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ABSTRACT

Treating electronic ink as first-class data – as opposed to
simply a substitute for keyboard input – offers intriguing
possibilities.  The pen has well-known advantages in terms
of portability and user acceptance, and ink is an extremely
expressive medium that is inherently language-independent.
A limitless range of representations are possible when
writing/sketching.  Moreover, ink shares important
characteristics with other multimedia datatypes:  it has a
temporal component like speech, and a spatial component
like images.  However, adopting this approach raises some
important issues with regard to storage and retrieval, as
traditional techniques may no longer apply.

In this paper, we survey some of the research being
done in this area.  This includes work on representing, pre-
processing, and compressing ink data.  A particular
challenge is the problem of retrieving previously saved ink
documents, whether handwritten text or hand-drawn
sketches.  We review several algorithms adapted from
approximate string matching that appear to be effective, and
summarize the results of experiments reported in the
literature.  Systems that associate electronic ink, in the form
of annotations, with other kinds of multimedia data will also
be described.  Finally, we conclude with a discussion of
some open questions.

Keywords: electronic ink, handwriting recognition, pen
computing, approximate ink matching, sketch matching,
information retrieval.

1. INTRODUCTION

As an input device, the pen has numerous advantages over a
keyboard.  Nothing could be more natural than picking up a
pen and jotting a quick note on a pad of paper.  For
languages such as Chinese which have thousands of
characters in everyday use, keyboards are cumbersome
devices accessible only to highly trained specialists.  Even
in the case of the Latin alphabet, the keyboard becomes a
limiting factor as notebook computers continue to shrink in
size.  The pen also enjoys universal acceptance – while some
people find a keyboard intimidating, a pen is a familiar,
comfortable tool.

For the most part, today’s pen computers operate
in a mode that might be described as “eager recognition.”
Pen-strokes are translated as soon as they are entered, the
user corrects the output of the recognizer, and then
processing proceeds as if the characters had been typed on a
keyboard.  This has its advantages, chief among them that
existing techniques can be used for storing and searching
the data.  This state of affairs is depicted in Figure 1.

handwriting
recognition

The gujck 
browu fox

what gets stored
& searched

what
user
sees

� �
� �
� �
� �� �

�
����� 	 
� � �
�

The quick 
brown fox

user
corrects
errors

Figure 1:  Traditional approach to pen computing.

The state-of-the-art in handwriting recognition has
progressed significantly over the past several years [27,31].
Still, this problem has proved more difficult than first
anticipated due to the large variation in the way people
write.  Human readers can make use of past experience as
well as semantics when attempting to decipher written text;
machines are not yet as adept.  As a result, handwriting
recognition is still an area of active research.  Some of this
work has focused on techniques to make it easier for the user
to correct the errors that inevitably arise.  Another recent
approach is to make the problem simpler for the computer by
changing the input alphabet so that confusing characters
can be better disambiguated [9].

Even so, the necessity of having to proof-read
continuously the output of a recognizer, pausing to correct
whatever errors might occur, creates an overall frustrating
experience at odds with the unconstrained way people are
used to interacting with pen and paper.  Nakagawa, et al.’s
concept of “lazy recognition” evinces the negative impact
this can have on creativity [26].

Instead of taking a very expressive medium, ink,
and immediately mapping it into a small, pre-defined set of
alphanumeric symbols, an alternative is to support ink as a
first-class datatype [1].  There are compelling arguments for
deferring or even eliminating handwriting recognition in
certain applications:
1) Many of a user’s day-to-day task can be handled entirely

in the ink domain using techniques more accurate and
less intrusive than handwriting recognition.

2) No existing character set captures the full range of
graphical representations a human can create using a pen
(e.g., sketches, maps, diagrams, equations, doodles).  By
not constraining pen strokes to represent “valid”
symbols, a much richer input language is made available.

3) Whereas handwriting recognition must be customized to
a specific language, language-independence is a natural
by-product of first-class ink.

With the ink left untranslated, however, new functionality
must be developed to replace what is lost by eschewing a
standard, character-based representation.  For example, the
storage requirements of textual ink are much more demanding
than ASCII, hence good encoding and compression schemes
are needed.  And while fast algorithms exist for searching
text files (e.g., Unix grep and the “Find” commands in
modern word processors), such functionality is not a
“given” for ink data.



Adopting this philosophy does not mean that
handwriting recognition has no place.  It could, in fact,
serve as a key underlying technology if the results of
recognition are held in the “background” for retrieval
purposes and not presented directly to the user.  Since there
is no opportunity to correct errors (indeed, the whole point
is to not bother the user with such concerns), robust search
techniques must be employed [20,21].  Figure 2 illustrates
this.
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Figure 2:  Ink as first-class data.

In this paper, we survey some of the research being
done in the area of treating ink as first-class data.  Section 2
discusses work on representing, pre-processing, and
compressing ink.  We review algorithms for retrieving
handwritten text and hand-drawn sketches in Sections 3 and
4, respectively.  In Section 5, we consider a variety of other
related issues, including the use of sketching as an image
database query mechanism and systems that associate
electronic ink, in the form of annotations, with other kinds
of multimedia data.  Finally, we offer our conclusions and
discuss some open questions in Section 6.

2. REPRESENTING INK DATA

Raw ink data is assumed to be a sequence of points sampled
over time, (x,y,t).  These record the trajectory of the pen tip
over the surface of the digitizer.  In addition, “pen-down”
and “pen-up” events are noted.  Often, the sequence of
points between successive pen-down/pen-up’s is referred to
as a stroke.  Due to the on-line nature of the problem, the
data has both spatial and temporal aspects which can be
employed as appropriate.

While several formats for storing ink data have
been proposed, including JOT [14] and UNIPEN [12], there
is currently no universal standard.  Still, the representations
used by those working in the field are for the most part
equivalent, and converting between them is relatively
straightforward.

The raw ink is commonly subjected to a series of
pre-processing steps to correct for problems in data
acquisition, to compensate for some of the natural variation
that arises between writers, and to segment the handwriting
into more basic units for later recognition.  Depending on
the classification stages that follow, the output from pre-
processing can be features extracted either from word units
or from more primitive character or sub-character units (in
the case of textual ink), or from elemental graphics
components (in the case of sketches).

The basic stages of pre-processing include
segmentation, noise reduction, and normalization.  The order
in which these are performed can vary from system to system,
and specific steps may be repeated and/or skipped

altogether.  Comprehensive overviews of pre-processing can
be found in Tappert et al. [31] and Guerfali and Plamondon
[11].

Using textual ink to illustrate, segmentation may
take place at three conceptual levels:
1) text line segmentation – divides the input ink data into

individual lines,
2) word segmentation – breaks each line into separate word

units,
3) character segmentation – if the classifier is character-

based, further segments the words into character
candidates.

Noise reduction involves the following steps:
1) smoothing – eliminates noise introduced by the tablet or

shaky writing,
2) filtering – reduces the number of data points and

eliminates “wild” points,
3) de-hooking – removes artifacts (“hooks”) that arise at

the beginnings and ends of strokes,
4) break correction – eliminates unintended (short) breaks

between strokes.
Common normalization procedures include:
1) baseline drift – corrects for the tendency of the text

baseline to rise or fall as writing progresses from left to
right,

2) writing slant – compensates for the natural slant that can
vary widely from writer to writer,

3) size normalization – adjusts the symbols to be a
standard size.

Lastly, the pre-processor must generate a
representation appropriate for input to the classifier in
question.  The range of possible representations is enormous
and highly dependent on the classifier.  A common
operation at this point, however, is to segment the input
further into sub-character units (a step known as “over-
segmentation”).

Depending on the rate the pen tip is sampled, and
the nature of the writing, the ink data may contain a
significant amount of redundancy.  In machines with severe
memory limitations, such as PDA’s, this can lead to
inefficient use of the available storage.  Several researchers
have attempted to address this issue.  Chen, et al. describe a
new piecewise linear modulation model (including
compression results) for handwriting [3].  Wilfong presents
on-line algorithms for determining an appropriate
subsequence of the sampled points to approximate the
curves in question [37].

3. SEARCHING HANDWRITTEN TEXT

Once a body of handwriting has been collected and saved, i t
is only natural for a user to want to be able to search it.  One
obvious approach to this problem is to use handwriting
recognition to translate the database text and the query into
ASCII representations, after which traditional search
techniques can be applied.  If neither of these steps requires
user intervention (i.e., the recognition is performed in the
background and the user is not bothered with having to
correct errors), the philosophy of treating the ink as first-
class data is maintained.  Note, though, that this
necessitates the retrieval algorithms be tolerant of the kinds
of errors that might arise [20,21].  To our knowledge no one
has attempted an evaluation of this approach in the domain
of handwriting.

In point of fact, ink that is primarily textual can be
represented at various levels of abstraction.  As depicted in
Figure 3, an ink search algorithm could perform approximate
matching at any of these levels.  A number of researchers
have started exploring this idea of comparing the ink



directly [13,16,17,18,28].  While these approaches avoid
explicit handwriting recognition, they typically employ a
similar notion of elastic matching [30].
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Figure 3:  Possible ink matching levels.

We now review a specific algorithm proposed by
Lopresti and Tomkins in [18].  Figure 4 shows an overview
of ScriptSearch, which consists of four phases.  First, the
incoming points are grouped into strokes by segmenting the
data at local y-minima.  Next, the strokes are converted into
vectors of descriptive features based on those developed by
Rubine in the context of gesture recognition [29].  Third, the
feature vectors are classified according to writer-specific
information using vector quantization, yielding 64 clusters.
Finally, the resulting query sequence is matched against
each database sequence using approximate string matching
over an alphabet of “stroke types.”

For this last phase, a well known dynamic
programming algorithm is used to determine the “edi t
distance” between the two sequences [33].  The cost of a
deletion or insertion is a function of the amount of ink
involved (i.e., the length of the stroke type representing the
ink).  The cost of a substitution is the distance between the
two stroke types in question.
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Figure 4:  Overview of the ScriptSearch algorithm.

Two new editing operations are also added to the
three standard ones:  splitting a single stroke into two, and
merging two strokes into one.  These account for
imperfections in the stroke segmentation step.  A split/merge
table is built that contains information of the form “ a n
average stroke of type α merged with an average stroke of

type β results in a stroke of type γ.”  The cost of splitting a

stroke δ into a pair of strokes αβ is a function of the distance

between δ and merge(α,β) = γ.  The edit distance is computed
using these costs and operations to find matches for the
query in the database ink.

Let disti,j represent the cost of the best match
between the first i strokes of the query Q and a substring of
the database item D ending at stroke tj. The recurrence is
then:
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for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
If the decision made at each step in the

optimization process is saved, it is possible to backtrack
once the computation has completed to recover the precise
alignment (or trace) between the two sequences.  One such
example is shown in Figure 5.

Figure 5:  Example of an ink matching trace.

For handwritten text (English and Japanese,
cursive and printed), empirical studies using this approach,
as well as other, similar ones, have demonstrated good
performance.  In one experiment reported in [18], two
subjects each wrote a reasonably large amount of English
text drawn from Herman Melville’s famous novel, Moby
Dick.  They then wrote 30 short words and 30 longer
phrases (2-3 words), taken from the same passages, which
served as search strings.

Two standard criteria from information retrieval
were used in assessing the performance of ScriptSearch:
recall, the percentage of true matches reported, and
precision, the percentage of reported matches that are true.  It
is desirable to have both of these measures as close to 1 as
possible.  There is, however, a fundamental trade-off.  By
insisting on an exact match, the precision can be made 1, but
recall will suffer.  On the other hand, if arbitrary edits are
allowed between the query and the matched portion of the
database, the recall will approach 1, but the precision will
fall to 0.  For ink to be searchable in this way, there must be
a point on the trade-off curve where both recall and
precision are sufficiently high.

The chart in Figure 6 presents the results of this
experiment, showing precision as a function of recall.  The
upper set of curves correspond to the longer queries, the
lower set to the shorter ones.  The bars represent the
combined queries for each writer. Note that ScriptSearch
returns mostly the desired hits, with relatively little
superfluous “noise.”



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

P
re

ci
si

o
n

Figure 6:  Results of a ScriptSearch experiment.

4. MATCHING HAND-DRAWN SKETCHES

For ink to be truly first-class, a pen-based system must allow
for more than just textual input.  It should be prepared to
handle anything a user would write/draw on a traditional
pad of paper.

While the approach described in the previous
section works well for writer-dependent matching of textual
ink, sketches present more of a challenge as a user might
more naturally vary the order in which constituent objects
are drawn.  Figure 7 demonstrates this:  in the top sketch on
the left side, the house is drawn first, then the tree, then the
car, whereas in the very similar sketch on the right side, the
drawing order is reversed.  Moreover, if the goal is to search
a database, the best match may be “partial” in the sense that
certain elements are omitted or repeated.  Algorithms that
have been developed for matching textual ink are not flexible
enough to capture these kinds of block motion in the
temporal (stroke-sequence) domain.

sketch level   ⇒   block matching
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time
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time
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time

frame roof door window

time

frame' roof' door' window'

higher

lower

Figure 7:  The sketch matching problem.

In a recent paper, Lopresti and Tomkins introduce
a family of algorithms for block string matching that address
this issue [23].  Here sketch matching is treated at two
levels of abstraction.  At the highest level, long
subsequences of the ink string (“blocks” or “motifs”) may
be interchanged and repeated to allow for variations in
drawing order (e.g., house-tree-car vs. car-tree-house, as
demonstrated in the figure).  At the lowest level, a single
motif is treated as a sequence of strokes that, for a given user,
are always drawn in a consistent order, just as in textual ink
matching (e.g., frame-roof-door-window).  The algorithms for
solving this problem, also based on dynamic programming,
exploit this structure by partitioning the query ink into

blocks adaptively and matching each to a block in the
database ink such that the sum of the distances between
corresponding blocks is minimized.

Let Q = q1q2...qm and D = d1d2...dn be the query and
database ink strings, respectively.  A t-block substring
family of Q, Q|t, is a multiset containing t substrings of Q.
The block edit distance between two strings is determined
by finding the best way to choose substring families of Q
and D and correspond each member of Q|t with some member
of D|t.  For each pairing, a cost is assessed based on the
distance between the two substrings.  The correspondence
between blocks is given by a permutation σ ∈ S(t) from the
symmetric group on t elements.  The optimization problem is
then:
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While the most general form is NP-complete [23], certain
variants have efficient solutions.  In particular, if the
substring family for one of the ink strings, say D, is
unconstrained so that:  (1) blocks may overlap, and (2) all of
D need not be used, the following polynomial time
algorithm may be employed.

Let W(i,j) be the value of the best possible match
between the substring qi...qj and any substring of D, plus the
per-block cost cblock:

  
W i j c dist q q d dblock

k l
i j k l( , ) min ( , )≡ + { }

≤
K K

Now define M(i) to be the best block match between q1...qi

and D.  We can then optimally pair blocks of the query
string with blocks of the database string using the
following recurrence:

M i M j W j i
j i

( ) min ( ) ( , )= + +{ }
<

1

As with textual ink matching, it is possible to
reconstruct the best-case alignment between the two ink
sequences by saving the optimal decisions at each step and
backtracking.  An example of such a trace is shown in
Figure 8.  Here the query sketch depicted on the left side of
the figure, a computer and a chair, is matched to a drawing of
a chair, a desk, a computer, and a lamp on the right.

Figure 8:  Example of a sketch matching trace.

This approach to sketch matching was tested in an
experiment designed so that purely local similarity measures
would not be effective [22].  Each of five subjects was asked
to create an ink database consisting of 25 sketches, and a set
of 25 ink queries to the database.  The instruction for
creating a database page might be, for example:  “Draw a
chair, a desk, a computer, and a lamp.”



Instructions for creating queries always consisted
of 1 or 2 motifs, so a query meant to match the database entry
just given might be:  “Draw a lamp and a chair.”  Note that
the same query might match other database sketches as well.
Of the 25 queries, three matched three entries of the database,
nine matched two entries, and 13 matched one entry.

Figure 9 shows the effectiveness of the sketch
matching algorithm, measured in terms of the number of false
hits that were ranked higher than intended ones.  More than
75% of the time, the first match returned was a true hit.  Only
in a couple cases did the algorithm perform badly.

5.  RELATED ISSUES AND APPLICATIONS

As we noted previously, handwriting recognition could
serve as a core technology to support the retrieval of first-
class ink data.  Hence, any improvements that come about as
a result of research successes in the field can be used to good
advantage.  Tappert, at al. present an earlier survey on the
state of the art [31].  A more up-to-date paper is one by
Plamondon, et al. [27].
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Figure 9:  Results of a sketch matching experiment.

Math differs from text in that its logical structure
has a second dimension (in addition to the obvious
vocabulary differences).  A system capable of simultaneously
handling text, mathematical expressions, and editing
gestures is discussed in Dimitriadis and Coronado [6].
Other systems for handling math, in terms of over-
segmenting the input and presenting it to an HMM
classifier, are described in Winkler and Lang [38].  A system
for segmenting handwritten mathematical expressions based
on attributed relational tree representations is presented in
Faure and Wang [7].

In terms of graphical input, Welbourn and
Whitrow [34] discuss a gesture-based text and diagram
editor.  The two types of data are identified, with the text
presented to one classifier for recognition while the
diagrams are beautified by another.  Julia and Faure [15] is a
paper describing two editors for beautifying drawings that
include tables, geometric figures, etc.  A pen-based editor for
beautifying network diagrams is presented in Galindo and
Faure [8].  A strategy for separating annotations from figures
in engineering drawings is given in Utton et al. [32].  Tivoli
is a pen-based whiteboard application that recognizes and
supports various kinds of structures common to meetings,
including lists, outlines, and node-link diagrams [25].

Recently, content-based retrieval of image data has
become a popular topic for research. Interestingly, even
when a keyboard and mouse are available, the quickest, most
natural way for people to specify simple shapes is to sketch
them.  Hence, pen-based input may serve as a front-end tool
for image database management.  Del Bimbo and Pala
describe a technique for this problem based on elastic
matching that is scale invariant and takes into account the
spatial relationships between objects [5].  Chan, et al.
present an approach that extracts prominent geometric
features (line segments, circular arcs, and curvelets in
general) and uses them to compute a similarity value
between the sketch and an image [2].

Another area in which ink shows potential is in
combination with other continuous media types.  Whittaker,
et al. present an application that integrates handwritten
notes and recorded audio, allowing users to access
particular points in a recording by linking the ink and the
audio in the temporal domain [35].  Here, easy-to-browse
handwriting provides an index for difficult-to-browse
speech.  Dynomite is another, similar, such system [36].
Combining writing and speech in asynchronous
communication (i.e., messaging) is the subject of a paper by
Daly-Jones, et al. [4].  Their studies found that users show a
significant preference for pen-and-voice messages over
“unimedia” communication.

Beyond the previously cited research efforts, there
is growing commercial interest in areas relating to first-class
ink data.  Microsoft’s aha! Inkwriter permits editing of
uninterpreted handwritten documents.  A. T. Cross’s
Crosspad product allows users to write on standard paper
and then transfer the ink to a PC.

6.  CONCLUSIONS AND DISCUSSION

The notion of treating ink as first-class multimedia data
offers intriguing possibilities.  As we have attempted to
show in this short, admittedly incomplete survey, numerous
interesting research issues arise when one adopts this view.

Among the important questions that remain
unanswered is developing an ability to deal with truly free-
form pen input.  This would probably involve pre-
classifying arbitrary writing/drawing as text, sketches,
equations, etc., so that the proper recognition technology
can be invoked.  As always, it would be best if this could be
accomplished without burdening the user in any way.

Given fuzzy retrieval methods such as those
described in [20,21], it is not necessary for recognition to be
100% accurate to apply it in the background.  Far more
important is that it be consistent and robust.  In other
words, 90% accuracy on all inputs is preferable to 100%
accuracy on some inputs and 10% on others.  Can we build
classifiers with this property?  How accurate and robust
need they be for acceptable retrieval performance?

On a related note, is it possible to recognize when
a given classifier is doing a bad job so that a different
technique can be applied or, in the worst case, the user
alerted?

Recalling Figure 2, both ink matching and
background handwriting recognition have nice properties.
The former may be more accurate for a given user, while the
latter is writer-independent.  Can these two paradigms be
combined to yield a more effective retrieval engine?
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