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Abstract

In this paper, we ezamine the effects
of various kinds of simulated OCR noise
on the performance of several popular in-
formation retrieval models. We also in-
troduce new versions of some of the mod-
els by combining two classic paradigms for
dealing with imprecise data: approzimate
string matching and fuzzy logic. Based on
a rank-order analysis of experimental data,
we show that the new fuzzy retrieval mod-
els appear to be generally more robust than
their traditional counterparts.

1 Introduction

When studying information retrieval mod-
els and algorithms, it is often convenient to
assume that the contents of the database
are, in a sense, perfect: all of the text
belongs, nothing is missing, and there are
few if any errors. With the growing use of
fully-automated OCR and document anal-
ysis systems, however, it is becoming in-
creasingly evident that significant levels
of “noise” may be present in the data.
Even state-of-the-art OCR technology pro-
duces garbled output when confronted by
unanticipated document formatting (e.g.,
shaded backgrounds, unusual fonts, white-
on-black text).

Moreover, text taken directly from elec-
tronic sources (e.g., Usenet postings) may
also contain spurious information (from the
standpoint of retrieval), as well as typo-
graphic errors. For example, documents
may be encountered in any number of for-
mats that contain a large amount of “meta-
data” (i.e., formatting instructions), in-
cluding HTML, RTF, PostScript, IATEX,
etc. Totally “clean” documents are likely
to be the exception rather than the rule.

Figure 1 illustrates the relationship be-
tween various classes of document analysis
errors and several popular models for infor-
mation retrieval. While some schemes are
relatively robust in the presence of certain
types of noise, in other cases the impact
may be much more dramatic.

In this paper, we examine the effects of
various kinds of simulated OCR noise on
the performance of several popular informa-
tion retrieval models. A consistent notation
is presented and used throughout the dis-
cussion, making it possible to compare the
various components of the models directly,
and to judge their similarities and differ-
ences on a common framework.

We also introduce new versions of some
of the retrieval models by combining two
classic paradigms for dealing with impre-
cise data: approximate string matching and
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fuzzy logic. Based on a rank-order analy-
sis of experimental data, we show that cer-
tain schemes are more robust than others,
and that the new fuzzy models are generally
more robust than their traditional counter-
parts.

2 Related Work

Researchers have done studies to identify
the effects of OCR errors with respect to
different models of information systems.
These studies have suggested that tradi-
tional information retrieval techniques have
some resilience to degradation in the text,
particularly with long documents.

For example, Taghva, Borsack, Con-
dit, and Gilbreth [1, 2] considered the ef-
fects of several commercial OCR packages
on retrieval accuracy of a vector space
model SMART and a probability model IN-
QUERY. They concluded that OCR sys-
tems with high recognition rates have mini-
mal effect on retrieval performance for long
documents. Recently, Mittendorf, Schauble

and Sheridan [3] provided a theoretical ex-
planation of this phenomena for a par-
ticular retrieval method. Interestingly, in
Taghva et al’s papers, the authors stated
that although the average precision and re-
call are not significantly affected by com-
mon OCR errors, individual queries can be
greatly affected sometimes. Also, when dif-
ferent weighting schemes are applied, the
ranking observed between the OCR version
and a “corrected” version are affected. Ex-
periment results on SMART system also
show that the average precision and recall
are not affected for short documents ei-
ther [4]. In addition, the performance dif-
ference on an OCR database and on a post-
processed version is not significant for short
documents. In a paper by Taghva, Borsack,
Condit, and Erva [5] an evaluation on BA-
SISplus system which is based on Boolean
model is reported. The result shows that
the precision is not affected on-average by

OCR damage.

On the other hand, Croft, Harding,
Taghva, and Borsack [6] used a simulated
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OCR model to study the effect of noise on
a probabilistic retrieval model. The result
shows that noise has an impact on short
documents. Recently, Tsuda, Senda, Mi-
noh, and Tkeda [7] studied how simulated
single character substitutions may affect a
vector space clustering model. Their con-
clusion is that the system may be able to
tolerate up to 15.6% character damage. A
similar conclusion was reached by Ittner,
Lewis, and Ahn [8] in a paper which shows
how the vector space method for docu-
ment clustering has sustained badly dam-
aged faxed text.

Several papers also suggested ways to
cope with OCR noise in the design of a
document retrieval system. For example,
Pearce suggested using n-grams for robust-
ness [9] in building a hypertext links us-
ing degraded OCR output. Several fuzzy
matching methods for reducing the im-
pact of OCR noise were proposed by Myka
and Giintzer [10]. Mittendorf, Schiuble
and Sheridan [3] proposed a probabilistic
weighting approach to indexing short OCR
text. In a paper by Wiedenhéfer, Hein, and
Dengel [11] the authors present an indexing
component whose input are character hy-
potheses lattices which are post-processed
by a generate-and-test component feeding a
morphology, a rule based substitution sys-
tem, and a trigram correction component
with word candidates.

3 Models and Algorithms

For the purposes of relating the traditional
retrieval models with several new ones to be
described later, we find it helpful to adopt a
consistent, precise notation. While this ap-
proach may seem overly formal at times, it
makes it possible to compare directly the
various model components, and to judge
their similarities and differences on a com-
mon framework.

We begin with some definitions. A
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string, S = $182...5n, is a finite sequence
of characters chosen from a finite alphabet,
s; € %, String A = a1ay...ay, is a sub-
string of string B = b1by.. . b, if m < n
and there exists an integer k£ in the range
[0,m — n| such that a; = bj1x for i =
1,2,...,m.

A guery term, T, and a document, D,
are both strings. A database A is a finite
set of documents, A = {Dq,D,,...,Dp}.
A membership function M is a mapping
between term-document pairs and a spe-
cific set of values in the interval [0,1]. Al-
though the precise range of M depends on
the retrieval model, generally it can be in-
terpreted as the degree to which a given
term is expressed in a particular document.
In the extreme, M(T,D) = 1 when the
term’s presence is strong, and M(7,D) =0
when the term is completely absent. For
some models, the membership function is
defined relative to term-document-database
triples, M(T,D,A). Here the interpreta-
tion reflects the expression of the term in
the document relative to its expression in
the other documents in the database.

In the case of the Boolean operators
AND, OR, and NOT, we distinguish be-
tween the forms that are written as part of
the query (e.g., (cats AND dogs)) and the
functions themselves. In the case of AND
and OR, the functions are Fanyp and Fogr
and they map tuples from the range of M
back into the range of M. Fyor is defined
similarly, but operates on a single value in-
stead of a tuple.

A simple query Q written as (77 OP T3)
is “run” on a particular document D by
evaluating:

Q(D) = Fop(M(T1,D), M(T2, D)) (1)

The extension to more complex queries con-
taining multiple operators and increasing
numbers of terms is straightforward.
Lastly, a ranking R is a mapping be-
tween the documents in a database A



and integers in the range [1,|Al|] such
that R(D;) = r if and only if [{D; €
A | R(D;) < r}| = r—1. That is, a
document is assigned rank r if and only
if r — 1 documents in the database are as-
signed some higher rank. Thus, for exam-
ple, {1,4,1,3,5} is a legal ranking for the
document database {Di, D,, D3, D4, D5},
whereas {1,4,1,4,5} is not. The evaluation
of a query induces a ranking on the docu-
ments in a database in an obvious way.

3.1 Boolean Retrieval

Perhaps the simplest, most familiar text re-
trieval model is the Boolean model. In this
case, the range for the membership function
is {0,1}, and the function itself is:

1 T is a substring of D
0 otherwise

MB(T, D) = { (2)

The operators correspond to the standard
Boolean ones, as indicated in Table 1.

Xy H Fano(z,y)  Fou(z,y) FRoz(z)
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

Table 1: Standard Boolean operators.

A typical Boolean query might
be ((Clinton AND Gore) OR U.S. leaders),
which is interpreted to mean all documents
containing the substrings “Clinton” and
“Gore” or the substring “U.S. leaders”.

Note that the rankings produced by the
simple Boolean model are somewhat degen-
erate (but still valid from a mathematical
standpoint). All of the documents satisfy-
ing the query, say there are m of them, are
assigned rank 1. The rest of the documents
in the database are assigned rank m + 1.

3.2 Fuzzy Boolean Retrieval

A shortcoming of traditional Boolean re-
trieval is that it requires the terms to ap-
pear exactly in the document as substrings.
If, for example, the OCR process used to
generate a particular database has made
the common mistake of recognizing an ‘I’
(lower-case ‘el’) as an ‘I’ (upper-case ‘eye’),
then the previous query may fail for some
documents because the specific sequence of
characters “Clinton” is no longer present.

Rather than insist that a query term ap-
pears exactly in the document, we might in-
stead ask the question, “Is there anything
stmilar to the term in the document?” In
other words, the membership function has a
continuous range. Such a model can be re-
alized by combining two classic paradigms
for dealing with imprecise data: approxi-
mate string matching and fuzzy logic.

A standard measure for approximate
string matching is provided by edit dis-
tance [12], also known as the “k-differences
problem” in the literature. In general, the
following three operations are permitted:
(1) delete a character, (2) insert a char-
acter, (3) substitute one character for an-
other. Each of these is assigned a cost,
Cdel, Cins, and cgup, and the edit distance
is defined as the minimum cost of any se-
quence of basic operations that transforms
one string into the other.

This optimization problem can be
solved using a well-known dynamic pro-
gramming algorithm [13, 14]. Let T =
t1ty ...t be the term, D = did,...d, be
the document, and define §; ; to be the dis-
tance between the first ¢ characters of T and
the first j characters of D. The initial con-
ditions are:

50’0 = 0
bio = 61,0+ caer(ts)
bo,; 80,j—1 + cins(d;)

(3)

and the main dynamic programming recur-
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rence is:
6i—1,;  + cae(ti)

8ij—1  + cins(dy) (4)
8i—1,j-1 + csun(ts, d;j)

6; ; = min

When Equation 4 is used as the inner-loop
step in an implementation, the time re-
quired is O(mn), where m and n are the
lengths of the two strings.

This common formulation requires the
two strings to be aligned in their entirety.
The variation we use is modified so that
a term, which is relatively short, can be
matched against a much longer document
to locate regions of high similarity (this
is sometimes called “word spotting”). We
make the initial edit distance 0 along the
entire length of the document (allowing a
match to start anywhere), and search the
final row of the edit distance table for the
smallest value (allowing a match to end
anywhere). The initial conditions become:

50’0 = 0
Sio = bii10+ cqa(ti) (5)
bo; = 0

The inner-loop recurrence (z.e., Equation 4)
remains the same.

Figure 2 shows the results of this com-
putation for a simple example where we
have assumed that cge = Cins = Coup = 1.
An exact match for the term “shell” ap-
pears in the document, as indicated. This
corresponds to the smallest value in the fi-
nal row, 0. Also note that another very
similar substring is found at the same time
(“sell”).

We define (T, D, ) to be the edit dis-
tance at index ¢ in the final row of a ta-
ble built in this fashion. Then £(T,D) =
min(E(T, D,7) | 0 < 7 < n) corresponds to
the best match(es). Under the cost assign-
ment given previously, the maximum possi-
ble value in this row is m, which represents
deleting all of the characters in the query
term. Hence, £(T, D) can fall anywhere
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in the range [0, m]. We obtain a member-
ship function with range [0, 1] for this model
through the use of an exponential decay:

1
e2&(T,D)/(m—£(T,D)) (6)

MPFE(T, D) =

where « is a constant.

Table 2 shows membership values for
terms of various lengths and edit distances,
assuming o = 1. If a term appears exactly
in the document, the value returned is 1.0.
If none of the characters in the term ap-
pear anywhere in the document, the value
returned is 0.0. These boundary condi-
tions correspond nicely with the traditional
model presented earlier.

For the Boolean operations, we use def-
initions from fuzzy set theory [15]:

Fano(z,y) = min(z,y)
For(z,y) = max(z,y)
.7:5103,‘,.(33) = 1-z

Hence, if the document were “The q~ick
brown tox jurnps ovcr the lazy dog.” then
evaluation of the query (fox AND dog)
would proceed as follows:

Q"P(D) = Fp(MT(fox, D), M (dog, D))
= FrF(0.607,1.000)
= min(0.607,1.000)
= 0.607

The Unix agrep utility can be viewed
as implementing a restricted form of fuzzy
Boolean retrieval [16]. It differs from the
model we have presented in at least two sig-
nificant ways:

1. Queries can contain AND operators or
OR operators, but not both. There is
no NOT operator.

2. The user must specify the maximum
number of editing operations a prior:
(the default is 0, ¢.e., exact matching).
The hits are returned in “scan” order
(as with standard grep), not ranked by
“goodness.”
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Figure 2: An example of edit distance “word spotting”.

Best match = “shell”

Edit Distance Query Term Length (m)
&(T, D) 2 3 4 5 6 7 8
0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 0.368 0.607 0.717 0.779 0.819 0.846 0.867
2 0.000 0.135 0.368 0.513 0.607 0.670 0.717
3 0.000 0.050 0.223 0.368 0.472 0.549
4 0.000 0.018 0.135 0.264 0.368
5 0.000 0.007 0.082 0.189
6 0.000 0.002 0.050
7 0.000 0.001
8 0.000

Table 2: Membership values for approximate matchings of various length terms.

Like grep, agrep can match regular ex-
pressions, a fundamentally different class
of patterns than Boolean queries. Despite
their power, however, regular expressions
are not commonly supported in query lan-
guages for document databases.

3.3 Vector Space Retrieval

Another important information retrieval
model is the Vector Space model originally
proposed by Salton and Lesk [17]. Here,
the similarity between a query and a doc-
ument is derived from a statistical notion.
Both document sets (databases) and query
terms are represented as vectors of real-
valued weights:

< Wy, W,y -y Wy >

where w]i is the weight assigned to the k*h
indexing term in the i*» document. An in-
dexing term may be a word, word-stem,
phrase, character n-gram, or other linguis-
tic entity.

Several techniques have been used to
compute these weights, the most common
being tf X #df which is based on the fre-
quency of a term in a single document (f)
and its frequency in the entire collection

(idf):

. . n . .
wi = tf x log [d—k] = 4 xidf,  (7)

where udf, = log [%]
k

tfkZ is the term frequency in the i** docu-
ment for the k** indexing term, idfy is the
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inverse document frequency of the k** term,
and n is the number of terms in the i** doc-
ument.

These weights represent the relative
“importance” of a term in a given docu-
ment/query, and can be equated precisely
with the notion of a membership function:

MY (Ty, D;, A) = w} (8)

To compute the vector representation of
a document, the following steps are usually

followed:

1. Identify individual words in the docu-
ment.

2. Remove high frequency functional
words (stop-words) according to a pre-

defined list.

3. Reduce each word to a word-stem us-
ing a stemming algorithm.

4. For each remaining word-stem (i.e.,
term), assign a weighting factor.

An evaluation of query Q running on
document D can be calculated using any of
several similarity functions, the most com-
mon being the cosine of the query vector u
and the document vector w:

Z WEUE

QD)= —~E—— (9

q/Ekjw}‘i%:u}‘i

Note that according to the above scheme,
long documents are indexed by a larger
number of terms, and thus have a better
chance of being retrieved than shorter docu-
ments. A remedy for this bias is to normal-
ize the vector. Various such schemes have
been proposed in the literature. A typical
approach [18], which we have adopted for
our experiments, is:

w} = ntfit X nidf, (10)

) tfi log I:_dT} :|

where nify = — 2k nidfy, = ————+
maxy iy log(n)
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3.4 Extended Boolean Retrieval

The standard Boolean model is unable to
distinguish between degrees of usage: ei-
ther a term is present in a document or
it is not. To bridge this gap, Salton, et
al. have proposed using weighted Boolean
operators, known as the Extended Boolean
(or p-norm) model [19]. In this model,
the ranking factor depends not only on the
number of keywords in common between
the query and the document, but also on
weights assigned to index terms and on a p-
value associated with each query operator.

In terms of our previous formulations,
the membership function is the same as for
the Vector Space model:

MPE(T,D,A)= MY(T,D,A) (11)

The Boolean operators in this case are

defined by:

1— 2P+ (1—y)P/?
Foon(ay) =1- [L= IS0
zP 4 yPl/P

FHOMEIES

fﬁgfr(m): l-z

where p is a parameter to be determined.
Setting p to be infinity leads to the stan-
dard Boolean operators. Setting p equal to
1 eliminates the distinction between AND
and OR. For the purposes of this paper, we
assume that p = 2.

3.5 Fuzzy Extended Boolean Re-
trieval

Our approach in this case is a significant de-
parture from the traditional models. Unlike
the Vector Space and Extended Boolean
methods, we do not decompose documents
and query text into stemmed terms in ad-
vance. Instead, we use the results of the
approximate string matching computation
directly. Consider the final row of Figure 2;
recall that these are the values (T, D, 7).



If the query term (or something like it) oc-
curs frequently in the document, there will
be many small values along this row.

The general strategy in this case is to
form a weighted sum of edit distance values
(biased towards perfect and near matches),
and then normalize this by dividing by the
length of the document. This membership
function is:

MFE3(T, D) =

" 1
1
n ; e2&(T,D 1)/ (m—£(T,D 1)) (12)

where, again, a is a constant that controls
the rate of exponential decay.

Unlike some of the other membership
functions we have discussed, Equation 12 is
unlikely to return values close to 1.0 except
for pathological cases (such as a document
and a query composed solely of the same
character). This in itself is not a problem,
however, as the rankings it induces are ap-
propriate, as will be shown in Section 5.

The Boolean operators are the same as
for the extended Boolean model, namely:

Fino(@y) = Finp(z,y)
}"ggB(m,y) = ng(m,y)

Fror(2) = Fron(z)

In addition to its use of fuzziness, this
approach has another advantage over the
more traditional models in that any string
of characters (including spaces and punc-
tuation) is allowable as a query term, not
just stemmed words. On the other hand,
the lack of a predefined dictionary may be a
disadvantage: it is not immediately obvious
how to weigh the occurrences of a particu-
lar term relative to all other terms in the
document (or database). This issue is an
open question.

3.6 Proximity Boolean Retrieval

Proximity is a useful concept that, so far,
has not received enough attention in stud-

ies of OCR noise and its impact on infor-
mation retrieval. As an example, one such
query might be “Find all documents where
the words ‘Clinton’ and ‘Gore’ appear in
the same sentence.” The precise meaning of
“proximity” could, in fact, be defined rela-
tive to any logical structure derivable from
a document (characters, lines, paragraphs,
columns, etc.).

From a notional standpoint, we write a
simple proximity query as [Clinton | Gore],
while more complex query might be
([Clinton | Gore] OR U.S. leaders). That
is, a proximity query replaces a single term
in the traditional model. This query also
illustrates how proximity better captures
meaning when two terms appear near one
another: “Clinton” and “Gore” in the same
sentence is conceptually closer to “U.S.
leaders” than “Clinton” and “Gore” in two
unrelated sentences far apart in the docu-
ment.

In effect, proximity is a new form of
membership function that takes term-term-
document triples and maps them onto a set
of values in the interval [0, 1]. Rather than
treat this as an entirely new query model,
we carry over the membership function M?®
and operations F 2y, Flg, and Fy,p from
the standard Boolean case. To this end, we
add a new membership function M¥® for
use in evaluating proximity terms.

We begin by breaking the document
D into consecutive, non-overlapping sub-
strings, D = D1D,...Dg, where the par-
titions are determined by the meaning of
“proximity”. For example, if the proximity
is “in the same sentence”, then the docu-
ment is broken at sentence-ending punctu-
ation (periods, question marks, and excla-
mation points). The membership function
is defined as:

MPB(T1,Ty, D) =
1 3¢ such that
F 2w (MB(T1,D;),MB(T3,D;)) = 1
0 otherwise
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Evaluation of a query incorporating prox-
imity terms then proceeds exactly as before.
Other less-common forms of proximity are
possible, and are handled in a similar way.

3.7 Fuzzy Proximity Boolean Re-
trieval

The preceding definition of proximity
clearly breaks down when the logical struc-
ture of the document is not maintained.
It is not uncommon for an OCR system
to miss line breaks and column and table
boundaries, and to delete and insert spaces
and punctuation marks (especially periods)
throughout the text. All of these error ef-
fects can have a large impact on proximity
queries.

To incorporate a degree of fuzziness in
this case, we allow for the fact that OCR
and document analysis errors may have
added “noise” to the logical partitioning of
the document. (We also continue to al-
low fuzziness in the basic term membership
function as well.) For example, it is possible
that MF5(Ty, D;) and MFB(Ty, D;), where
1 # 7, may be used to satisfy the query. Let

g(T17T27 Dall’aj) -
ffﬁD(MFB(Th Di)7 MFB(T27 DJ))

We define the membership function as:

MFFE(Ty, Ty, D) =

12}3@{7(%,J,k)Q(T1,T2,D,z,J)} (13)

where

- . 1
v(1, 5, k) = eBli—3l/(k—1—[i—3])

is called the weight factor and 8 is a con-
stant. This computes the best pairing of in-
dividual hits, weighted by an exponentially
decreasing function of the distance between
them.
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4 Performance Evaluation

In this section, we study the performance
of the various retrieval models for data ex-
hibiting simulated OCR noise. We begin
by discussing our noise models. Then we
present our evaluation criterion, which is
the correlation between the document rank-
ings produced for noisy data relative to
those produced for clean data for a given
query. After this, we describe our test
database and the techniques we used to gen-
erate sample queries. Finally, we give the
results of running several large-scale exper-
iments.

4.1 Noise Models

We used a noise generator for simulating er-
rors in the document text. Using synthetic
noise model has the advantage of being able
to control the distribution of noise and sub-
sequent errors as well as to corrupt the same
underlying data in a variety ways. We first
consider a simple case — that noise to the
database is made of random single charac-
ter insertions, deletions or substitutions. A
damage rate p controls the percentage of
character errors in the text. In our model,
insertion, deletion, and substitution occur
in equal probability.

Uniformly distributed character errors,
however, are not the type of noise typi-
cally seen in a text document. Ideally, one
would want to measure the effect of noise
under a real world noise model. Unfortu-
nately, a comprehensive and realistic noise
model for documents has not yet developed.
There have been work on modeling realistic
OCR errors by computer simulation [20]. In
this paper, in addition to the simple noise
model, we present a preliminary study on
the effect of two other types of simulated
noise model, namely, the simple-burst model
and the confusion-matric model.

In the simple-burst model, in addi-
tion to the single character deletion, inser-



tion, or substitution described in the sim-
ple model, burst errors are added randomly
over the text according to a pre-specified
burst damage rate.
determined by Gaussian processes. In the
test, we fixed burst damage rate to be 0.5%.
Two Gaussian processes N(3.0,1.0) and
N(30.0,1.0) were used for choosing burst
size. The confusion-matrix model generates
character errors in proportion to an OCR-
type error distribution specified by a con-
fusion matrix. The confusion matrix was
generated by running our error classifica-
tion algorithm [21] on a large quantity of
text produced by a commercial OCR pack-
age.

The size of burst is

4.2 Performance Measure

The issue we are to examine is how re-
trieval schemes may be affected by dam-
age to the database. Many papers re-
ported data showing the impact of noise in
terms of average recall and precision accu-
racies [5, 6]. Measuring precision and recall,
however, requires relevance judgment for all
the queries. For some retrieval models (e.g.,
vector space) this is a rather subjective at-
tribute. In this paper, we use a correlation
coefficient analysis to measure the effect of
noise on retrieval performance.

Let z1,25,...,2, and y1,¥2,...,Yn be
two sequences of real number. We define
the correlation coefficient between the two
sequences as:

n

Z (zi —2)(yi — 9)
p= = 72 (14)

i(mi —z) i(yi - ?7)2]

Where

n
i:Zmi and y:Zyi
1

In our test, the correlation is calculated be-
tween rankings induced by a query on a
database and its noisy counterpart.

The correlation coeflicient can be
viewed as a measure of similarity between
the two rankings. As an example, in Ta-
ble 3 we show that given a database of ten
documents and a query, how the ranking
order, as computed by the Extended Fuzzy
Boolean method, is changed under three
different levels of simulated noise (simple
model) and how the variation affects the
correlation coefficient.

The correlation coefficient in table 3 is
computed on the entire database. In other
words, every ranking variation counts.
From document retrieval point of view,
however, variations at the low end of the
rankings account for a diminutive role to
the retrieval effectiveness. Therefore, it is
desirable to compute the correlation coeffi-
cient only at the high end of the document
rankings.

Suppose R(D1),R(Ds),...,R(Dn) is
the ranking produced by a retrieval model
on documents in a database A.  Let
R'(D1),R'(Dy3),...,R'(Dn) be the ranking
assigned by the same retrieval model run-
ning on a somehow damaged A. Further,
suppose we are only interested in the rank
change at, say, the top 7 x 100 (0 < n < 1)
percent documents in the database. let
N' = [nX N be the the least integral value
greater than or equal to 7 X N. Let

A(i)z{jv,H

The correlation coefficient is then computed
between the two sequences A(R(D;)) and
A(R'(D;).

i < N'
2> N'

4.3 Test Data

For testing, we collected 1000 news articles
from the Internet, whose topics range from
agriculture, to insurance, to transportation.

Retrieval Strategies for Noisy Text
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Table 3: Rank order variations and correlation coefficients.

Table 4 gives some simple statistics for the
dataset.

Quantity H Words Bytes
Shortest document 42 271
Longest document 656 3,830
Average document 323 2,005
Total database 322,922 | 2,004,762

Table 4: Database statistics for 1,000
test documents.

Our queries were generated using an au-
tomated procedure. In general, we synthe-
sized representative queries for a fixed per-
centage of the documents in the database.
For the Boolean and Extended Boolean
models, a basic template was chosen ran-
domly for each designated document:

e (term)
o (term; AND terms)
o (term; OR termsy)

The term(s) greater than a pre-determined
length were then selected randomly from
non-stop-words in the document.
AND query, either or both of the operands
could be complemented, in which case the

For an

Daniel Lopresti and Jiangying Zhou

associated term(s) where chosen from a list
of all non-stop-words present somewhere in
the database, but not in the document in
question. We then evaluated the query
against the entire database using the stan-
dard Boolean model, keeping only those
that hit at least four documents and at most
eight. In the event that a query did not
satisfy all of these constraints, a new ran-
dom query of the same type was generated
and the process repeated. In this way, the
queries in our test set were guaranteed to be
“well-behaved,” if perhaps somewhat con-
trived.

A similar procedure was used for
the Proximity models. Here, though,
we only synthesized queries of the form
[term; | terms,].

The Vector Space model required a
slightly different approach. As before, we
generated queries corresponding to specific
documents. A random “snippet” of text
in average 200 characters long was cho-
sen. Since in this case the question of
whether a given query hits other documents
is more ambiguous, we did not apply a min-
imum/maximum hits criterion as before.

Lastly, the query test sets were re-
viewed by a human proof-reader to catch
any anomalies that might have been missed



during the generation process. In all, 400
queries were created for each group of re-
lated retrieval models. Some examples
of the Boolean and Proximity queries we
used are listed in Table 5. Among the
400 Boolean queries, 146 were single term
queries, 136 were OR queries, and 118 were

AND queries.

Boolean | | Prozimity

(gains AND Corp)
(Civil AND NOT recover)
(desired OR Financing)

[business | deficit]
[Ford | Motor]

[caused | loss]

Table 5: Examples of queries used.

5 Experiments

The experiments run as follow: an in-
creasing level of noise is introduced to the
database. At each noise level, documents
are ranked against a given query by the re-
trieval models respectively. The correlation
coeflicients are then calculated between the
ranks calculated on the original data and on
Finally,
the coefficient is averaged over the entire

their corresponding noised data.

query set.

The first chart (Figures 3) shows the
average correlation coefficient calculated at
top 10% ranking order for four Boolean re-
trieval models as a function of increasing
level of added noise. Figures 4 shows the
same calculation for the Vector Space re-
trieval model. Likewise, Figures 5 shows
the coefficient curves for the two Proximity
retrieval models.

Both Boolean and Vector Space model
results show a somewhat linear decreas-
ing correlation between the ranking ob-
served on original data and the ranking on
noisy data as the degree of noise level in-
creases. The proximity Boolean model has
a greater degree of degradation in rank cor-
relation. We see that among retrieval mod-

els, those that use exact matching, namely,
Sharp Boolean, Extended Boolean, Vector
Space, and Proximity Boolean have lower
degree of correlation than models that em-
ploy approximate search. A higher correla-
tion could mean the retrieval model is more
resilient to data damage.

. X
0.8t e |
=3 *-
a x %.
D‘D.; x %
0.6 e T B
8. X
g, o
E!
0.4+t B A

Sharp Bool ean ——

0.2 rExtended Sharp Bool ean —+-- 1
Fuzzy Bool ean -=--

Ext ended Fuzzy Bool ean —x
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Degree of damage

Figure 3: Ranking sensitivity for the
Boolean retrieval models.

0 L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Degree of damage

Figure 4: Ranking sensitivities for the
Vector Space retrieval model.

Figure 6 compares the correlation co-
efficient curves of the simple noise model
with the two other noise models (Only
200 queries were used in these set of ex-

Retrieval Strategies for Noisy Text
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Figure 5: Ranking sensitivities for the
Proximity retrieval models.

periments). Curves “extbr.bst” and “ext-
fuzbr.bst” in Figure 6 are the correlation
curves of Extended Boolean and Extended
Fuzzy Boolean models generated by intro-
ducing a burst noise. Curves “extbr.cm”
and “extfuzbr.cm” in Figure 6 show the cor-
relation curves where character errors were
generated using a confusion matrix. Our
preliminary experimental results indicated
that the characteristic of rank correlation
decay of these three simulated noise types
is quite similar for the same retrieval mod-
els.

6 Conclusions

Retrieval models based on pre-calculated
index structure are relatively fast. Many
sophisticated methods have been proposed
for efficient access of indices.
well-known efficient data structures and al-
gorithms for breaking documents into in-
dices (based on a dictionary) [22]. In terms
of response time, such models seems to be
a choice when one expects little noise in the
database.

There are

On the other hand, noise in a database
can increase the volume of index dramati-
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Figure 6: Ranking sensitivities for the
extended Boolean models under dif-
ferent noise models.

cally. Figure 7 shows a rapid growth of the
index set for vector space model in the test
as the noise level increases.

Retrieval models based on sub-string
matching have the advantage that they can
search for terms in the text which only
partially match the input query. When a
database contains a high degree of noise, it
is desirable to have a retrieval system which
torelates errors in text. In addition, sub-
string based retrieval systems allow a user
to specify any type of query text (e.g., a
phrase, a substring of a word).

Unfortunately, for the sub-string-based
models we described, the issue of efficiency
is an open problem. We intend to investi-
gate the speed-up of the string matching-
based retrieval models in our future work.
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