Ink as Multimedia Data

Daniel P. Lopresti
Bell Laboratories, Lucent Technologies Inc.
600 Mountain Avenue, Room 2C-552
Murray Hill, NJ 07974 USA

ABSTRACT

Treating electronicink asfirst-class data — as opposedto
simply a substitute for keyboard input — offers intriguing
possibilities. The pen hasgell-known advantagesn terms
of portability and useracceptanceand ink is an extremely
expressive medium that is inherenthnguage-independent.
A limitless range of representationsare possible when
writing/sketching. Moreover, ink shares important
characteristicswith other multimedia datatypes: it has a
temporalcomponentlike speech,and a spatial component
like images. However, adopting this approachraisessome
important issues with regardto storage and retrieval, as
traditional techniques may no longer apply.

In this paper, we survey some of ttesearchbeing
done in this area.This includes work on representingpre-
processing, and compressing ink data. A particular
challenge is the problerof retrieving previously savedink
documents, whether handwritten text or hand-drawn
sketches. We review several algorithms adapted from
approximate string matchinthat appearto be effective,and
summarize the results of experiments reported in the
literature. Systems that associaectronicink, in the form
of annotations, with other kinds of multimedia data will also
be described. Finally, we conclude with a discussion of
some open questions.

Keywords: electronic ink, handwriting recognition, pen
computing, approximate ink matching, sketch matching,
information retrieval.

1. INTRODUCTION

As an input device, the pen has numerous advantagmsa
keyboard. Nothing could be more natural than pickimpga
pen and jotting a quick note on a pad of paper. For
languages such as Chinese which have thousands of
charactersin everyday use, keyboards are cumbersome
devices accessible only to hightyained specialists. Even
in the caseof the Latin alphabet,the keyboard becomesa
limiting factor as notebook computers continigeshrink in

size. The pen also enjoys universal acceptance — while some

people find a keyboard intimidating, a pen is a familiar,
comfortable tool.

For the most part, today’s pen computersoperate
in a modethat might be describedas “eager recognition.”
Pen-strokesare translatedas soon asthey are entered,the
user corrects the output of the recognizer, and then
processing proceeds as if the characters had typed on a
keyboard. This hasits advantageschief amongthem that
existing techniquescan be used for storing and searching
the data. This state of affairs is depicted in Figure 1.
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Figure 1: Traditional approach to pen computing.

The state-of-the-art in handwriting recognition has
progressed significantly over the pasgveralyears[27,31].
Still, this problem has proved more difficult than first
anticipated due to the large variation in the way people
write. Human readerscan make use of past experienceas
well as semantics when attemptitm decipherwritten text;
machinesare not yet as adept. As a result, handwriting
recognition is still an areaof active research. Someof this
work has focused on techniques to make it easier fou st
to correctthe errorsthat inevitably arise. Another recent
approach is to make the problem simpler thoe computerby
changing the input alphabetso that confusing characters
can be better disambiguated [9].

Even so, the necessity of having to proof-read
continuously the outpubf a recognizer,pausingto correct
whatevererrors might occur, createsan overall frustrating
experienceat odds with the unconstrainedway people are
used to interacting witlpen and paper. Nakagawa,et al.’s
conceptof “lazy recognition” evincesthe negative impact
this can have on creativity [26].

Insteadof taking a very expressivemedium, ink,
and immediatelymappingit into a small, pre-definedset of
alphanumeric symbols, aalternativeis to supportink asa
first-class datatypgl]. Thereare compelling argumentsfor
deferring or even eliminating handwriting recognition in
certain applications:

1) Many of a user’s day-to-day task can be handled entirely
in the ink domainusing techniques more accurateand
less intrusive than handwriting recognition.

2) No existing characterset capturesthe full range of
graphical representations a human can create uspgna
(e.g., sketches, mapdiagrams,equations,doodles). By
not constraining pen strokes to represent “valid”
symbols, a much richer input language is made available.

3) Whereas handwriting recognition must be customized to
a specificlanguage,language-independends a natural
by-product of first-class ink.

With the ink left untranslated however,new functionality

must be developedto replacewhat is lost by eschewinga

standard,character-basedepresentation. For example,the
storage requirements of textual ink are much more demanding
than ASCII, hence good encoding andmpressionschemes
areneeded. And while fast algorithms exist for searching

text files (e.g., Unix grep and the “Find” commandsin

modern word processors),such functionality is not a

“given” for ink data.



Adopting this philosophy does not mean that
handwriting recognition has no place. It could, in fact,
serve as a key underlying technology if the results of
recognition are held in the “background” for retrieval
purposes and not presented directly to the u&incethere
iS no opportunity to correct errofgndeed,the whole point
is to not bother the usewvith such concerns)robust search
techniquesmustbe employed[20,21]. Figure 2 illustrates
this.
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Figure 2: Ink as first-class data.

In this paper, we survey some of ttesearchbeing
done in the area of treating ink fisst-classdata. Section2
discusses work on representing, pre-processing, and
compressingink. We review algorithms for retrieving
handwritten text and hand-drawn sketches in Sections 3 and
4, respectively. In Section Sye considera variety of other
relatedissues,including the use of sketching as an image
database query mechanism and systems that associate
electronic ink,in the form of annotations,with other kinds
of multimediadata. Finally, we offer our conclusions and
discuss some open questions in Section 6.

2. REPRESENTING INK DATA

Raw ink data is assumed to beseguenceof points sampled
over time, (x,y,t). Theserecordthe trajectory of the pentip
over the surfaceof the digitizer. In addition, “pen-down”
and “pen-up” events are noted. Often, the sequenceof
points between successive pen-down/pen-up’s is referred to
asastroke. Due to the on-line nature of the problem, the
data has both spatial and temporal aspectswhich can be
employed as appropriate.

While several formats for storing ink data have
been proposed, including JOT [14] and UNIPERR], there
is currently no universal standard. Still, thepresentations
used by those working in the field are for the most part
equivalent, and converting between them is relatively
straightforward.

The raw ink is commonlysubjectedto a series of
pre-processing steps to correct for problems in data
acquisition, to compensater someof the natural variation
that arises between writers, andsgegmentthe handwriting
into morebasic units for later recognition. Dependingon
the classification stagesthat follow, the output from pre-
processingcan be featuresextractedeither from word units
or from more primitive characteror sub-charactemnits (in
the case of textual ink), or from elemental graphics
components (in the case of sketches).

The basic stages of pre-processing include
segmentation, noise reduction, and normalization. The order
in which these are performed can vary from systeraystem,
and specific steps may be repeated and/or skipped

altogether. Comprehensive overviews of pre-processamy

be found in Tapperét al. [31] and Guerfali and Plamondon

[11].

Using textual ink to illustrate, segmentationmay
take place at three conceptual levels:

1) text line segmentation divides the input ink datainto
individual lines,

2) word segmentation — breaks each line into separate word
units,

3) charactersegmentation— if the classifier is character-
based, further segments the words into character
candidates.

Noise reduction involves the following steps:

1) smoothing — eliminates noise introduced by the tablet or
shaky writing,

2) filtering — reduces the number of data points and
eliminates “wild” points,

3) de-hooking — removesartifacts (“hooks”) that arise at
the beginnings and ends of strokes,

4) break correction- eliminatesunintended(short) breaks
between strokes.

Common normalization procedures include:

1) baselinedrift — corrects for the tendency of the text
baseline to riseor fall aswriting progressedrom left to
right,

2) writing slant — compensates for the natural slant tzat
vary widely from writer to writer,

3) size normalization — adjusts the symbols to be a
standard size.

Lastly, the pre-processor must generate a
representationappropriate for input to the classifier in
question. The range of possible representations is enormous
and highly dependent on the classifier. A common
operationat this point, however, is to segmentthe input
further into sub-charactemnits (a step known as “over-
segmentation”).

Depending on the ratthe pentip is sampled,and
the nature of the writing, the ink data may contain a
significant amount ofedundancy. In machineswith severe
memory limitations, such as PDA's, this can lead to
inefficient use of the available storage. Severalresearchers
have attempted to address this issuEhen, et al. describea
new piecewise linear modulation model (including
compression results) for handwritif@]. Wilfong presents
on-line algorithms for determining an appropriate
subsequenceof the sampled points to approximate the
curves in question [37].

3. SEARCHING HANDWRITTEN TEXT

Once a body of handwriting has been collected and saved,
is only natural for a user to want to be able to searci®ite
obvious approachto this problemis to use handwriting
recognition to translate the database text #vequery into
ASCIl representations, after which traditional search
techniques can be applied. réither of thesestepsrequires
userintervention (i.e., the recognition is performedin the
backgroundand the useris not botheredwith having to
correcterrors),the philosophy of treating the ink as first-
class data is maintained. Note, though, that this
necessitates the retrieval algorithms be toledrihe kinds
of errors that might arise [20,21]. Taur knowledge no one
has attempted aevaluation of this approachin the domain
of handwriting.

In point of fact, ink thatis primarily textual canbe
represented at various levels @bstraction. As depictedin
Figure 3, an ink search algorithoould performapproximate
matchingat any of theselevels. A numberof researchers
have started exploring this idea of comparing the ink



directly [13,16,17,18,28]. While these approachesavoid
explicit handwriting recognition, they typically employ a
similar notion of elastic matching [30].
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Figure 3: Possible ink matching levels.
We now review a specific algorithm proposedby

Lopresti and Tomkins in [18]. Figuré shows an overview
of ScriptSearchwhich consists of four phases. First, the

incoming points are grouped into strokes by segmenting the

data at locay-minima. Next, the strokes are convertedinto
vectors of descriptive features basem those developedby
Rubine in the context of gesture recognition [29]. Thiitk
featurevectors are classified according to writer-specific
information using vector quantization, yieldirg# clusters.
Finally, the resulting query sequenceis matched against
eachdatabasesequenceusing approximatestring matching
over an alphabet of “stroke types.”

For this last phase, a well known dynamic
programming algorithm is used to determine the “edit
distance” betweenthe two sequenceq33]. The cost of a
deletion or insertion is a function of the amount of ink
involved (i.e., the length of thetroke type representingthe
ink). The cost of asubstitution is the distancebetweenthe
two stroke types in question.
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Figure 4: Overview of the ScriptSearch algorithm.
Two new editingoperationsare also addedto the

three standard ones: splitting a singteoke into two, and
merging two strokes into one. These account for

imperfections in the stroke segmentation step. A split/merge

table is built that contains information of the form “an
averagestroke of type a mergedwith an averagestroke of
type B results in a strokef type y.” The cost of splitting a

stroked into a pair of strokesf3 is a function of the distance

betweend and mergey(,f) =y. The edit distance is computed
using these costs and operationsto find matchesfor the
query in the database ink.

Let dist; representthe cost of the best match
between the first strokes of thequery Q and a substring of
the databasdtem D ending at stroke t. The recurrenceis
then:
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If the decision made at each step in the
optimization processis saved,it is possible to backtrack
oncethe computationhas completedto recoverthe precise
alignment (ortrace) betweenthe two sequences.One such
example is shown in Figure 5.

N

Figure 5: Example of an ink matching trace.

For handwritten text (English and Japanese,
cursive and printed), empiricatudies using this approach,
as well as other, similar ones, have demonstratedgood
performance. In one experimentreported in [18], two
subjectseachwrote a reasonablylarge amount of English
text drawn from Herman Melville’s famous novel, Moby
Dick. They then wrote 30 short words and 30 longer
phrases(2-3 words), taken from the samepassageswhich
served as search strings.

Two standard criteria from information retrieval
were used in assessingthe performanceof ScriptSearch:
recall, the percentage of true matches reported, and
precision, the percentage of reported matches that are true.
is desirable tohaveboth of thesemeasuress closeto 1 as
possible. Thereis, however, a fundamentaltrade-off. By
insisting on an exact match, the precision can be Mabtet
recall will suffer. On the other hand, if arbitrary edits are
allowed betweenthe query and the matchedportion of the
databasethe recall will approachl, but the precision will
fall to 0. For ink to be searchable this way, there mustbe
a point on the trade-off curve where both recall and
precision are sufficiently high.

The chartin Figure 6 presentsthe results of this
experimentshowing precision as a function of recall. The
upper set of curves correspondto the longer queries, the
lower set to the shorter ones. The bars represent the
combined queries for eachwriter. Note that ScriptSearch
returns mostly the desired hits, with relatively little
superfluous “noise.”
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Figure 6: Results of a ScriptSearch experiment.

4. MATCHING HAND-DRAWN SKETCHES

For ink to be truly first-class, a pen-based system must allow
for morethan just textual input. It should be preparedto
handle anything a userwould write/draw on a traditional
pad of paper.

While the approach describedin the previous
section works well for writer-dependentatchingof textual
ink, sketchespresentmore of a challenge as a user might
more naturally vary the order in which constituentobjects
are drawn. Figure 7 demonstrates this: inttye sketchon
the left side, the house drawn first, then the tree,then the
car, whereas in the very similar sketeh the right side, the
drawing order is reversed. Moreover, if the gizato search
a database, the best match may be “partialthe sensethat
certain elementsare omitted or repeated. Algorithms that
have been developed for matching textual ink are not flexible
enough to capture these kinds of block motion in the
temporal (stroke-sequence) domain.
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Figure 7: The sketch matching problem.

In a recentpaper,Lopresti and Tomkins introduce
a family of algorithms for block stringhatchingthat address
this issue [23]. Here sketch matching is treated at two
levels of abstraction. At the highest level, long
subsequencesf the ink string (“blocks” or “motifs”) may
be interchangedand repeatedto allow for variations in
drawing order (e.g., house-tree-carvs. car-tree-house,as
demonstratedn the figure). At the lowest level, a single
motif is treated as a sequence of strokes that, for a gisen
are always drawn in a consistent order, just agxtual ink
matching (e.g., frame-roof-door-window). Théyorithms for
solving this problem,also basedon dynamic programming,
exploit this structure by partitioning the query ink into

blocks adaptively and matching each to a block in the
databaseink such that the sum of the distances between
corresponding blocks is minimized.

Let Q = 19z...0m andD = d,d....d, be the query and
databaseink strings, respectively. A t-block substring
family of Q, Q},, is a multiset containing t substringsof Q.
The block edit distance betweentwo strings is determined
by finding the bestway to choosesubstring families of Q
andD and correspond each meml@#rQ|, with somemember
of D|. For eachpairing, a cost is assessedasedon the
distancebetweenthe two substrings. The correspondence

between blocks is giveby a permutationo 00 S(t) from the
symmetric group om elements. The optimizatioproblemis
then:

t
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While the most generalform is NP-complete[23], certain
variants have efficient solutions. In particular, if the
substring family for one of the ink strings, say D, is
unconstrained so that: (1) blocks may overlap, and (2)fall
D need not be used, the following polynomial time
algorithm may be employed.

Let W(i,j) be the value of the best possible match
between the substring...q; and any substring dd, plusthe
per-block costCy:

Wi, ) = Gyou + min{dist(q K ¢, 0K d)}

Now define M(i) to be the best block matchbetweenq;...q
and D. We can then optimally pair blocks of the query
string with blocks of the database string using the
following recurrence:

M(i) = min{M(j) + W(j + 1)}

As with textual ink matching, it is possible to
reconstructthe best-casealignment betweenthe two ink
sequences by saving the optimgdcisionsat eachstep and
backtracking. An example of such a trace is shown in
Figure 8. Here the quersketch depictedon the left side of
the figure, a computer and a chair, is matched doawing of
a chair, a desk, a computer, and a lamp on the right.
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Figure 8: Example of a sketch matching trace.

This approach to sketch matching wastedin an
experiment designed so that purely local similaritgasures
would not be effective [22]. Each of fivwbjectswas asked
to create an ink database consisting of 25 sketches, apd a
of 25 ink queries to the database. The instruction for
creating a databasepage might be, for example: “Draw a
chair, a desk, a computer, and a lamp.”



Instructions forcreating queriesalways consisted
of 1 or 2 motifs, so a query meant to match dia¢gabasesntry
just given might be: “Draw d&mp and a chair.” Note that
the same query might match other datatslsstchesas well.
Of the 25 queries, three matched three entries of the database,
nine matched two entries, and 13 matched one entry.

Figure 9 shows the effectivenessof the sketch
matching algorithm, measured in termstloé numberof false
hits that were ranked higher than intended onkkre than
75% of the time, the first match returned was a true @inly
in a couple cases did the algorithm perform badly.

5. RELATED ISSUES AND APPLICATIONS
As we noted previously, handwriting recognition could

serveas a core technology to support the retrieval of first-
class ink data. Hence, any improvements ttmheabout as

a result of research successes in the field can be used to good

advantage. Tappert,at al. presentan earlier survey on the
state of the art [31]. A more up-to-date paperis one by
Plamondon, et al. [27].
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Figure 9: Results of a sketch matching experiment.

Math differs from text in that its logical structure
has a second dimension (in addition to the obvious
vocabulary differences). A system capable of simultaneously
handling text, mathematical expressions, and editing
gesturesis discussedin Dimitriadis and Coronado [6].
Other systems for handling math, in terms of over-
segmenting the input and presenting it to an HMM
classifier, are described in Winkler and Lang [38].system
for segmenting handwrittemathematicakxpressionsbased
on attributedrelational tree representationss presentedin
Faure and Wang [7].

In terms of graphical input, Welbourn and
Whitrow [34] discuss a gesture-basedext and diagram
editor. Thetwo types of data are identified, with the text
presentedto one classifier for recognition while the
diagrams are beautified by another. Julia &adre[15] is a
paperdescribingtwo editors for beautifying drawings that
include tables, geometric figures, etc. A pen-based eftitor
beautifying network diagramsis presentedin Galindo and
Faure [8]. A strategy for separating annotatidmm figures
in engineering drawings is given in Utton et al. [32]. Tivoli
is a pen-basedwhiteboard application that recognizesand
supportsvarious kinds of structurescommonto meetings,
including lists, outlines, and node-link diagrams [25].

Recently, content-based retrieval of imadpgtahas
becomea popular topic for research.Interestingly, even
when a keyboard and mouse are available, the quickest, mos
natural way for people to speciimple shapesis to sketch
them. Hence, pen-based inputy serveas a front-endtool
for image database management. Del Bimbo and Pala
describe a technique for this problem based on elastic
matchingthat is scaleinvariant and takesinto accountthe
spatial relationships between objects [5]. Chan, et al.
present an approach that extracts prominent geometric
features (line segments,circular arcs, and curvelets in
general) and uses them to compute a similarity value
between the sketch and an image [2].

Another areain which ink shows potential is in
combination with other continuous media types. Whittaker,
et al. present an application that integrates handwritten
notes and recorded audio, allowing users to access
particular pointsin arecordingby linking the ink andthe
audio in the temporal domain [35]. Here, easy-to-browse
handwriting provides an index for difficult-to-browse
speech. Dynomite is another, similar, such system [36].
Combining writing and speech in asynchronous
communication (i.e., messaging)tise subject of a paperby
Daly-Jones, et al. [4]. Their studies foutitht usersshow a
significant preference for pen-and-voice messagesover
“unimedia” communication.

Beyond the previouslyited researchefforts, there
is growing commercial interest in areas relatinditet-class
ink data. Microsoft's aha! Inkwriter permits editing of
uninterpreted handwritten documents. A. T. Cross’s
Crosspadproduct allows usersto write on standardpaper
and then transfer the ink to a PC.

6. CONCLUSIONS AND DISCUSSION

The notion of treating ink as first-class multimedia data
offers intriguing possibilities. As we have attemptedto
show in this short, admittedly incompleseirvey, numerous
interesting research issues arise when one adopts this view.

Among the important questions that remain
unanswered is developing an ability to death truly free-
form pen input.  This would probably involve pre-
classifying arbitrary writing/drawing as text, sketches,
equations,etc., so that the proper recognition technology
can be invoked. As always, it would be best if this cdugd
accomplished without burdening the user in any way.

Given fuzzy retrieval methods such as those
described in [20,21], it is not necessary for recognition to be
100% accurateto apply it in the background. Far more
important is that it be consistent and robust. In other
words, 90% accuracyon all inputs is preferableto 100%
accuracy on some inputs and 1@ others. Canwe build
classifiers with this property? How accurateand robust
need they be for acceptable retrieval performance?

On a related note, is it possibie recognizewhen
a given classifier is doing a bad job so that a different
technique can be applied or, in the worst case, the user
alerted?

Recalling Figure 2, both ink matching and
backgroundhandwriting recognition have nice properties.
The formermay be more accuratefor a given user,while the
latter is writer-independent. Can thesetwo paradigmsbe
combined to yield a more effective retrieval engine?
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