closely. A two-step approach allows us to overcome this difficulty. First we compress the curves
down to a small number of points. Then we allow the two curves to “slide” along one another.
Given two pen-stroke sequences p and g, each re-sampled to contain N points, and an integer A
representing the maximum “slide” we are willing to allow, define the distance D to be

D(p,q) =) (> ws d(Pi,‘Zi+6)> (3.1)

=1 \§=—A

L Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

We assume that the point-wise distance function d returns 0 for boundary conditions where ¢ 4+ § ¢
[1..N]. The values for ws are a parameter — we typically use ws = 1/(|6| + 1).

This procedure is similar to the dynamic programming “template matching” algorithms used in
character recognition. However, it is computationally more efficient, and it allows us to make use of
the fact that given two similar sequences p and ¢, we expect some similarity between p; and all of
{qi—l, qis qi+1}'

Experimental results for the Window algorithm are given in Figure 3.5. Each of four subjects
created a database of 60 names. The first was in Japanese, the remainder in English. Each subject
then re-drew each of the 60 names three times to create a 180-word test set. For each element of the
test set, we used the Window algorithm to select and rank the eight most similar-looking words in
the database. On average, this operation took 1/3 of a second to complete for each element of the
test set, running on a 40MHz NeXT workstation. The table shows how often the correct element of
the database was ranked first (“Ranked First”), and how often it was ranked in the top eight choices
(“Ranked In Top 8”).

Data Set
Success Criterion A | B | C | D | Ave.
Ranked First 97T% 83% | 94% | 88% | 90%
Ranked In Top 8 100% | 95% | 99% | 98% | 98%

Figure 3.5. Experimental evaluation of the Window algorithm.

3.4 Hidden Markov Models

In this section, we present an overview of Hidden Markov Models in the context of handwritten
pictogram matching. The reader is referred to [Rab89] for a tutorial. We assume that each of the
pictograms is modeled by a Hidden Markov Model (HMM) as done in [LT92b, LT93a]. The HMM
of a pictogram is stored along with the document to allow subsequent matching with the input.

Formally, an HMM is a doubly stochastic process that contains a non-observable underlying
stochastic process (hidden) that can be uncovered by a set of stochastic processes that produce the
sequence of observed symbols. Mathematically, an HMM is a tuple < X, @, a,b >, where

— X' is a (finite) alphabet of output symbols.

— @ is a set of states, @ = {0, ..., N — 1} for an N-state model.

— ais a probability distribution that governs the transitions between states. The probability of going
from state 7 to j is denoted by a;;. The transition probabilities a;; are real numbers between 0
and 1, such that
for all 7 € Q: Z}’-V:_Ol a;; =1
The distribution includes the initial distribution of states, that is the probability a; of the first
state being 3.

— b is an output probability distribution b;(s) that govern the distribution of output symbols for
each state. That is, b;(s) is the probability of producing the symbol s € X while being in state <.
These probabilities follow the rules:
forallicQand se€ X:0<bi(s) <1
forallic @, Y ,c5bi(s) =1

A variety of HMMs have been used to model handwriting. Also, a variety of features have been

selected to describe the output symbols. In [LT93a], the authors divide the hand-drawn figure in
points and extract four features per point: direction, velocity, change of direction and change of

Ink as a First-Class Datatype in Multimedia Databases 9

velocity. Each feature is drawn from a set of four possible values, hence the feature vector for a point
is represented using eight bits. Each vector value is one of the output symbols in X.

Usually the transition probabilities (a) and the state set (Q) are computed by best-fitting the
model to a series of samples. This is known as training the model. Algorithms for training models
using samples of handwriting are described in [AVB94]. These algorithms are fast and require no
intervention from the writer. Each sample used for the training consists of a sequence of output
symbols (points), with which the parameters of the model can be adjusted. However, in applications
like the one we are describing, the model has to be described using a single sample (a sequence of
output symbols for the document that is to be filed). Quite commonly, then, the structure of the
model is fixed to accommodate for the lack of samples with which to train it. A choice used in [LT92a]
is that of a left-to-right HMM, i.e. a model in which it is only possible to remain in the current state
or to jump to the next one in sequence. These models are sufficiently powerful to capture pictograms,
as we have found out in practice. The rest of the adjustable parameters (branching probabilities,
number of states, and output probabilities) provide a broad spectrum of choices to accomodate for
pictogram differences. An example of such model is given in Figure 1. This model contains 5 states
numbered from 0 to 4, and the probability to jump from state 7 to z+ 1 is 0.5, while the probability
of staying in the same state is 0.5. For the last state, the probability of staying in it is 1.0.

0.5 0.5 0.5 1.0

OO0 O O O
—() (OO

Figure 3.6. A left-to-right HMM.

Several authors have used HMMs to model handwriting and hand-written documents (e.g., [LT92b,
LT93a, BK92, TSW90]).

We assume that each pictogram in the database is modeled by a left-to -right HMM, i.e., a model
in which it is only possible to remain in the current state or to jump to the next one in sequence.
An example of such model is given in Figure 3.7. The HMM of a pictogram is stored along with the
pictogram to allow subsequent matching with the input.

T T T 1
T+N T+ T+N
A ATEA
N N N

T+N T+N T+N
Figure 3.7. A left-to-right HMM.

This model contains 4 states numbered from 0 to 3, and the probability to jump from state ¢
to 7+ 1 .is N‘Nﬁ, vErhﬂ? the. probabilﬂ:,y of staying izn the same s‘?a.te is NTﬁ].5‘(?1 the last state, the
probability of staying in it is 1.0. Notice that we adjust the transition probabilities so that the HMM
is encouraged to remain in the same state until it consumes the symbols in the input pattern that
correspond to this state. More concretely, consider an HMM with N states and an input pattern with

LO Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

T symbols. Assume that each of the N states is responsible for consuming % symbols. Therefore,
we can adjust the transition probability matrix a in the following way:

T
N .
P = f =0,..,N-1 3.2
a J:G-Fl n or 1 (3.2)

Qi1 = %+1 _N+Tfor1,_0,...,N 1 (3.3)
This way, it is expected that the HMM consumes the symbols intended for a given state before
moving to the next state. The model is then trained using multiple sample inputs (see [AVB94] for a
detailed discussion about training using multiple patterns). Smoothing is performed upon completing
the training stage by assigning an epsilon value to the output probability value for all the output
symbols which did not appear in the training patterns.

Table 3.1 shows the results obtained with the various training methods presented in [AVB94].

Row Training Method Rank Total Rank
1st 2nd 3rd 5th 10th
0 No Training 42.25% | 55.00% | 63.75% | 74.75% | 87.50% 1685
1 Levinson’s [LRS83] 85.25% | 91.25% | 94.25% | 96.25% | 98.50% 252
2 Plain average 85.50% | 90.75% | 93.75% | 97.00% | 98.25% 240
3 Biased average (normalized) 80.25% | 90.00% | 92.75% | 96.25% | 98.25% 285
4 Biased average (unnormalized) | 85.00% | 91.00% | 94.25% | 97.00% | 98.75% 220
5 Binary merge (normalized) 81.00% | 90.00% | 93.00% | 96.25% | 98.25% 283
6 Binary merge (unnormalized) 81.75% | 90.25% | 94.00% | 96.50% | 98.75% 239

Table 3.1. A comparison of various training methods.

4. The ScriptSearch Algorithm

We now turn our attention to a more difficult problem, that of searching through a continuous ink
text. In the domain of pictographic naming, we are essentially solving a dictionary look-up problem:
given a dictionary of words and a search key, we wish to locate the key in the dictionary. We know
that the key will never span multiple entries, and that it will always match the intended entry from
beginning to end.

Now, however, imagine a pen computer on which a user has written many pages of notes. If the
user wishes to re-enter and search for a particular phrase, the system must be able to locate the
phrase even though it crosses an unknown number of word boundaries. The problem is made all
the more difficult when one considers that word segmentation algorithms sometimes make mistakes,
breaking one word into two or merging two into one. We next describe an algorithm that requires
no ¢ prior: segmentation of the database — it is searched as though it were a continuous stream of
text [LT94]. We begin with some definitions.

4.1 Definitions

Ink is a sequence of time-stamped points in the plane:?2

2 Pen-tip pressure is another parameter that is sometimes available, but we do not make use of it in this
chapter.

Ink as a First-Class Datatype in Multimedia Databases 11

ink = (21,Y1,%1), (22, Y2,%2), - - - (Tks Yy i) (4.1)

Given two ink sequences T and P (the tezt and the pattern), the ink search problem consists of de-
termining all locations in T where P occurs. This differs significantly from the exact string matching
problem in that we cannot expect perfect matches between the symbols of P and T. No one writes a
word precisely the same way twice. Ambiguity exists at all levels of abstraction: points can be drawn
at slightly different locations; pen-strokes can be deleted, added, merged, or split; characters can be
written using any of a number of different “allographs,” etc. Hence, approximate string matching is
the appropriate paradigm for ink search.

A standard model for approximate string matching is provided by edit distance, also known as
the “k-differences problem” in the literature. In the traditional case [WFT74], the following three
operations are permitted:

1. delete a symbol,3
2. insert a symbol,
3. substitute one symbol for another.

Each of these is assigned a cost, cgei, Cins, and ¢y, and the edit distance, d(P,T), is defined as
the minimum cost of any sequence of basic operations that transforms P into 7. This optimization
problem can be solved using a well-known dynamic programming algorithm. Let P = p1p; .. . pm,
T = t1t3...t,, and define d; ; to be the distance between the first 4 symbols of P and the first j
symbols of T. Note that d(P,T) = dp, ». The initial conditions are

doo = 0
dio = di—1,0+ caa(ps) 1<i:<m (4.2)
doj = do,j—1+ Cins(t;) 1<j<n

and the main dynamic programming recurrence is

di_1; + cqer(pi)
dij=min{ dij1 + cins(ty) 1<i<m, 1<j<n (4.3)
di—l,j—l + C.sub(Pi,t]')

When Equation 4.3 is used as the inner-loop step in an implementation, the time required is O(mn)
where m and n are the lengths of the two strings.

This formulation requires the two strings to be aligned in their entirety. The variation we use
for ink search is modified so that a short pattern can be matched against a longer text. We make
the initial edit distance 0 along the entire length of the text (allowing a match to start anywhere),
and search the final row of the edit distance table for the smallest value (allowing a match to end
anywhere). The initial conditions become

doo = 0
dio = di_1,0+ cagel(p) 1<i<m (4.4)
doj = 0

The inner-loop recurrence (i.e., Equation 4.3) remains the same. Finally, we must define our eval-
uation criteria. It seems inevitable that any ink search algorithm will miss true occurrences of P
in T, and report false “hits” at locations where P does not really occur. Quantifying the success
of an algorithm under these circumstances is not straightforward. The field of information retrieval
concerns itself with a similar problem in a different domain, however, and has converged on the
following two measures [SM83]:

3 The term “symbol” is often taken to mean a text character. Here we use it much more generally — a
symbol could be a pen-stroke, for example.

LZ Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

Recall The percentage of the time P is found.
Precision The percentage of reported matches that are in fact true.

Obviously it is desirable to have both of these measures as close to 1 as possible. There is,
however, a fundamental trade-off between the two. By insisting on an exact match, the precision
can be made 1, but the recall will undoubtedly suffer. On the other hand, if we allow arbitrary
edits between the pattern and the matched portion of the text, the recall will approach 1, but the
precision will fall to 0. For ink to be searchable, there must exist a point on this trade-off curve
where both the recall and the precision are sufficiently high.

4.2 Approaches to Searching Ink

Ink can be represented at a number of levels of abstraction, as indicated in Figure 4.1. At the lowest
level, ink is a sequence of points; at the highest, ink is ASCII text. It is natural to assume that ink
search could take place at any given level, with attendant advantages and disadvantages.

Pattern Ink Text Ink
Y ey v

| Pre-Processing |<— Points 4>| Pre-Processing |
M ' ' M

| Normalization |<— Normalized Points—i>| Normalization |

| Stroke Segmenation |<§—Point Sequences%>| Stroke Segmenation |

v : . v
| Feature Extraction —— Feature Vectors—i>| Feature Extraction |
v 5 ' v

| Vector Quantization |<— Stroke Types 4>| Vector Quantization |
¥ § § ¥
| Allograph Recognition |<~7 Characters%—>| Allograph Recognition |

| Word Hypothesization I Words ‘I Word Hypothesization |

7 . SRR : 7
Matching Problem

Figure 4.1. Handwriting recognition stages and potential matching problems.

As can be seen from the figure, at each stage ink is represented as a collection of higher-level
objects. Some of the earlier information is lost, and a new representation is created that (hopefully)
captures the relevant information from the previous level in a more concise form. So, for instance,
it may be impossible to know from the final word which allographs were used, or to know from the
feature vectors exactly what the ink looked like, etc. Each stage in the process can be viewed as a
recognition task (e.g., strokes from points, words from allographs), and introduces the possibility of
New errors.

An ink search algorithm could perform approximate matching at any level of representation. At
one end of the spectrum, an algorithm like the Window algorithm of Section 3. could be used to
match individual points in the pattern to points in the text. At the other extreme, we could perform
full HWX on both the pattern and the text, and then apply “fuzzy” matching on the resulting ASCII
strings (to account for recognition errors).

Ink as a First-Class Datatype in Multimedia Databases 13

In the next subsection, we consider the latter option by examining how randomly introduced
“noise” affects recall and precision for text searching. The point here is to gain some intuition about
the performance of ink search algorithms built on top of traditional handwriting recognition.

Section 4.4 presents an in-depth examination of an algorithm we call ScriptSearch that performs
matching at the level of pen-strokes. This approach has the advantage of allowing us to do quite well
against a broad range of handwriting, including some so bad that a human might find it illegible.
ScriptSearch also allows the possibility of matching strings with no obvious ASCII representation,
such as equations, drawings, doodles, etc.

4.3 Searching for Patterns in Noisy Text

In this subsection we assume that the text and pattern are both ASCII strings, but that characters
have been deleted, inserted, and substituted uniformly at random. This “simulation” has two pur-
poses. First, it allows us to apply the recall/precision formulation in a familiar domain to develop
intuition about acceptable values. Second, this model corresponds to the problem of matching ink
that has been translated into ASCII by HWX with no manual intervention to correct recognition
errors. Of course, these values are only an approximation since HWX processes in general do not
exhibit uniform error behavior across all characters.

To illustrate the effects of noise on pattern matching, consider what happens when we search for
a number of keywords in Herman Melville’s famous novel, Moby-Dick. Figure 4.2 tabulates average
recall and precision under a variety of scenarios. Here garble rate represents a uniformly random
artificial noise source that deletes, inserts, and substitutes characters in the pattern and the text.
Note that when there is some “fuzziness,” the precision can drop off rapidly if we require perfect
recall. At some point, the text is no longer searchable as too many false hits are returned to the
user. This is what we mean when we ask the question: Is ink searchable?

Edit Garble Rate

Distance 0% 10% 20%

Threshold || Recall | Precision | Recall | Precision | Recall | Precision
0 1.000 1.000 0.274 0.995 0.003 0.996
1 1.000 0.875 0.643 0.901 0.280 0.944
2 1.000 0.610 0.910 0.581 0.664 0.700
3 1.000 0.329 0.986 0.326 0.886 0.424
4 1.000 0.121 1.000 0.097 0.981 0.154
5 1.000 0.021 1.000 0.015 0.999 0.048
6 1.000 0.010 1.000 0.010 1.000 0.013

Figure 4.2. Searching for keywords in Moby-Dick (as a function of threshold).

Another view of the data is to consider the precision realizable for a given recall rate. This is
shown in Figure 4.3. An intuitive interpretation of this figure is that setting a threshold is unnecessary
if a ranked list of matches is returned to the user. In this case, for example, at a 10% garble rate,
the user will experience a precision of 0.928 in viewing 50% of the true hits for the pattern.

Of course, real text (without noise) is searchable using routines like Unix grep, etc. However,
handwriting is inherently “noisy” — it is not possible to say a prior: that a given handwriting sample
is just as searchable as its textual counterpart. That is the purpose of studies such as this.

L4 Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

Garble Rate
0% 10% 20%
Recall || Precision | Precision | Precision

0.1 1.000 0.950 0.901
0.2 1.000 0.950 0.901
0.3 1.000 0.950 0.896
0.4 1.000 0.950 0.771
0.5 1.000 0.928 0.678
0.6 1.000 0.909 0.616
0.7 1.000 0.814 0.564
0.8 1.000 0.744 0.408
0.9 1.000 0.604 0.289
1.0 1.000 0.102 0.018

Figure 4.3. Searching for keywords in Moby-Dick (as a function of recall rate).

4.4 The ScriptSearch Algorithm

As we noted above, representations for ink exist at various different levels of abstraction. In this
subsection we examine an algorithm for writer-dependent ink search at the pen-stroke level. The
algorithm applies dynamic programming with a recurrence similar to that used for string edit dis-
tance, but with a different set of operations and costs. The top-level organization of the ScriptSearch
algorithm is shown in Figure 4.4.

Pattern Ink
(x.y.0

|

| Stroke Segmenation |

Strokes

| Feature Extraction |

Feature Vectors

| Vector Quantization |

Stroke Types

Text Ink

| Edit Distance I
i Stroke Types (x.y,t)

Sequential list of “hits”
or
Matches in ranked order

Figure 4.4. Overview of the ScriptSearch algorithm.

As can be seen from the figure, there are four phases to the algorithm. First, the incoming ink
points are grouped into strokes. Next, the strokes are converted into vectors of descriptive features.
Third, the feature vectors are classified according to writer-specific information. Finally, the resulting

Ink as a First-Class Datatype in Multimedia Databases 15

sequence of classified strokes is matched against the text using approximate string matching over an
alphabet of “stroke classes.” We now describe the four phases in more detail.

4.4.1 Stroke Segmentation. There are several common stroke segmentation algorithms used in
handwriting recognition. For our experiments, we break strokes at local minima of the y values.
Figure 4.5 shows a sample line of stroke-segmented text.

(00 e (ol
A AR AR

Figure 4.5. Example of pen-stroke segmentation.

4.4.2 Feature Extraction. As with segmentation algorithms, there are many different feature sets
employed by handwriting researchers today. We have taken a set created by Dean Rubine in the
context of gesture recognition [Rub91]. This particular feature set, which converts each stroke into
a real-valued 13-dimensional vector, seems to do well at discriminating single strokes, and can be
efficiently updated as new points arrive. The feature set includes the length of the stroke, total angle
traversed, angle and length of the bounding box diagonal, etc.

4.4.3 Vector Quantization. In the vector quantization stage, the complex 13-dimensional feature
space 1s segmented or “quantized” into 64 clusters. From then on, instead of representing a feature
vector by 13 real values, we represent it by the index of the cluster to which it belongs. Thus,
rather than maintain 13 real numbers, we maintain 6 bits. This technique is common in speech
recognition and many other pattern recognition domains [LBG80]. The quantization makes the
remaining processing much more efficient, and seeks to choose clusters so that useful semantic
information about the strokes is retained by the 6 bits of the index. We now describe how to build
and use the clusters. First, we must describe how distances are calculated in the feature space.

We collect a small sample of handwriting from each writer in advance. This is segmented into
strokes, each of which is converted into a feature vector v =< w1, vs,...,v13 >7. We use the sample
to calculate the average of the i** feature, u;, and use these averages to compute the covariance
matrix X' defined by

g = B (v — i) (v —)] (4.5)
Hence, for instance, the diagonal of X' contains the variances of the features.

Instead of standard Euclidean distance, we employ Mahalanobis distance [Sch92]. This is defined

on the space of feature vectors as follows:

Vg = vTs v (4.6)
div,w) = [(v—w)|m (4.7)
With a suitable distance measure for our feature space, we can now proceed to describe a vector

quantization scheme. We cluster the feature vectors of the ink sample into 64 groups using a clustering
algorithm from the literature known as the k-means algorithm [Mac67]. The feature vectors of the

LG Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

sample are processed sequentially. Each vector in turn is placed into a cluster, which is then updated
to reflect the new member. Each cluster is represented by its centroid, the element-wise average of
all vectors in the cluster.

The rule for classifying new feature vectors uses the centroids that define each cluster: a new
vector belongs to the cluster with the nearest centroid, using Mahalanobis distance as the measure.
The 64 final clusters can be thought of as “stroke-types,” and the feature extraction and VQ phases
can be thought of as classifying strokes into stroke-types.

After these phases of processing have been performed, the text and pattern are represented as
sequences of quantized stroke-types:

< stroke-type 7 >< stroke-type 42 >< stroke-type 20 > ... (4.8)

Recall that P = p1ps ...pm and T = t1t5 .. .1,. From now on, we shall assume that the p;’s and ¢;’s
are vector-quantized stroke-types.

The operations described above can be computed without significant overhead from the Maha-
lanobis distance metric. First, note that the inverse covariance matrix is positive definite (in fact, any
matrix defining a valid distance must be positive definite). So we perform a Cholesky decomposition
to write:

> t=4T74 (4.9)

This being the case, we note that the new distance simply represents a coordinate transformation
of the space:
vIsTly =vT (AT A)v = (vTAT) - (Av) = wTw (4.10)

where w = Av. Thus, once all the points have been transformed, we can perform future calculations
in standard Euclidean space.

4.4.4 Edit Distance. Finally, we compute the similarity between the sequence of stroke-types
associated with the pattern ink, and the pre-computed sequence for the text ink. We use dynamic
programming to determine the edit distance between the sequences. The cost of a deletion or an
insertion is a function of the “size” of the ink being deleted or inserted, where size is defined to be
the length of the stroke-type representing the ink, again using Mahalanobis distance. The cost of
a substitution is the distance between the stroke-types. We also allow two additional operations:
two-to-one merges and one-to-two splits. These account for imperfections in the stroke segmentation
algorithm. We build a merge/split table that contains information of the form “an average stroke
of type 1 merged with an average stroke of type 4 results in a stroke of type 11.” The cost of a
particular merge involving strokes « and 8 and resulting in stroke + is, for instance, a function of
the distance between merge(a, 8) and y. We compute the edit distance using these operations and
their associated costs to find the best match in the text ink.

Again, recall that d;; represents the cost of the best match of the first ¢ symbols of P and
some substring of T' ending at symbol j. The recurrence, modified to account for our new types of
substitution (1:2 and 2:1), is as follows:

di_1; cge1(pi)
dij—1 Cins(t5)
dij =mins di_1;-1 Coub1:1(Pi, t5) 1<:<m, 1<j<n (4.11)

Csub1:2(pi, tj—ltj)
C.sub2:1(pi—1pi, t])

di_1;-2
di_2;-1

+ 4+ + 4+ +

Ink as a First-Class Datatype in Multimedia Databases 17

4.5 Evaluation of ScriptSearch

In this section, we describe the procedure we used when evaluating the ScriptSearch algorithm. We
asked two individuals to hand-write a reasonably large amount of text taken from the beginning
of Moby-Dick. Throughout the remainder of this discussion, we shall refer to these two primary
datasets as “Writer A” and “Writer B.” Figure 4.6 summarizes some basic statistics concerning the
test data.

| Text || Strokes | Characters | Words | Lines | Style |
Writer A 34,560 23,262 4,045 625 | Cursive
Writer B || 19,324 12,269 | 2,194 | 363 | Printed

Figure 4.6. Statistics for the test data used to evaluate ScriptSearch.

We then asked each writer to write a sequence of 30 short words and 30 longer phrases (two-to-
three words each), also taken from the same passages of Moby-Dick. These were the search strings,
which we sometimes refer to as “patterns” or “queries.” In ASCII form, the short patterns ranged
in length from 5 to 11 characters, with an average length of 8 characters. The long patterns ranged
from 12 to 24 characters, with an average length of 16. Since ScriptSearch is meant to be writer-
dependent, we were primarily interested in the results of searching the text produced by a particular
writer for patterns produced by the same writer.

As indicated earlier, the task of the algorithm is to find all the lines of the text that contain
the pattern. For each writer (A and B), we augmented by hand the ASCII source text with the
locations of the line breaks. Thus, the ASCII text corresponded line-for-line to the ink text. Using
exact matching techniques, we found all occurrences of the ASCII patterns in the ASCII text, and
noted the lines on which they occurred. For an ink search to be successful, the ink patterns must be
found on the corresponding lines of the ink text.

We then segmented the ink texts into lines using simple pattern recognition techniques, and
associated each stroke of the ink text with a line number. Figure 4.7 shows an example of a page of
ink with the center-points of the lines determined by the algorithm, and also serves to illustrate the
quality of the handwriting in the test data.

Using ScriptSearch, we found all matches for the ink pattern in the ink text. When combined
with the line segmentation information, this determined the lines of the ink text upon which matches
occurred. Since the ASCII text had been placed in line-for-line correspondence to the ink text, we
could quickly determine which matches were valid, which were “false hits,” and which were missed
by the algorithm. From this information, we computed the recall and precision of the ScriptSearch
procedure.

4.6 Experimental Results

As mentioned previously, there are two ways of viewing the output of a pattern matching algorithm
like ScriptSearch. If hits are returned in a ranked order, precision can be calculated by considering
the number of spurious elements in the ranking above a certain recall value. If all hits exceeding a
fixed threshold are returned, recall and precision can be calculated by determining the total number
of hits returned and the number of valid hits returned for a particular threshold.

There is a common thread relating these two points of view. If it were possible to choose an
optimal threshold for each search, then a system that returns all hits above that threshold will have
the same recall (i.e., 1) and precision as a ranked system. Thus, a ranked system represents, in
some sense, an upper-bound on the performance that can be obtained with a thresholded system. In
contrast, a thresholded system has the advantage that ink can be processed sequentially — hits are

18 Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

ns,vk, E L e R

Figure 4.7. Estimation of line center-points (ScriptSearch line segmentation).

returned as soon as they are found, without waiting for the entire search to complete. If ScriptSearch
is used as an intermediate stage in a “pipe,” thresholding might be required in certain applications.
Hence, as before, we present experimental results that reflect both viewpoints.

Figure 4.8 shows the performance of the algorithm when returning ranked hits. These results
demonstrate that pattern length has a large impact on performance. For example, at 100% recall,
there is a 47% difference in the average precision for long and short patterns for Writer A, and a
50% difference for Writer B.

Figures 4.9 and 4.10 present recall and precision as a function of edit distance threshold for
Writers A and B, respectively. From these results, we can conclude that thresholds should be chosen
dynamically based on properties of the pattern such as length. As before, we see that long patterns
are more “searchable” than short ones.

In order to explore our intuition that this form of stroke-based matching is not appropriate
for multiple authors, we asked three more writers (C, D, and E) to write the entire set of 60
search patterns. We then matched these patterns against the text of Writer A. The results for this
test are shown in Figure 4.11 for the ranked case. As expected, the performance of the algorithm
degrades dramatically. This implies that ink search at the stroke level should probably be restricted
to patterns and text written by the same author, unless a more complex notion of stroke distance
can be developed.

4.7 Discussion

In this section, we have discussed techniques for searching through an ink text for all occurrences of
a pattern. We presented data that suggests using HWX and then performing fuzzy matching at the

Ink as a First-Class Datatype in Multimedia Databases

Writer A Writer B
Short Long All Short Long All
Recall || Patterns | Patterns | Patterns || Patterns | Patterns | Patterns
0.1 0.506 1.000 0.753 0.522 0.826 0.674
0.2 0.494 0.983 0.738 0.493 0.826 0.659
0.3 0.452 0.983 0.718 0.452 0.814 0.634
0.4 0.431 0.973 0.702 0.440 0.814 0.627
0.5 0.403 0.968 0.686 0.416 0.814 0.615
0.6 0.349 0.917 0.633 0.272 0.721 0.496
0.7 0.271 0.873 0.572 0.226 0.678 0.452
0.8 0.268 0.873 0.571 0.217 0.681 0.449
0.9 0.227 0.687 0.457 0.179 0.681 0.430
1.0 0.215 0.684 0.450 0.179 0.681 0.430
Figure 4.8. Ranked precision values for Writers A and B.
Writer A

Short Patterns | Long Patterns | All Patterns

Threshold Rec | Prec Rec | Prec Rec | Prec

10 0.023 0.916 0.000 1.000 0.011 | 0.958

20 0.357 0.652 0.000 1.000 0.178 | 0.826

30 0.632 0.299 0.011 1.000 0.321 | 0.649

40 0.955 0.071 0.119 0.988 0.537 | 0.529

50 1.000 0.010 0.322 0.910 0.661 | 0.460

60 1.000 0.010 0.572 0.643 0.786 | 0.326

70 1.000 0.010 0.783 0.431 0.891 | 0.220

80 1.000 0.010 0.909 0.268 0.954 | 0.139

90 1.000 0.010 0.961 0.115 0.980 | 0.062

100 1.000 0.010 0.991 0.075 0.995 | 0.042

110 1.000 0.010 1.000 0.024 1.000 | 0.017

120 1.000 0.010 1.000 0.011 1.000 | 0.010

Figure 4.9. Recall and precision as a function of edit distance threshold for Writer A.

Writer B

Short Patterns | Long Patterns | All Patterns
Threshold Rec | Prec Rec | Prec Rec | Prec
10 0.041 0.973 0.000 1.000 0.020 | 0.986
20 0.215 0.677 0.000 1.000 0.107 | 0.834
30 0.539 0.383 0.017 1.000 0.278 | 0.691
40 0.757 0.094 0.075 1.000 0.416 | 0.547
50 0.946 0.041 0.195 0.948 0.570 | 0.494
60 1.000 0.010 0.500 0.679 0.750 | 0.344
70 1.000 0.010 0.626 0.398 0.813 | 0.204
80 1.000 0.010 0.914 0.304 0.957 | 0.157
90 1.000 0.010 0.931 0.103 0.965 | 0.062
100 1.000 0.010 1.000 0.039 1.000 | 0.024
110 1.000 0.010 1.000 0.006 1.000 | 0.008
120 1.000 0.010 1.000 0.005 1.000 | 0.007

Figure 4.10. Recall and precision as a function of edit distance threshold for Writer B.

19

LO Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

Writer C Writer D Writer E
Recall || Short | Long | All Short | Long | Al Short | Long | Al

0.1 0.024 | 0.027 | 0.025 || 0.033 | 0.070 | 0.052 || 0.048 | 0.099 | 0.073
0.2 0.022 | 0.014 | 0.018 || 0.032 | 0.041 | 0.037 || 0.032 | 0.028 | 0.030
0.3 0.013 | 0.014 | 0.013 || 0.031 | 0.042 | 0.036 || 0.032 | 0.024 | 0.028
0.4 0.013 | 0.015 | 0.014 || 0.029 | 0.023 | 0.026 || 0.033 | 0.021 | 0.027
0.5 0.013 | 0.015 | 0.014 || 0.030 | 0.022 | 0.026 || 0.034 | 0.021 | 0.028
0.6 0.010 | 0.013 | 0.011 0.018 | 0.016 | 0.017 || 0.018 | 0.018 | 0.018
0.7 0.010 | 0.013 | 0.011 0.017 | 0.015 | 0.016 || 0.018 | 0.018 | 0.018
0.8 0.010 | 0.013 | 0.011 0.017 | 0.014 | 0.016 || 0.016 | 0.017 | 0.017
0.9 0.010 | 0.012 | 0.011 0.017 | 0.013 | 0.015 || 0.015 | 0.017 | 0.016
1.0 0.010 | 0.012 | 0.011 0.017 | 0.013 | 0.015 || 0.015 | 0.016 | 0.016

Figure 4.11. Cross-writer precision (text by Writer A).

character level is one viable option. We also described ScriptSearch, a pen-stroke matching algorithm
that performs quite well for same-author searching, both in thresholded and ranked systems. The
latter approach has a paradigmatic advantage as it treats ink as a first-class datatype.

In the future, it would be interesting to evaluate approaches that represent ink at different
levels of abstraction (recall Figure 4.1), for example as allographs, perhaps performing dynamic
programming on the associated adjacency graph to locate matches. Another intriguing extension
of the work we have just described concerns searching non-textual ink, and languages other than
English. We observe that if the VQ classes are trained using a more general set of strokes, it should
be possible to run ScriptSearch as-is on drawings, figures, equations, other alphabets, etc. It would
be instructive to examine its effectiveness in these domains, especially since traditional HWX-based
methods do not apply.

It is also clearly important to address the issue of writer-independence with regard to ink match-
ing. We now briefly sketch an approach that appears to have some potential. Recall that since the
VQ codebooks for two authors may be different, there is no natural stroke-to-stroke mapping. Let
us assume that by some means it is possible to put text from two authors A and B into a rough
correspondence, and then to determine for each of A’s strokes a distribution of similarities to B’s
strokes. We can represent these distributions as a Stroke Similarity Matriz, S. The it* row of such a
matrix describes how A’s 5** stroke corresponds to all of B’s strokes. Assume that the (i, j)** entry
of matrix Dg_,p gives the Mahalanobis distance from B’s stroke 7 to stroke j. We wish to compute
D4, g, the matrix giving distances from each of A’s strokes to each of B’s strokes. We can do so as
follows:

Dy ,p=5-Dp_.p (4.12)

That is, to compute the distance between the i** stroke of A and the j** stroke of B, we view
the it* stroke of A as corresponding to various strokes of B with the weights given in the 7** row
of S. We extract the distance from each of these strokes to B’s j** stroke, and take the weighted
sum of these values. This is the inner product of the i** row of S with the j** column of Dp_, 5, as
indicated in Equation 4.12. This approach should yield a reasonable “cross-writer” distance measure
that we can substitute for Mahalanobis distance. The ScriptSearch algorithm could then be used
without further changes.

Finally, since the amount of ink to be searched will undoubtedly grow as pen computers prolif-
erate, it is important to consider sub-linear techniques that employ more complex pre-processing of
the ink text. Some of these are treated in the next section.

Ink as a First-Class Datatype in Multimedia Databases 21

5. Searching Large Databases

Now that we have discussed some of the issues regarding ink as a first class datatype, we consider
the issues of large ink databases. Using sequential searching techniques (like the ones explained
previously), the running time grows linearly with the database size. This is clearly unacceptable for
large databases. Thus, more sofisticated methods should be used to do the searching. In this section
we show some techniques to index pictograms and speed up the searches for large databases.

As pointed out in Section 4.2, ink can be represented at a number of levels of abstraction. Different
types of indices can be built for each one of these granules of representation. For instance, we can
choose to model entire pictograms with HMMs and build indices that use the HMM characteristics
to guide the search. We call such an index the HMM-iree [AB94]. Alternatively, we can choose to
deal with alphabet symbols (or strokes) for granularity and represent the symbol classes by using
HMDMs. We call the resulting index the Handwritten Trie.

In the next subsections, we describe each one of these two approaches.

5.1 The HMM-Tree

Assume that we have M pictograms in our database and that each document has been modeled
by an HMM (and hence we have M HMMs in the database). Each one of the HMMs has the same
transition distribution (a), number of states (N), output alphabet (X), and a fixed-length sequence
of output symbols (points) (T) (i.e., that each input pattern is sampled by T sample points, each of
which can assume one of the possible symbols of the output alphabet). Let the size of the output
alphabet be n (i.e., |X| = n). The output distribution is particular to each HMM (and hence to
each document). For each document D,, in the database, with 0 < m < M, we call H,, the HMM
associated with the document.

As suggested in [LT92b], we use the following two measures of “goodness” of a matching method:

— a method is good if it selects the right picture first for reasonable size databases, because this way
the user can simply confirm the highlighted selection.

— a method is good if it often ranks the right picture on the first & items (so that those can fit in
the first page of a browser [LT92b]) for reasonable size databases, because this way the user can
easily select the picture.

In order to recognize a given input pattern I, we execute each HMM in the database and find
which k models generate I with the highest probabilities. This approach is extremely slow in practice,
as shown in Figure 5.1.

One way to avoid this problem is to move the execution of the HMMs to the preprocessing phase
in the following way (which we term the naive approach). At the preprocessing phase we enumerate
all the possible output sequences of length T'. Since each output symbol can assume one of n values,
we have nT possible output sequences. For each sequence, we execute all the HMMs in the database
and select the top & HMMs that generate the sequence with highest probability. We repeat this
process for all the sequences. The output is a table of size knT where for each possible sequence the
identifiers of the best £k HMMs for this sequence are stored. At run time, for a given input pattern,
we access this table at the appropriate entry and retrieve the identifiers of the corresponding HMMs.
In order to insert a new document D,, (modeled by the HMM H,,) into the database, we need to
execute H,, for every possible sequence (out of the nT sequences) and for each output sequence S
compare the probability, say py,, that results from executing H,,(S), with the other k probabilities
associated with S. If H,,(.S) is higher than any of the other k probabilities, the list of identifiers
associated with S is updated to include m. If the list of probabilities is kept sorted, then logk
operations are needed to insert ¢ and p; in the proper location.

The complexity of the naive approach can be summarized as follows:

LZ Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

Search time (sec.)

50
45
40
35
30
25
20

15

10

| | |
T T T

100 200 300 Number of pictograms

Figure 5.1. Matching time using a sequential algorithm.

— Preprocessing time: MnT Cy(logk + [%—D, where Cp is the average time to execute an HMM,
given an input sequence, and log k + |—§—| is the time to maintain the indexes for the ¥k HMMs with
best probability values.

— Space: (T +2k)nT, i.e., is exponential in the number of sample points in the input pattern 7. The
factor (T+2k) is the size of each entry in the table; T is the number of symbols per sequence, and
2k is due to storing the HMM identifiers along with the probability that each of them generates
the pattern. The latter is used when inserting a new document to test whether the new model
generates the corresponding pattern with better probability than any of the given £ HMMs.

— Searching (at runtime): log, n7 = T'logn.

— Insertion: nTCx(logk + [%—D

In order to organize the above table, we use a tree structure. One possible tree (which we term
the HMM1-tree) is a balanced tree of depth T and fanout n. Each internal node has a fixed capacity
of n elements where an element corresponds to one of the symbols of the alphabet. Figure 5.2 shows
an example of the HMM1-tree. The HMM1-tree is a variation of the Pyramid data structure [TP75],
where in the case of the HMM1-tree, the fanout is not restricted to a power of 2 as in the case of
a pyramid. In addition, the pyramid is used to index space while the HMM1-tree is used to index
HMMs. However, the structure of both the HMM1-tree and the pyramid is similar. In the example
of Figure 5.2, the alphabet has two symbols (and hence the nodes have two entries each), and the
length of the sequence is 3 (3 output symbols must be entered to search documents). We see how
nodes in the last level of the tree point to linked lists of documents. The dotted path in the tree
shows the path taken by the traverse algorithm when the input contains the symbols 0,1, 0. This
particular search retrieves documents D3 and Djy.

More formally, the HMM1-tree is constructed as follows.

— The HMM1-tree has T + 1 levels (the number of steps or length of the output sequence in the

HMDMs associated with the documents in the repository). The root of the tree is the node at level
0 and is denoted by r.

Ink as a First-Class Datatype in Multimedia Databases 23

Figure 5.2. An example of an HMM1-tree.

— Each internal node (including the root) in the tree is an n-tuple, where each entry in the n-tuple
corresponds to a symbol of the output alphabet X and has a pointer to a subtree*. We denote by
v[k] the kth entry on the node wv.

— Each internal node in the T'th level points to a leaf node that contains a linked list. The linked
lists store pointers to the files that contain the documents in the repository.

The preprocessing time for the HMM1-tree is still MnT Cp, since we need to traverse each node
at the leaf level and for each node find the best HMMs (by executing all M of them and selecting the
ones with highest probabilities) that generate the output sequence that corresponds to this node.

To insert a document, we traverse all the nodes at the leaf level without having to descend the
tree starting from the root. For each leaf node, we follow the same approach as the table approach
described above and hence the complexity of insertion is the same, i.e., log knT Cy.

To select a set of documents that are similar to an input D, we extract a set of T output symbols
O0={0[i,0<1<Tand 0 < O[i]| < n— 1} from D and run the following algorithm.

Procedure traverse(O)
begin

v=r

for (0 < level < T)

* A pyramid can be implemented as a heap array where the address of any internal or leaf node can be
computed and directly accessed if the symbols that lead from the root to that node are known [AS90,
Tuc84]. As a result, we can avoid storing explicit pointers and compute the address of each node instead.

L4 Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

v = v[O[1]
return every element in the list pointed by v
end

An alternative approach to traversing the tree which avoids storing pointers is based on the
observation that since the HMM1-tree is a complete tree, i.e., none of the internal nodes is miss-
ing, then the addresses of the nodes can be easily computed and there is no need to store pointers
to subtrees explicitly in the tree (this is similar to the technique used in the pyramid data struc-
ture [AS90, Tuc84]).

The storage complexity of the HMM1-tree can be computed as follows. The number of non-leaf
(internal) nodes is ”:__11 where each node is of size n (notice that since we assume that the addresses
of the nodes can be easily computed we do not store pointers to subtrees explicitly as described
above), while the number of leaf nodes is nT where each node is of size 2k (to store the ¥k HMM
identifiers along with their corresponding probabilities). Therefore, the total space complexity is:

nf —1

+ 2knT
n—1

n

which is still exponential in the number of sample points in the input pattern 7, although is less
than the storage complexity of the naive approach (since T > 7). The saving is due to the fact
that for any two sequences that share the same prefix, this prefix is stored in the tree approach only
once while is being repeatedly stored with each sequence in the naive approach.

The complexity of the HMM1-tree approach is summarized as follows.

— Preprocessing time: Mn”Cy(logk + [£]), since at the leaf level we still have to store the k
HMDMs. .

— Space: 'n,’"”n__l1 + 2knT (still exponential).

— Insertion: nTCy(logk + [%—D

— Searching (at runtime): O(T) since computing the address of the node depends on the path
length to reach that node (or the length of the sequence that leads to the node)

5.1.1 Reducing the Preprocessing and Insertion Times. In this section, we show how to
reduce the times for preprocessing and insertion.

The HMM2-tree

We show how to reduce the preprocessing and insertion times of the HMMI1-tree. This results
in what we term the HMM2-tree. Recall that in the case of the HMM1-tree, both the preprocessing
and insertion times are exponential in the number of symbols per sequence. The HMM2-tree has the
following additional properties.

— Each level I (0 <1< T) in the HMM2-tree is associated with a threshold value ¢ (0 < ¢ < 1).

— For each node ¢ in the HMM2-tree, at level I, and each symbol o in the output alphabet, let
O, = O[i1]O[4g] - - - O[4] denotes the sequence of symbols in the path from the root of the HMM2-
tree to the node g. Then, there is an associated pruning function f™(l, g, O,, 0) that is computable
for every model in the database. The use of the pruning function is demonstrated below.

To insert a document D,, (modeled by the HMM H,,) into the HMM2-tree, we perform the
following algorithm.

Procedure HMM2-Insert(D,,)
begin
Let » be the root of the tree

Ink as a First-Class Datatype in Multimedia Databases 25

level = 0
call search(r, level)
end

Procedure search(v,!)
begin
for0<k<n-1
1f (fm(l, v, OU, k) Z 61)

fl<T-1)
call search(v[k], I+ 1)
else

include a pointer to D,, in the list pointed by v[k]
end

In other words, during the insertion procedure, when processing node v at level ! and output symbol
k, if the condition (f™(I,v, Oy, k) > €) is true the subtree v[k] is investigated. Otherwise, the entire
subtree is skipped by the insertion algorithm. This helps reduce the time to insert each document
into the database.

The preprocessing stage is reduced to inserting each of the documents into the database by
following the above insertion algorithm for each document. Therefore, the reduction in insertion
time is also reflected into the preprocessing time.

To select a set of documents that are similar to an input D, we extract a set of T output symbols
O ={0[:],0<i< T and 0 < O[i] < n — 1} from the input and we run procedure iraverse, the one
used for the HMM1-tree. Similar to the HMMI1-tree, we can also compute the address of the leaf
node from O and directly access the ¥ HMMs associated with it.

At this point it is worth mentioning that the index described above will work provided that we
supply the pruning function f™(l, g, Oy, 0). The performance of the index will be affected by how
effective the pruning function is. In the following Section, we describe several methods to compute
such a function provided that some conditions are met by the underlying database of documents.

5.1.2 Pruning Functions. In this section, we present several methods for computing pruning
functions.

In order to compute f™(l,q,0,,0), we assume that the following conditions are met by the
underlying database of documents.

— All the documents in the database are modeled by left-to-right HMMs with N states.
— The transition probabilities of these HMMs are the following:

a;;j =05fori=0,...,N—2and j=diorj=1+1 (5.1)
aN_1N—-1— 1.0 (5.2)
ap=1,a;,=0fori=1,...,.N—1 (5.3)

— For all the documents in the database, a sequence of output symbols of length 7" has been extracted.
All inputs for which the index is going to be used have to be presented in the form of a T sequence
of output symbols, taken from the alphabet (X) of the HMMs.

The Unconditional Method
Define ¢;7; to be the probability that the HMM H,, is in state j at step i of its execution
(0<i<T-—1and 0 <j< N —1). Notice that #7; is independent of the output sequence. Now,

LG Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

define #7*(0) to be the probability that the HMM H,, outputs the symbol o at step i of execution.
We can compute $7"(0) using 477 as follows:

77 (0)= Y d15bi(0) (54

$7(0) is used as the pruning function f1, i.e.,
.f:’{n(% q, Oq’ O) = an(o) (5'5)

It remains to show how we compute ¢7;. Based on the HMM structure of Figure 3.6, ¢;"; can be
expressed recursively as follows:

M =05 fori=0,..,T—1 (5.6)
mo=0,forj=1,.,N—1 (5.7)

and
M= 0.5(¢y ,_+ ¢y) fori=1,..,T—landj=1,..,N—1 (5.8)

Notice that ¢g'o = 1 and ¢7; = 0.5* for 1 < i < N — 1. An additional optimization that is based on
the structure of the HMM of Figure 3.6 is that at step ¢, H,, cannot be past state j > 7 since at
best, H,, advances to a new state at each step. In other words,

i =0for0<i<j<N-1 (5.9)
Therefore, the recurrence for ¢7; reduces to
ry =05(8 1, 1+ ¢iy,)for1<j<i<N-landi=1,..,T—1 (5.10)

Figure 5.3 illustrates the recursion process for computing ¢;7;.

The process of computing ¢;7; and $(0) is independent of which branch of the HMM2-tree
we are processing. It is dependent only on the HMM model (H,,). As a result, when inserting an
HMM model H,, into the HMM2-tree, we build a two-dimensional matrix ™ of size T' X N such
that ™[][j] corresponds to the probability that the jth output symbol appears at the ith step of
executing the HMM H,, (i.e., #™[#][j] = $*(0;)). This matrix is accessed while inserting the model
H,, into the HMM2-tree to prune the number of paths descended by the algorithm (see procedure
HMM2-Insert, given at the beginning of Section 5.1.1).

The Conditional Method

An alternative approach to computing pruning functions is to make use of the dependencies
between the output symbols. Instead of computing the probability that an output symbol appears
at step ¢ of the execution of an HMM, we compute the probability that the sequence O[0]O[1]--- O[]
appears after executing the first 2 steps of the HMM. This leads to the following new pruning function
which depends on the path in the HMM2-tree where we are to insert a new HMM model into.

Our objective is to insert the index m of an HMM H,, into the linked list belonging to a leaf
node ¢, when the probability that the sequence O, = O[0]O[1]---O[T — 1] (denoting the sequence of
symbols in the path from the root of the HMM2-tree to the node g) is produced by H,, is high (or
above a given threshold). This corresponds to the probability: Prob[O[0]O[1]---O[T — 1]|Hp]- In
order to save on insertion and preprocessing times, we need to avoid computing this probability for
every possible pattern (of length T') in the tree. As a result, we use the following pruning function
which we apply as we descend the tree, and hence can prune entire subtrees.

Define af* to be the probability that the sequence O[0]O[1]---OJ4] is produced by the HMM

7]
after executing 7 steps and ending at state j. In other words,

Ink as a First-Class Datatype in Multimedia Databases

Popo

N

P10 P11

NN

P20 P21 022

NN

NN N

On-20 On-21 On-22 oo o On-2N-2
On-10 On-11 PN-12 oo o On-1N-1
Pno Onp On, oo o OnN-1

NN N\

[]
QOr-10 @111 Or-12 oo o Or-1N-1

2
°
Figure 5.3. An illustration of how ¢ is computed recursively.

a;; = Prob[O[0]O[1] - - - O[4]| the state at step i is equal to j]

27

(5.11)

At the time an HMM model H,, is inserted into the HMM2-tree, o7; is computed dynamically as
we descend the tree while constructing the sequence O[0]O[1]---OJz] on the fly. Assume that we
descend the tree in a depth-first order, and we are in level j of the tree at node gq. The sequence
O, = O[0]O[1] - - - O[1] corresponds to the symbols encountered while descending from the root to g.

In this case, o;; can be computed as follows:
0‘8?0 = bo(0[0])

a% = 1,0b0(0["'])

In general,
aZ’“j:0forO§1}<j§N—1andi:1,...,T—1

and

s =0.5(et g ;e 1)bi(Ofi])for 1<j<i<N-landi=1,..,T-1

(5.12)

(5.13)
(5.14)

(5.15)

(5.16)

LS Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

The difference between this method and the unconditional method is that «;; depends on the output
sequence produced up to step ¢ of the computation, while ¢;; does not. In addition, #7* depends
only on one output symbol and not the sequence of symbols as does «. The recursion process for
computing «;"; is the same as the one of Figure 5.3 except that we replace the computations for the
¢’s with the ones for the a’s.

One way to save on the time for computing « for all the paths, is that we maintain a stack of
the intermediate results of the recursive steps so that when we finish traversing a subtree we pop
the stack up to that level and restart the recursion from there, instead of starting the computations
from the ag’y. As we descend the HMM2-tree in order to insert a model H,,, when we visit a node g,
we start from the «’s in ¢’s parent node, and incrementally apply one step of the recursive process
for computing o for each of the symbols in ¢g. We save the resulting n computations in the stack
(we have n symbols in ¢). As we descend one of the subtrees below g, say at node u, we use the
a’s computed for node g in one additional step of the recursive formula for computing o and we get
the corresponding «’s at node u. This way the overhead for computing a’s is minimal since for each
node in the HMM2-tree, we apply one step of the recursive formula for computing « for each symbol
in the node, and the entire procedure is performed only once per node, i.e., we do not re-evaluate
the a’s for a node more than once.

In order to prune the subtrees accessed at insertion time, we use o;"; to compute a new functlon
7, which is the probability that a symbol O[i] appears at step 7 of the computation (i.e., ¢
independent of the information about the state of the HMM). This can be achieved by summing

a;"; over all possible states j. Then,
= Prob[O[0]O[1]- - -O[i]|Hp, is at step 1] (5.17)
N-1
o => ol (5.18)
j=0

¢ is computed for each symbol in a node and is compared against a threshold value. The subtree
corresponding to a symbol is accessed only if its corresponding value of ¢]* exceeds the threshold.
In other words, the pruning function for each node is set to be:

fm(l,q,Oq,O) = ‘P?n (5'19)

The Upper-Bounds Method

The Viterbi algorithm [For73] is an efficient way to compute the probability that a sequence of
outputs is explained by a particular model.

The upper-bounds method is an approximation of the pruning function ¢]*. The computations
for ¢7" are exact and hence may be expensive to evaluate for each input pattern and each tree
path that is accessed by the insertion algorithm. The upper-bounds method tries to overcome this
problem by approximating " so that it is dependent only on the level of a node ¢ and not on the
entire tree path that leads to gq.

Define p7*(s) to be the computed probability (or an estimate of it) that a model puts the output
symbol s in the kth stage of executing the HMM H,,. Then, pf*(s) is the probability of finding
output symbol s in the first step. According to [Bar93], p7*(s) can be estimated as follows (the
derivations can be found in [Bar93]):

N-1
pr(s) = Y Ar_ii1; (5.20)
j=0

where A7_j1 ; is an upper bound of a; ;, and can be estimated as follows:

Ink as a First-Class Datatype in Multimedia Databases 29

arciany = O37((T st + (5.21)
(T;f{f 1) Riby(O[k]) + ... + (5.22)
(7;.: fjll > R;b;(O[k]) for k< j < N —1 (5.23)

where R, is the number of paths that one can take to get to state » in k — 1 steps and is evaluated

as follows: .
—1
R, = (o1 > (5.24)

The values A and p}*(s) can be computed by the following procedures [Bar93]:

Procedure solve_recurrence(k, j)
begin
Ar_py1,; =0
fori=j7to00
= f 1 > R;b;(O[k])

Ar_pt1,j = Ar—p41,5 +

Ar_pt1,; = (0.5)T A7 ki,
return(Ar_g41,5)
end

Function p(k, m, s)
begin
p=20
for (j =0to N —1)
p = p+ solve recurrence(k, j)
return(p)
end

5.1.3 Reducing the Space Complexity - The HMM-Tree. The problem with the HMM2-
tree is its exponential storage complexity. The typical values of the number of samples in a pattern
(T) and the number of possible output symbols (n) are 50 and 256, respectively [LT92b, LT92a].
As a result, the number of leaf nodes in the HMM2-tree is 256%° = 2400 ~ 10120, which is almost
intractable. In this section, we describe a new data structure (termed the HMM-Tree) which is an
enhancement over the HMM2-tree in terms of its storage complexity.

The basic idea of the HMM-tree is that we use the pruning function not only to prune the insertion
time but also to prune the amount of space occupied by the tree. We use Figure 5.4 for illustration.
Assume that we want to insert model H,, into the HMM-tree. Given the pruning function (any of the
ones given in Section 5.1.2), we compute the two-dimensional matrix P™ where each entry P™[i][o]
corresponds to the probability that H,, produces symbol o at step 7 of its execution. Notice that P
is of size n x T. From P™[¢][0], we generate a new vector L™ where each entry in L™, say L™][z],
contains only the high probable symbols that may be generated by H,, at step % of its execution. In
other words, each entry of L™ is a list of output symbols such that:

L™[i] = [o| P™[d][0] > €; for all 0 < o0 < n] (5.25)

For example, Figures 5.4a, 5.4b, and 5.4c give the vectors L', L?, and L® which correspond to the
HMMs H,, H,, and Hs. respectively. Initially the HMM-tree is empty (Figure 5.4d). Figure 5.4e
shows the result of inserting H; into the HMM-tree. Notice that the fanout of each node in the tree

LO Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

g (o)
ol, o2 0l, o5 02 @
03 o7 03 @
ol oll 06, 07
04, 05 03, 013 08 @
(a) (b) (c) (d) (:’
Hy

(e)

/

)

@ @) @))
) @D (6D (goar) G2
(04,05) 5,013)(04,05) (68) (3.013)

(f) (9)

Figure 5.4. An example illustrating the savings of space achieved by the new HMM-tree.

is < n. The output symbols are added in the internal nodes only as necessary. Figures 5.4f and 5.4g
show the the resulting HMM-tree after inserting H; and Hg, respectively. Notice how we expand
the tree only as necessary and hence avoid wasting extra space.

The HMM-tree is advantageous since it has the nice features of both the HMM1-tree and the
HMM2-tree while winning against both structures in terms of the space complexity. The HMM-tree
has a searching time of O(T) similar to the HMM1-tree, and uses the same pruning strategies for
insertion as the HMM2-tree and hence reducing the insertion time.

5.2 The Handwritten Trie

The Trie structure [Fre60] is an M-ary tree, whose nodes have M entries each, and each entry
corresponds to a digit or a character of the alphabet. An example trie is given in Figure 5.5 where
the alphabet is the digits 0---9. Each node on level I of the trie represents the set of all keys that
begin with a certain sequence of [characters; the node specifies an M-way branch, depending on the
(!4 1)st character. Notice that in each node an additional null entry is added to allow for storing
two numbers @ and b where a is a prefix of b. For example, the trie of Figure 5.5 can store the two
words 91 and 911 by assigning 91 to the null entry of node A.

Ink as a First-Class Datatype in Multimedia Databases 31

3-9u]
AL
N R
L0123-9u]
itk a9
A / \
ol1|2[3]=|o|u] [o|1|2]3|=[ou] ([o|1]|2]3|=[o|u] [o]1]2]{3]=|o]u
174 AN L1\ Z A 1\ A AL
V N vV V \
\ 00 02/ 91 99
ol1|2|3|-[9]u L0123-9u
Z 1,/ AN Z 1/ 1\
V N ~F V N\
003 911

Figure 5.5. An Example trie data structure. The right-most entry of each node corresponds to a null
symbol.

Searching for a word in the trie is simple. We start at the root and look up the first letter, and
we follow the pointer next to the letter and look up the second letter in the word in the same way
(see [Knu78] for a detailed description).

Notice that we can reduce the memory space of the trie structure (at the expense of running time)
if we use a linked list for each node, since most of the entries in the nodes tend to be empty [dIB59].
This idea amounts to replacing the trie of Figure 5.5 by the forest of trees shown in Figure 5.6.
Searching in such a forest proceeds by finding the root which matches the first letter in our input

003 00 02 911 91 99
Figure 5.6. A forest of trees representing the trie of Figure 2.

word, then finding the son node of that root that matches the second letter, etc. It can be shown
(see [Knu78]) that the average search time for N words stored in the trie is logy, N and that the
“pure” trie requires a total of approximately N/inM nodes to distinguish between N random words.
Hence the total amount of space is M N/InM.

Because of the high space complexity, the trie idea pays off only in the first few levels of the tree.
It has been suggested in [Jr.63] that we can get better performance by mixing two strategies: using
a trie for the first few characters of a word and then switching to some other technique, e.g., when
we reach part of the tree where only, say, six or less words are possible, then we can sequentially run
through the short list of the remaining words. As reported in [Knu78], this mixed strategy decreases
the number of trie nodes by roughly a factor of six, without substantially changing the running time.

LZ Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

Consider a simple extension of the trie data structure where each letter is handwritten. Assume
that we are given a handwritten cursive word w that is composed of a sequence of letters Iyl -- -1z,
where L is the number of characters in w. In order to search for a handwritten word in the trie we
need to match the letters of w with the letters in the trie. We start at the root and descend the tree
so that the path that we follow depends on the best match between the letter I; of w and the letters
at level 7 of the tree. One problem with this approach is the difficulty in matching the individual
letters in w with the letters in the trie. The reason is that it is difficult to handwrite a word twice
in exactly the same way. As a result, a more elaborate matching method is needed.

Each handwritten letter in our alphabet is modeled by an HMM. The HMM is constructed so
that it accepts the specific letter with high probability (relative to the other letters in the alphabet).
As a result, in order to match and recognize a given input letter, we execute each of our alphabet
HMDMs and select the one that accepts the input letter with the highest probability. An example
handwritten trie is given in Figure 5.7.

G R[]
013 RT3 bR

0O

T -+ B

y

jobic lQls
o [blc (e~ AR
e[Jobic ‘gfé%s;;:;;\\\\

L[T[RRI -[e o o T

z 7V N 4 4 N -
Figure 5.7. An example of a handwritten trie.

Several advantages emerge from using a trie:

1. Using the trie serves as a way of pruning the search space since the search is limited only to
those branches that exist in the trie.

2. Using the trie also helps add some semantic knowledge of the possible words to look for, versus
considering all possible letter combinations as in the level-building algorithm.

In order for the handwritten trie to function properly, two challenging issues have to be addressed:

1. Cursive character segmentation: since the input handwritten word is cursive, characters in
the word has to be segmented so that each character can be used to match the corresponding
character in one of the trie nodes.

2. Inter-character strokes: the extra strokes that are used to connect the letters in cursive
writing have to be treated in such a way that they do not interfere with the matching process.

In the following sections, we propose techniques to deal with each of these issues.

5.2.1 Cursive Character Segmentation. Given a cursive handwritten word w, our goal is to
partition w into the point sequences siss---s, so that each sequence can be used separately in
the matching process while descending the handwritten trie. In this section, we provide several
techniques that achieve this goal and hence has the same effect as character segmentation.

Using Counts of Minima and Maxima

One way to determine the point where one letter ends and another letter starts in a handwritten
word is by counting the number of local minima and local maxima (in the values of the y coordinate

Ink as a First-Class Datatype in Multimedia Databases 33

- the vertical direction) and the number of inflection points that are associated with each letter. For
example (refer to Figure 5.8), the stroke information of the letter a contains three local minima and
three local maxima and one inflection point. As a result, we store the number of local minima and
maxima and inflection points with each letter in a given node of the trie. More specifically, (we

i nf

mn mn
Figure 5.8. The handwritten letter “a” marked with the locations of the local maximum, local minimum,
and inflection points.

use Figure 5.9 for illustration) a node n in the handwritten trie & contains f entries e1, e, - -, €y,
where each entry e; corresponds to a letter /; and contains the following five fields: a pointer p; to
the HMM that corresponds to [;, three values vpmin, ¥maz, and v,y that correspond to the number
of local minima, local maxima, and inflection points in I;, respectively, and a pointer p. to a child
node. The matching algorithm proceeds as follows:

1. given the input handwritten word w, start at the root node r,
2. for each entry e; in 7,

a) scan w and retrieve into s the prefix of w that contains the same number of local minima

and maxima and inflection points as in €;.¥min, €;.-Vmaz, and e;.v;ns.

b) retrieve the HMM H pointed at by e;.ps.

¢) compute the probability(s|H) and maintain the maximum.
Let e; be the entry that corresponds to the maximum probability for all e; in ».
assign to 7 the child node pointed at by eg.p., i.e., 7 — ex.p..-
discard the prefix s from w.
repeat the above process till all of w is consumed or a leaf node node is reached.
the letters that correspond to the path that is descended from the root node till the last visited
node compose the resulting recognized word.

NS ok w

Figure 5.10 illustrates this procedure. Figure 5.10a shows an input word (the word “bagels”) where
it is segmented in Figure 5.10b into letters using the number of local minima, local maxima, and
inflection points. Figures 5.10c and 5.10d shows how the trie is traversed where each level consumes
a portion of the input word.

Utilizing the Most-likely HMM States

This method uses a modified version of the Viterbi algorithm [Vit67] to segment the characters
in a cursive handwritten word. The modified Viterbi algorithm is used as a guide to partition the
input pattern into character segments.

The main obstacle facing the Handwritten trie, is that we are not able to know the number of
sample points T that we should consume by each HMM at any level in the tree. The main idea

L4 Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

(b)

LI) ei LI) ef
\

o, ST \

Figure 5.9. (a) A node of the handwritten trie (b) an example showing the fields in one entry of a node in
the trie.

1

behind the new algorithm that we describe here is that we start at the root of the trie, and consider
all possible pairs of letters that exist in the trie (refer to Figure 5.11 for illustration). For example,
we combine the HMM of each letter in the root node with the HMM of each letter in the children
nodes (as in Figure 5.12). For example, in Figure 5.11, we combine the HMMs of the root node r
with the HMMs of the children nodes ¢1, c2, and c¢4. This will result in the pairs:

(Hla, H2a), (Hla, H2b), T (Hla, H2z)
(H1sy Hza), (H1s, H3p), - - -, (H1p, Hs,)

(le, H4a), (le, H4b), Tty (le, H4z)

Let H; and H, be two such pairs and H;. be their combined version. We apply a variant of the
Viterbi algorithm on Hj,, with w as input, in order to find out the two consecutive input points p;
and p;41 of the input pattern w such that p; is most likely to be the last point processed by the
final state of H; and p;11 is most likely to be processed by the initial state of H,. We save the index
7 as well as the probability prob associated with it. We apply this technique for all possible letter
combinations in the root and the child nodes (as given above) and compute ¢ and prob for each
letter-pair. We follow that path that corresponds to the letter pairs with the highest probability.

Ink as a First-Class Datatype in Multimedia Databases 35

(a) (b)

(1) (2) (3) (4) (5) (6) s RS T

tree levels = e e

————————- ——mmm—m | ——————

tree | evels

(¢c) (d)

Figure 5.10. Example illustrating the execution of the algorithm. (a) an input word, (b) its segmentation,
(c) the portions of the input word that are consumed by each level of the trie, and (d) the path from the
root of the trie to the leaf during the recognition of the word “bagels”.

For example, from Figure 5.11, if the pair (H1p, H3,) results in the highest probability value (prob),
then we know that the first letter in the input word is most likely to be the handwritten letter &
and we descend to node c3 to repeat the same process after consuming the sample points in w that
represent the letter b. These points are detected by the Modified Viterbi Algorithm (described in
Section 5.2.3) and is maintained by the variable T} in the procedure given below. In this case, we
consume only the first T}, points of w, i.e., the ones that are generated by H; only (in the example of
Figure 5.11, H; corresponds to Hq;). We repeat the same process starting with the child node that
contains H,, i.e., we descend to the child node that contains the second HMM in the HMM-pair
that corresponds to the maximum prob. In the example of Figure 5.11, the algorithm proceeds to
the child node c3 that contains Hs, since the pair (H1s, H3,) corresponds to the maximum prob.
The listing for the new recognition procedure using the handwritten-trie search is given below.

1. given the input handwritten word w, start at the root node r,
2. for each entry e; in 7,
a) retrieve the HMM H; pointed at by e;.ps
b) let s be the child node pointed at by e;.p.
c) for each entry s.ej,
i. retrieve the HMM H, pointed at by s.e;.pp

LG Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

- r >
HlaHlb cooe le
AREmE
1
-< c, > < C, > -< C, >
H2aH2b e o o H22 H3aH3b e o o HSZ H4aH4b e o o H4Z

LA
T

omo
Ty

5a 5b 5z

a,Q,...j

Figure 5.11. An example illustrating the new recognition procedure using the handwritten-trie and the
modified-Viterbi algorithm.

—

ii. construct an HMM H;, by simply concatenating the HMMs H; and H, (see Figure 5.12).
iii. apply the modified-Viterbi algorithm MV
Ti,prob «— MV (H,.,w), where T; is the number of points consumed from w (i.e., the
prefix w, of w of size T} points) and prob is the probability that H;, generates wy.
iv. maintain the values s, j, and 77 that correspond to max prob.

3. Let r.e; and r.e;.p..e; be the two entries that corresponds to the maximum probability for all
r.e; and all r.e;.p..e;, and let wy be the prefix of w of length T} that corresponds to the points
consumed from w in this case.

. assign to r the child node pointed at by ex.p., i.e., 7 < eg.p..

discard the prefix w; from w.

repeat the above process till all of w is consumed or a leaf node node is reached.

the letters that correspond to the path that is descended from the root node till the last visited

node compose the resulting recognized word.

N oo

The modified-Viterbi algorithm remains to be explained. Before presenting the new modified-Viterbi
algorithm, we start by a brief overview of the Viterbi algorithm.

5.2.2 The Viterbi Algorithm. The Viterbi algorithm [Vit67] is used to find the single best (or
most likely) state sequence ¢ = (g1g2---gr), for the given observation sequence O = (0102 ---or).
Define the quantity 8;(¢) to be the highest probability along a single path at time ¢ which accounts
for the first ¢ observations and ends in state 1, i.e.,

6:(1) = max Prob(qigz---qt—1,9t = 43,0102 - - 0¢) (5.26)
91,92, 9t—1

This can be expressed recursively as:

575(_]) = 11<11a<}§v[5t_1(i)aij]bj(ot), 1 S _] S N, 2 S t S T (5.27)

81(1) = mibi(o1), 1<i< N (5.28)

‘ Ink as a First-Class Datatype in Multimedia Databases 37‘

S o
initial g jinitial
state tinal

s = state:State

°
initial f
i nal

state
Ile state

(c)

Figure 5.12. (a) The HMM H;, (b) the HMM H.., (c) the HMM H;, is the concatenation of H; and H.,.

[U S ——

To actually retrieve the state sequence, we use the array v:(j) to keep track of the state that
maximizes Equation 5.27, Therefore,

¥4(j) = arg max [6-1(day;], 1<j< N, 2<¢<T (5.29)

Now, in order to find the best state sequence, we first find the state with highest probability at the
final stage, and then backtrack in the following way.

p* = 122}5\,[511(1,)] (5.30)
g; = arg max [6r(i) (5.31)
@ =viy1(gipe), t=T—1,T—2,---, 1. (5.32)

Figure 5.13 illustrates one application of the Viterbi algorithm for an HMM with four states and an
input sequence of size 15 points. The dotted lines give the best state sequence at the intermediate
stages, while the bold line gives the state sequence with the highest probability that is identified by
the Viterbi algorithm.

5.2.3 The Modified-Viterbi Algorithm - Estimating 7. Our goal is the following: We are
given an HMM H;,, which is a composition of the two HMMs H; and H,, and an input pattern w of
length T points. H; is assumed to be best at recognizing a prefix of w. The problem is that we do not
know the length T} of the prefix w, For example, (refer to Figure 5.14), assume that we are given
the input word “bagels” (Figure 5.14a), and a left-to-right HMM (Figure 5.14b) for recognizing the
letter b (Figure 5.14c). Because the final state of the HMM (the right most state in the HMM of
Figure 5.14b) contains a cyclic transition probability of value 1, all the input points past the letter b
in the word “bagels” can be consumed in this state. The modified-Viterbi algorithm that we present
in this Section addresses this problem. In other words, it identifies the point of the input word at
which we stop, and hence isolating the letter b from the rest of the input word. It achieves this by
appending another HMM (H,) at the end of H; (resulting in the HMM H;,.) and detect the point in

LS Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

&« & ® @ <

et EEE CEEUEEY TR S EEY TR)
N N N N

AN AN AN
A Y A Y A Y
>--o ‘Q\--o >--o

N\

N\

states

/ 4
¥

A Y
4
7 N\
N\

N
o w--0 A m--o
\
\ N N N
‘o \e--a w Y >--0o--9
\ A Y AN N

N\ N\ N\ N N\ N\

\ A N

1
2
4
3 e--e--¢--«
A Y A Y A Y A Y
4 ®© ®» w-—e % » e B w--o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sanpl e points
Figure 5.13. An example illustrating the execution of the Viterbi Algorithm. The dotted lines indicate the

best state sequence at the intermediate stages, while the bold line indicates the overall best state sequence
for the given input pattern.

o
Ofinal

State

(v
)

D
D

initial
state

(b)

(a)

(c)

Figure 5.14. (a) An input word, (b) an HMM for recognizing the letter b given in (c).

time when it is best (according to the highest probability values generated) that a state transition
(in Hj) from the final state in H; to the initial state in H, takes place. This point is registered (T%)
and is returned by the algorithm. The procedure is applied repeatedly for the rest of the letters in
the word, as explained in Section 5.2.1.

We make use of the following observations regarding the Viterbi algorithm.

1. the forward part of the Viterbi algorithm does not involve any backtracking, i.e., once a point
t is processed and the best states were assigned to it, we do not backtrack at any point in
computation to recompute or change these best-state assignments.

2. once we encounter the last input symbol of the tree, e.g., or,, the way to figure out the best
state sequence is to find the state with maximum probability and trace back the state sequences
using the array v, as shown in Section 5.2.2.

Here, we show how we make use of these two properties of the Viterbi algorithm. Assume that
we are given two HMMs H; and H,, where each HMM has one initial and one final states and that
we concatenate the two HMMs to produce a new HMM H;, (see Figure 5.12) by adding a transition
from the final state of H; to the initial state of H,. Notice that some probability value has to be
assigned to the newly added transition. For example, in left-to-right models, this can be achieved by
changing the transition probability of the final state of the left HMM (H;), as given in Figure 5.15.
Let the final state of H; be H;; and the initial state of H, be H,,.

‘ Ink as a First-Class Datatype in Multimedia Databases 39‘

initial Winitial final

state T+N T+N T+N fsitgfle ”state T +N T +N T +N state

T T T . w1 T T . :
i TN Tx T+N o TN TN TN :
EIaNaINaTTaS KiaSNa N TIa Y
| N\ _N \J_N " N /N \J N |

initial

state T+N T+N T+N T+N T +N T +N T +N Linal

He T T T T T T T . l
| T+N T+ T+N T+N T +N TN T +N i
ey (Y v (Y 1 (O
; oY OO0 !
! N\ N o/ N N N\ N\ N !

o o o = = = = = = = = —_————_———_—_———_—_———_—_———_————_———

(c)
Figure 5.15. (a) The left-to-right HMM H;, (b) the left-to-right HMM H,, (c) the HMM H;, is the

concatenation of H; and H,.

In order to find the value of T}, we apply the Modified Viterbi algorithm, which is the same as
the Viterbi algorithm except that for each iteration that involves one of the 7 input symbols, we
monitor the probability values of the two states H;, and H., until for some ¢ = T}, 2 < TIT, the
following conditions are satisfied (in the given order):

1.

H;

, = arg 12&;}‘%’[5%_1(1;)0@], 1<j<N (5.33)

2. fort = T, + 1 (i-e., the next input point),

Hy; =arg max [br,(d)a;], 1<j< N (5.34)
Once these two conditions are satisfied for some ¢ = T}, then we stop the algorithm and return the
value Ty which indicates that the input points 01,0, - -, or, are the prefix of w that are supposed
to be recognized by the HMM H;.

We plan to investigate the performance of the two techniques for character segmentation, pre-
sented in this paper, in the implementation phase of the handwritten-trie.

5.3 Inter-character Strokes

In cursive writing, some additional strokes are introduced to interconnect the handwritten characters.
The shape of these strokes depends on the letters that are to be connected, i.e., the letters to the
left and to the left of the connecting stroke. We discuss briefly how we can deal with them in the
handwritten trie.

One way of dealing with inter-character strokes is to allow for some input points (some constant
number) to be skipped between the end of one letter and the start of the next letter. These skipped
points will not be considered in the HMM probability computation.

A second approach to dealing with this problem is to change the nodes of the trie so that
they reflect pairs of already connected characters instead of single characters. In addition, letters

LO Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

in children nodes overlap with their parent node in one character. E.g., the word bagels will be
stored in the handwritten-trie nodes as: ba, ag, ge, el, and ls. This way, the inter-character strokes
are incorporated into the tree search. We plan to investigate both of these two techniques in the
implementation phase of the handwritten trie.

5.4 Performance

We have build an initial prototype of the Handwritten Trie in main memory. Initial results show that
we can accommodate up to 18,000 pictograms in less than one million bytes of memory (including
the space taking by the index and the HMM representations), using an alphabet of 26 symbols
(roman characters). The matching rate of the index is better than 90%.

Figure 5.16 compares the matching time when using our indexing technique versus using a
sequential matching algorithm. As expected, the search time of the sequential matching algorithm
grows linearly with the size of the database. On the other hand, the search time of our indexing
technique tends to grow logarithmically (slow growth) in the size of the database.

Comparison between Index and Sequential Search Times
Execution Time in seconds

trieindex

sequential search
50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

Number of Pictogramsin Database
100 200 300

Figure 5.16. A comparison between the matching time using our indexing technique versus using a sequen-
tial algorithm. The z-axis corresponds to various database sizes.

6. Conclusions

We have presented several techniques of indexing large repositories of pictograms. Preliminary results
show that the index helps drastically in reducing the search time, when compared to sequential
searches. The results show search times on the order of 2 seconds for database sizes up to 150,000
words (running on a 40MHz NeXT workstation).

Ink as a First-Class Datatype in Multimedia Databases 41

We are currently experimenting with these techniques to implement both main memory and
disk-based implementations of ink databases. In doing so, we hope to obtain a better understanding
of the issues involved in handling large volumes of pictograms.

7. Acknowledgments

The Moby-Dick text we used in our experiments was obtained from the Gutenberg Project at the
University of Illinois, as prepared by Professor E. F. Irey from the Hendricks House edition.

TSW90

[AB94] Walid Aref and Daniel Barbard. The Hidden Markov Model Tree Index: A Practical Approach to
Fast Recognition of Handwritten Documents in Large Databases. Technical Report MITL-TR-84-93,
MITL, January 1994.

[AS90] W. G. Aref and H. Samet. Efficient processing of window queries in the pyramid data structure. In
Proceedings of the 9th. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS), pages 265-272, Nashville, TN, April 1990. (also in Proceedings of the Fifth Brazilian Symposium
on Databases, Rio de Janeiro, Brazil, April 1990, 15-26).

[AVB94] Walid G. Aref, Padmavathi Vallabhaneni, and Daniel Barbard. On training hidden markov mod-
els for recognizing handwritten text. In Fourth International Workshop on Frontiers of Handwriting
Recognition, Taipei, Taiwan, December 1994.

[Bar93] Daniel Barbard. Method to index electronic handwritten documents. Technical Report MITL-TR-
77-93, Matsushita Information Technology Laboratory, Princeton, NJ, November 1993.

[BK92] C.B. Bose and S. Kuo. Connected and degraded text recognition using Hidden Markov Models. In
International Conference on Pattern Recognition, 1992.

[dIB59] Rene de la Briandais. File searching using variable length keys. In Proceedings of the Western Joint
Computer Conference, pages 295-298, 1959.

[For73] G. D. Forney. The Viterbi Algorithm. Proceedings of the IEEE, 61, 1973.

[Fre60] E. Fredkin. Trie memory. Communications of the ACM, 3:490-500, 1960.

[Jr.63] E. H. Sussenguth, Jr. Use of tree structures for processing files. Communications of the ACM,
6:272-279, 1963.

[Knu78] D. E. Knuth. The Art of Computer Programming, Vol. 8: Sorting and Searching. Addison-Wesley,
Reading, MA, 1978.

[LBG80] Yoseph Linde, Andres Buzo, and Robert M. Gray. An algorithm for vector quantizer design. IEEE
Transactions on Communications, COM-28, No 1:84-95, 1980.

[LRS83] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An introduction to the application of the theory
of probabilistic functions of a markov proces to automatic speech recognition. Bell System Technical
Journal, 62(4):1035-1074, April 1983.

[LT92a] D. P. Lopresti and A. Tomkins. Applications of Hidden Markov Models to Pen-Based Computing.
Technical Report MITL-TR-32-92, M.I.T.L, November 1992.

[LT92b] D. P. Lopresti and A. Tomkins. Pictographic Naming. Technical Report MITL-TR-21-92, M.I.T.L,
August 1992.

[LT93a] D. P. Lopresti and A. Tomkins. Approximate Matching of Hand-Drawn Pictograms. In Proceedings
of the Thaird International Workshop on Frontiers in Handwriting Recognition, May 1993.

[LT93b] Daniel Lopresti and Andrew Tomkins. Approximate matching of hand-drawn pictograms. In
Proceedings of the Third International Workshop on Frontiers in Handuwriting Recognition, pages 102—
111, Buffalo, NY, May 1993.

[LT93c] Daniel Lopresti and Andrew Tomkins. Pictographic naming. In Adjunct Proceedings of the 1993
Conference on Human Factors in Computing Systems (INTERCHI’93), pages T7-78, Amsterdam, the
Netherlands, April 1993.

[LT94] Daniel P. Lopresti and Andrew Tomkins. On the searchability of electronic ink. In Proceedings of
the Fourth International Workshop on Frontiers in Handwriting Recognition (to appear), Taipei, Taiwan,
December 1994.

LZ Walid G. Aref, Daniel Barbard, Daniel P. Lopresti, and Andrew Tomkins

[Mac67] J. MacQueen. Some methods for classification and analysis of multivariate observations. Proceedings
of the Fifth Berkeley Symposium on Mathematics, Statistics and Probability, 1:281-296, 1967.

[Rab89] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.
Proceeding of the IEEE, T7(2):257-285, February 1989.

[Rub91] Dean Rubine. The Automatic Recognition of Gestures. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1991.

[Sch92] Robert Schalkoff. Pattern Recognition. Statistical, Structural and Neural Approaches. John Wiley
& Sons, Inc, 1992.

[Sla93] Slate Corporation, Scottsdale, AZ. JOT: A Specification for an Ink Storage and Interchange Format
(ver. 1.0), 1993.

[SM83] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,
Inc., 1983.

[TP75] S. Tanimoto and T. Pavlidis. A hierarchical data structure for picture processing. Computer Graphics
and Image Processing, 4(2):104-119, June 1975.

[TSW90] C. Tappert, C. Y. Suen, and T. Wakahara. The state of the art in on-line handwriting recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(8), August 1990.

[Tuc84] L. Tucker. Computer Vision Using Quadiree Refinement. PhD thesis, Polytechnic Institute of New
York, Brooklyn, May 1984.

[Vit67] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algo-
rithm. IEEE Transactions on Information Theory, IT-13:260-269, 1967.

[WEFT4] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. Journal of the
Association for Computing Machinery, 21(1):168-173, 1974.

