ALGORITHMS FOR MATCHING HAND-DRAWN SKETCHES

D. LOPRESTI, A. TOMKINS, J. ZHOU
Panasonic Technologies Inc., 2 Research Way, Princeton,

NJ 08540, USA

In this paper, we discuss the problem of searching a database of hand-drawn
sketches for a particular hand-drawn query. We describe a hierarchical approach
that exploits the temporal nature of electronic ink. At the highest level, large
subsequences of the ink string (“blocks” or “motifs”) may be interchanged and
repeated to allow for variations in drawing order. At the next level, a single mo-
tif is treated as a string of strokes that are always drawn in a consistent order.
Finally, at the lowest level, individual pen strokes are matched using one of a
number of possible techniques. We conclude the paper by giving some preliminary
experimental results and suggestions for further research.

1 Introduction

Searching a database for close matches to a query is a fundamental problem
in pattern recognition and information retrieval. In two earlier papers, ' Lo-
presti and Tomkins describe algorithms for matching pictograms, small labels
of electronic ink used to give files graphical names in pen-based systems. This
idea was later extended to searching lengthy handwritten notes for keywords
(“word spotting”).® The basic approach in this case is to segment the input
into strokes and extract vectors of descriptive features (e.g., stroke length, to-
tal angle traversed). These feature vectors are then mapped into a small set of
basic types using vector quantization (VQ). The effect is that handwriting is
represented as a string over an alphabet of stroke types. Approximate string
matching techniques are then used to perform comparisons between queries
and pre-determined databases.

This notion of treating electronic ink as a temporal sequence of pen strokes,
without attempting to “recognize” it, offers several advantages, including lan-
guage-independence. Algorithms for matching ink are more closely related to
on-line signature verification ® than they are to traditional two-dimensional
object recognition.

Other researchers have begun examining similar ideas. Hull, Reynolds,
and Gupta describe a system that combines the outputs from three different
matching algorithms with the goal of producing more accurate results.* Poon,
Weber, and Cass present a Macintosh-based application called “Scribbler” that
allows a user to search for words and simple graphical symbols.®

These approaches have been shown to work well for ink that is primar-

1

ily textual. However, when processing more complicated pictorial data, cer-
tain sub-structures within a larger image will correspond stroke-for-stroke, but
these basic “motifs” may be drawn by the user in an otherwise arbitrary or-
der. Figure 1 demonstrates this: in the top sketch on the left side, the house is
drawn first, then the tree, then the car, whereas in the very similar sketch on
the right side, the drawing order is reversed. Moreover, if the goal is to search
a database, the best match may be “partial” in the sense that certain elements
are omitted or repeated (see, for example, Figure 2). Algorithms that have
been developed for matching textual ink are not flexible enough to capture
these kinds of block motion.

In a recent paper, Lopresti and Tomkins introduced a family of algorithms
for block string matching that address this issue. 7 Preliminary results, based
on a small experiment, seemed promising.® In the present paper, we give a
more detailed analysis of the problem of matching hand-drawn sketches. We
describe a hierarchical approach that exploits the temporal nature of electronic
ink, and evaluate it using a larger dataset.

Figure 1 presents a conceptual overview. Sketch matching can be viewed
at several levels of abstraction. At the highest level, large subsequences of the
ink string (“blocks” or “motifs”) may be interchanged and repeated to allow
for variations in drawing order. At the next level, a single motif is treated
as a string of strokes that are always drawn in a consistent order. Finally, at
the lowest level, individual pen strokes are matched using one of a number of
possible techniques.

2 Sketch Level Matching

At the highest level, the algorithm partitions the ink string corresponding to
the query into blocks dynamically, and matches each block to a database block
such that the sum of the distances between corresponding blocks is minimized.
Thus, the procedure allows high-level block motion by placing arbitrary blocks
in correspondence, and incorporates low-level string edits in an underlying
distance function.

Let Q@ = q192..-¢m and D = dids...d, be the query and database ink
strings, respectively, over an alphabet of pen strokes, ¢;,d; € ¥. A t-block
substring family of Q, Q|+, is a multiset containing ¢ substrings of Q. The block
edit distance B between two strings @ and D is determined by finding the best
way to choose substring families of @ and D and correspond each member of
Q|: with some member of D|;. For each pairing, a cost is assessed based on
the distance between the two substrings. The correspondence between blocks
is given by a permutation ¢ € S; from the symmetric group on ¢ elements.

2

Sketch Level O block editing .
Higher
(]
house tree car car' tree’ house'
<>
time —> time —>
Motif Level O approximate string matching (time warping)
frame roof door window frame' roof' door' window'
[T <—>» I T
time ——> time ——>
Stroke Level 0 VQ or elastic distance
/N N\ i)
<> !
<stroke type> <:stroke tlype> , Lower
(X1.y1) (X2.Y2) - (Xn.Yn) < > (x1y1)' (X2.¥2)' - (Xn.Yn)

Figure 1: Levels for sketch matching.

More formally,

1
B(Q, D) = I‘IltlIl min min {t * Chlock + Z dist (Q(Z)7 D(U(Z))> } (1)
=1

Qle,D]¢ 0€5(2)

While the most general form of Eq. 1 is NP-complete, 7 certain variants
have efficient solutions. In particular, if the substring family for one of the
ink strings, say D, is unconstrained so that: (1) blocks may overlap, and (2)
all of D need not be used, we have developed the following polynomial time
algorithm. Let W(z,j) be the value of the best possible match between the
substring ¢; . ..q; and any substring of D, plus the per-block cost cjiock:

W(i, _]) = Chliock T+ I]:1<12.[11 {dist(qi ..-q5, dg .. dl)} (2)

Now define M(3) to be the best block match between ¢;...¢; and D. We
can then optimally pair blocks of the query string with blocks of the database
string using the following recurrence:

M(4) = min {M(5) + W(i + 1,4)} (3)

Here W(j + 1,4) allows the best match in the database string corresponding
t0 gj+1...9; to be added to the optimal solution for ¢ ...g; (i.e., M(7)), for

3

“cuts” at all possible indices j in the query string. Once we have computed
M fori=1,2,...,m, our final answer is B(Q, D) = M(m).

3 Motif Level Matching

Here we assume that an algorithm at the sketch level has chosen candidate
intervals from the query and database strings, and we must compare these two
substrings. There will be no high-level rearrangements necessary, but there
might be substantial local editing required to find the similarity between the
two substrings. We break the point sequences into strokes using a segmentation
algorithm whose granularity will depend on the stroke-level distance measure.
We then use dynamic programming to determine the edit distance between the
induced sequences of strokes. The cost of a deletion or insertion is a function
of the “size” of the ink in question. The cost of a substitution is given by the
stroke-level distance measure.

When the underlying stroke distance measure allows it, we augment tradi-
tional string edit distance with two new editing operations: splitting one stroke
into two, and merging two strokes into one. These account for imperfections
in the segmentation.

More formally, let @ = ¢192...9m and D = did;...d, be intervals from
the query and database ink strings, respectively. Let dist; ; represent the cost
of the best match between the first ¢ strokes of @ and the first j strokes of D.
The recurrence is then:

dist;_1 ; + cae(g:)
dist; j_1 + Cin.s(dj)
dist;; =ming disti_1;-1 + Csus(gs,dy) I<i<m,1<j<n
dist;_1;_2 + Csput (i, dj—ldj)
disti_z’j_l + Cmerge (‘h’—l‘]i, d]')

(4)

4 Stroke Level Matching

At this level, we must compare a query stroke and a database stroke extracted
by a higher-level algorithm. The stroke-level distance function determines
whether the points contained in each stroke represent similar pen-tip trajecto-
ries. While there might be slight differences in the pen motion, no significant
rearrangements will be necessary to reveal the similarities.

We have studied two potential measures for stroke-level matching: VQ
distance and elastic match distance. The VQ distance between a query stroke

4

@ and a database stroke D is computed as follows. First, a vector of 13 real-
valued features is derived from each stroke. Next, each vector is compared to
a set of 64 vectors representing canonical strokes, and is classified as the most
similar type. The final distance is then defined to be the distance between
the two stroke types, as given by a weighted Euclidean distance on the feature
space. This is the same metric we used previously for searching textual ink.3

In the case of elastic match distance, let Q@ = ¢1,¢2,...,¢m and D =
di,dy,...,d, be the two strokes in question, where each ¢; and d; is a point
in the plane. The elastic distance between them is the edit distance between
@ and D viewed as strings, where the substitution cost for ¢; and d; is simply
the Euclidean distance: ¢;u3(gi,d;) = \/(gi-z — dj.z)? + (qi.y — d;.y)2.

5 Evaluation

To test these techniques, we designed a simple experiment where purely lo-
cal similarity measures would not be effective, but more powerful global ap-
proaches should perform well. Five subjects were asked to create an ink
database consisting of 25 sketches, and another set of 25 ink queries to be ap-
plied against the database. For example, the instruction to create a database
entry might be: “Draw a chair, a desk, a computer, and a lamp.” The queries
always consisted of either one or two motifs (e.g., “Draw a computer and a
chair.”). An example of a query and its corresponding database entry is shown
in Figure 2.

Query Intended Match

il

an
njn!

T

=

Figure 2: Example of a query and its intended match in the database.

Note that a given query might match multiple database entries. Of the
25 queries in our test, three had three matches in the database, nine had two

5

matches, and 13 had only one match. Each database entry contained on-
average 1,502 sampled points, while the queries averaged 713 points. A total
of 279,210 ink points were collected for the experiment.

Figures 3 and 4 present the 3,125 (= 5x 25 x 25) distance values computed
using our string block editing algorithm with underlying VQ and elastic match
distances, respectively. The intended matches for each query are indicated
by the “dots.” While there is significant variability, both across queries and
across subjects, it is fairly evident that elastic matching yields better results
on-average (56% of the highest-ranked matches were true hits, versus only
30% for VQ distance). As we noted earlier, the VQ technique was designed
for searching through handwritten text, and uses a representation based upon
a space of “important” features. For the sketch matching problem, a measure
such as elastic match distance that operates more firmly in the spatial domain
seems better-suited.

Ink Match Distance (VQ)

Subject #1 Subject #2 Subject #3 Subject #4 Subject #5
Query

Figure 3: Results for sketch matching using underlying VQ distance.

6 Conclusions

Sketch matching in the temporal domain requires solving two difficult prob-
lems. First, reasonable choices for possible corresponding “motifs” must be
found, and second, a good spatially-based matching algorithm must be used
to compare them.

Our hierarchical approach addresses the former issue through the use of
a string block editing model that is mathematically rigorous. At the lower

6

Ink Match Distance (Elastic)

Subject #1 Subject #2 Subject #3 Subject #4 Subject #5
Query

Figure 4: Results for sketch matching using underlying elastic match distance.

levels, a number of possible techniques suggest themselves. To date we have
examined two of these: VQ distance and elastic match distance.

Experimentally, the results we have obtained in our initial tests range
widely. The algorithms sometimes perform impressively, despite the informal
and highly variable nature of the sketch data. On other occasions, the intended
match is ranked much lower than obviously dissimilar database entries. We
are currently studying ways of improving the quality and speed of our ink
matching algorithms.

References

?

1. D. Lopresti and A. Tomkins, “Pictographic Naming,” in Adjunct Proc.
Conf. Human Factors in Computing Systems, Apr. 1993, pp. 77-78.

2. D. Lopresti and A. Tomkins, “Approximate Matching of Hand-Drawn
Pictograms,” in Proc. Third Int. Work. Frontiers Handwriting Recogni-
tion, May 1993, pp. 102-111.

3. D. Lopresti and A. Tomkins, “On the Searchability of Electronic Ink,” in
Proc. Fourth Int. Work. Frontiers Handwriting Recognition, Dec. 1994,
pp- 156-165.

4. R.Hull, D. Reynolds and D. Gupta, “Scribble Matching,” in Proc. Fourth
Int. Work. Frontiers Handwriting Recognition, Dec. 1994, pp. 285-294.

5. R. Plamondon, ed., Progress in Automatic Signature Verification (World
Scientific, Singapore, 1994).

6. A. Poon, K. Weber and T. Cass, “Scribbler: A Tool for Searching Digital
Ink,” in Human Factors in Computing Systems Conf. Companion, May
1995, pp. 252-253.

7. D. Lopresti and A. Tomkins, “Block Edit Models for Approximate String
Matching,” in Proc. Second South American Work. String Processing,
April 1995, pp. 11-26. (Also to appear in Theoretical Computer Science.)

8. D. Lopresti and A. Tomkins, “Temporal-Domain Matching of Hand-
Drawn Pictorial Queries,” in Hendwriting and Drawing Research: Basic
and Applied Issues, eds. M. L. Simner, G. Leedham and A. J. W. M.
Thomassen (IOS Press, Amsterdam, 1996), pp. 387-401.

