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Abstract

In this paper, we discuss the notion of treating electronic ink as first class data
without attempting to recognize it by presenting two different variations of approximate
ink matching (AIM) for searching ink data. We also illustrate a pen-based electronic
document annotating and browsing system and methods for searching handdrawn per-
sonal notes employing the described matching schemes. Adapting from the Learning by
knowledge paradigm, we propose a semantic matching network that applies semantics
of Chinese language early in the process of ink matching. Finally we evaluate several
key components in our entire ink matching network via experiments. Preliminary ex-
perimental results show the approximate ink matching algorithms perform well, despite
the informal and highly variable nature of Chinese handwriting. Our experiments also
show some promising results on semantic matching and the feasibility of our semantic
matching architecture.

Keywords: Approximate ink matching, Semantic matching, Electronic ink matching,
Chinese handwritten annotations, Radical extraction

1 Introduction

In Chinese office automation systems, the input of Chinese characters into the computer is
a bottleneck. It has been reported that efficient input methods for Chinese characters were
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proposed and utilized [19], and more than 100 Chinese characters per minute can be input
using a keyboard. However, these input methods are mostly for trained typists; they are
too complicated for an ordinary person to learn.

With the advancement of computer technology and input devices such as the stylus,
the next generation of pen computers and PDA’s have a lot of potential. Handwriting
recognition, however, has proved to be a more difficult problem than most people first
expected. The use of stylus in a pen computing system brings the advantages in many
ways, it need not be limited to input for handwriting recognition as this is a very difficult
task especially there is a wide variation in the way people write. Nakagawa et al. [14]
presented the concept of lazy recognition which is the notion that constantly presenting
recognition results to the user (often with errors that the user is forced to correct) interferes
with the creative process of writing. Even if HWX accuracy were 100%, it still might bother
the user to replace his/her handwriting with text as it is recognized.

Along these lines, it is possible to do handwriting recognition completely in the back-
ground (without showing the results to the user) and then use this for retrieval. However,
one potential problem with this approach is that the user receives no immediate feedback,
and the handwriting recognition might be doing a very bad job and the user will not realize
this until he/she tries to do retrieval.

Instead of handwriting recognition, some research have been done around electronic ink
matching, including Lopresti and Tomkins’s earlier work [8]. Similar research can also be
found in the work of Poon et al. [16] and Reynolds et al. [17], but no applications were
identified. Manmatha et al has done some work in handwriting matching [10], but mainly
on scanned (off-line) images instead of electronic (on-line) ink. Pavlidis et al [15] has used
shape metamorphosis to recognize on-line handwritten patterns, but this is limited to singly
connected shapes.

Our work around electronic ink matching is based on the notion of “treating handdrawn
annotations as first class” data. The idea is to take electronic ink as a temporal sequence
of pen strokes — without attempting to recognize it. FEfficient search algorithms based
on approximate string matching are then used for matching query ink sequence with the
previously stored ink sequences in a database. This idea was later extended to searching
lengthy handwritten notes for keywords (“word spotting”).

In this paper, we explore the application of these ideas to searching Chinese handwritten
annotations in a pen-based document browser. Then, we describe the approximate ink
matching (AIM) algorithm that is being used in the application. Using such an approach,
some of the difficult tasks encountered in handwriting recognition such as low accuracy
rates due to the variation in writing styles can be avoided.

While our AIM algorithm matches handwriting based on strokes without trying to rec-
ognize it, a human, on the other hand, might take a different approach. As illustrated in
Figure 1, when human tries to match two pieces of handwriting, he/she first tries to identify
semantics i.e. radicals in Chinese language, then match these semantics. Radicals are small
structural parts that form a character. They are basic elements of semantics in Chinese,
and they usually have their own meanings.

Based on this concept, we extended our ink matching algorithm to be able to identify
radicals in the Chinese language that is contained in handwriting. These extracted radicals
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Figure 1: Use of semantics when matching two pieces of handwriting in Chinese.

will then be used to “classify” the entries in the annotation database. When a query is
entered by the user, only items with relevant radicals in the database will be searched, thus
speeding up the existing ink matching by reducing the size of the problem. By identifying
the radicals in handdrawn Chinese annotations, we can also convert ink into a sequence of
computer codes that represent basic elements of Chinese language - radicals. This process
does not involve a large vocabulary and hence is far less complicated than traditional HWX,
but can be suitable for our application of matching ink annotations. This matching scheme
is called semantic matching.

Semantic matching employs the same concept of extracting radicals used by most hand-
writing recognition techniques, but it is not doing handwriting recognition. Semantic match-
ing is an encouraging idea in improving existing ink matching for Chinese handwriting es-
pecially cursive handdrawn annotations. It is also a good example of Learning by knowledge
paradigm [23] in processing Chinese handwriting, in which accumulated knowledge is being
iteratively used.

The remainder of this paper is organized as follows. In Section 2, we provide an overview
of the Chinese ink annotation application. Section 3 describes in detail our approximate ink
matching (AIM) algorithm. Section 4 describes our ongoing research in semantic matching
and illustrates some interesting results. Section 5 discusses a systematic procedure for
evaluating the performance of ink matching. Finally, in Section 6, we give our conclusions.

2 Overview of the Ink Annotation System

Annotation is a useful and important operation for handling documents. A quick survey
of the desk of an average office worker will turn up many pieces of paper that contain
handwritten notes, items that have been circled to indicate their importance, text that
has been “edited” by crossing it out, etc. Clearly, any system that attempts to duplicate
the familiarity of paper-based document handling must include provisions for user-entered
annotations. Mostly important, these annotations should be searchable.

Unfortunately, the search options provided in current document management systems
are mostly text-based. Usually text-based descriptions of the documents are either ex-
tracted from the scanned documents using document image analysis and OCR techniques,



or entered manually by the user using a keyboard. Such search techniques cannot be used
for handdrawn annotations created by non-text based input devices, such as a pen.

The text-based search technique itself also has some limitations in real applications. For
example, developing similar systems for Chinese-based documents proves to be a challenge.
Unlike most western languages, Chinese does not have a fixed alphabet set. Instead, it has
a much larger character set than ASCII. Consequently, entering Chinese characters into a
computer is a time-consuming task since no simple keyboard is available. Also, the large
character set makes Chinese character recognition, either printed or handwritten, more

difficult than, say, English OCR.
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Figure 2: Annotations are written directly on a document.

In this section, we describe an ink annotation tool that is advantageous over a keyboard
in a document system, this is particularly important for a Chinese document system which a
Chinese keyboard is hard to implement. Our goal is to give simplicity and ease of use when
users write thus even someone with little computer background should feel comfortable
using our software as writing annotations on paper documents.

As illustrated in Figure 2, scanned documents can be browsed and annotations can be
written directly on a document. Once the annotation is written, it can be highlighted,
moved, hidden, deleted or changed to a “stick-on” note with yellow background. Multiple
annotations can exist in the same document page, each having their own mode: hidden or
displayed to the user. Ink editing capability is also integrated in the annotation control
panel.

The annotation software also provides a search tool which allows users to write a query
and search for a previously written annotation. The search algorithm (AIM) we use is based
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on the assumption that people write differently, but they normally write in a consistent
way. As illustrated in Figure 3, four users were asked to write the same annotation twice,
at different times. By looking at one column, we can see that four people write differently;
looking at each row, we can see that each user writes consistently.
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Figure 3: Handwriting is highly personal. It does, however, exhibit significant self-
consistency.

The AIM uses a fuzzy search technique. Unlike exact match, AIM never rejects a search
query. It always gives results by sorting them so the best match is shown first and the worst
is shown last. The user interface (as shown in Figure 4) is provided to let users go through
each annotation in the order of rank. Therefore, if the best match is not the expected
match, users can still see the rest of top hits at once so they can quickly decide which one
is exactly what they want. Clicking on the selected annotation will display the associated
document (i.e. the document that this annotation is written on) to the user.

As seen in Figure 4, an ink query for “important” in Chinese yields matches on “impor-
tant news”, “very important”, “a very important course”, “important meeting” etc. This
is called word spotting. The word spotting capability in AIM allows subsequence matching
- a shorter query to be matched to a region contained in a longer database entry. Again,
this capability is not just limited to languages, it can also be used to match graphical an-
notations. Figure 5 illustrates the word spotting concept. The word spotting in AIM has
the benefit of retrieving not only the desired annotation itself, but also related annotations.

3 Approximate Ink Matching

The approximate ink matching algorithm (AIM) that was used in the above described
ink annotation system was developed to perform matching at the pen-stroke level. This
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Figure 4: A ranked list of top matches is returned to the user.

approach has the advantage of allowing user to do well against a broad range of handwriting,
including some so poor that it is effectively illegible. The same algorithm can be used in
both English and Chinese, irregardless of source language. The algorithm applies dynamic
programming with a recurrence similar to that used for string edit distance, but with a
different set of operations and costs. The top-level organization of the ink search algorithm
is shown in Figure 6. The details of the algorithm will be described in the following.

Stroke segmentation

Ink consists of a sequence of points representing the movement of stylus when the user is
writing. First, the incoming points are grouped into strokes. Currently we break each stylus
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Figure 5: “Word” spotting (subsequence matching).
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Figure 6: Overview of the ink search algorithm.

movement from “pen-down” to “pen-up” at local minima of the y values and segment into
strokes.

Elastic distance/VQ distance

There are two variations of the algorithm as shown in Figure 6. One is elastic matching
which is based directly on segmented strokes. The elastic matching works directly with raw
ink stroke thus does not need training. The other is VQ matching which extracts 13 features
used by Rubine in the context of gesture recognition [18] from each stroke and forms a 13-
dimensional feature vector, then classifies the feature vectors into one of 64 different stroke
types. From then on, the ink sequences are represented as strings of stroke types. This
particular feature set seems to do well at discriminating single strokes and can be updated
efficiently as new points arrive. The VQ codebook was computed from a small sample of
handwriting and the same VQ codebook can be used for all users. The details of vector
quantization on strokes were described in our earlier work [8][7]. The cost functions for
the edit distance, which will be described later, is then calculated based on the segmented
strokes (elastic) or classified stroke types (VQ).

Edit distance

In the last phase, we compute the edit distance between the stroke sequence associated with
the query ink and the pre-computed sequence for the reference ink. Let § = s155...5,, and
T = t1ts...t, be two symbols (in our case ink sequences) where s; and ¢; represent strokes,
and let d(S,7T) be the minimum cost of any sequence of basic operations that transforms S



into T'. Solve d(S,T) can be implemented by a dynamic recurrence:

dic1; +  cde(sq)
d;; =min < d; ;1 +  cins(t;) 1<1<m,1<j53<n (1)
dic1j-1 +  Coun(Si,t5)

where d; ; is distance between the first 7 symbols of stroke sequence S and the first 5 symbols
of stroke sequence T'. Note that d(S,T) = dmn- Cdel, Cins, and Coup are costs associated
with three basic operations as in the traditional case [22]: 1) delete a stroke; 2) insert a
stroke; 3) substitute one stroke for another.

In implementation, two operations, split and merge were added in VQ algorithm to
account for imperfections in the stroke segmentation algorithm. We build a merge table
that contains information of the form “an average stroke of type a merged with an average
stroke of type 8 results in a stroke of type v”. Only two adjacent strokes are considered
for merging. The costs for split/merge as well as other system parameters are illustrated
in Table 1. The scale parameters w’s were from the training process based on small sample
set of handwriting in order to obtain normalized operation costs and optimal performance.
However, as will be mentioned later in this paper, how to obtain these parameters that
work best for Chinese handwriting is one of our future tasks.

| Parameters || FElastic | VQ
Cgel Wwqer ¥ length of stroke, wge; = 1 | wger * length of stroke type,
Wdel — 1.1
Cins Wins ¥ length of stroke, wins = 1 | wins * length of stroke type,
Wins = 0.45
Csub Weypy T Euclidean distance be- | w,y,; * Mahalanobis distance be-
tween two strokes, wsqyp = 1 tween two stroke types, wsyp = 1
Crmerge N/A Wmerge * length of merged stroke
type7 Wmerge = 2.2
Csplit N/A The cost of a split from stroke
6 to strokes o and 8 = wpir *
v, where v = distance from § to
merge(c, B), wger = 1.1

Table 1: Cost parameters in approximate ink matching.

Figure 7 shows a detailed trace of our matching on stroke level using elastic ink matching.
The upper writing is the query while the lower is the reference database. Each stroke is
represented by a bounding box. Strokes that are matched between the query and database
are connected by a line. From this figure we can see that every stroke in the query is
matched to the correct one in the database.

Approximate ink matching works directly on the raw ink strokes, it can be readily
applied to the annotation system we’ve described in Section 2. As will be described in the
next section, approximate ink matching can also be combined with semantics of Chinese
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Figure 7: Trace for the edit distance comparison between the query and the database item
in question.

language thus construct a semantic matching scheme in order to improve the raw ink-based
matching.

4 Semantic Matching

Our work around electronic ink matching is focusing on the user-entered annotations in a
document system. This task specially requires dealing with informal cursive handwriting.
The structure and semantics of Chinese language make it unique in dealing with problems of
matching. The semantics embedded in Chinese plays an important role in human’s learning
process. On the other hand, semantics should also be employed in the recognition of Chinese
characters.

In this section, we discuss the concept of Chinese handwriting matching that uses se-
mantics in a Learning by knowledge paradigm. We illustrate that semantics can be used not
only in the character recognition or linguistic processing, but also in the early process such
as segmentation. Our ongoing research on semantic matching consists of two areas: one is
identifying radicals from handwriting and using these radical information to speed up the
matching process; another is exploring the matching between handwriting and typed texts
via radicals.

4.1 Semantic Matching Scheme

Learning by knowledge is a new methodology presented by Wang [23], in which old, existing
knowledge can be accumulated and iteratively used to enforce and help learn new knowledge
via a feedback system, as illustrated in Figure 8. Wang has shown that this methodology
can be used in understanding and recognition of Chinese characters via a semantic network.
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Figure 8: Learning by knowledge in pattern recognition with examples.

We have applied semantics in the Learning by knowledge diagram and constructed a
semantic matching network as illustrated in in Figure 9. The main steps include pre-
processing, character segmentation, radical extraction, classification and matching. As can
be seen, our semantic knowledge base was obtained from a learning process (training) and
can then be applied in the early processing stage. This would help eliminated unwanted
candidates via classification, which in turn speed up the recognition (matching) process.
The knowledge learned from semantics may also convert handwriting to computer coded
representation of radicals thus make the handwriting searchable by typed text query.

Our method of “learning by knowledge” and “semantic matching” adapted from Wang
[23] has advantages over others in the literature, for examples: “learning by rote” according
to Ausubel et al [1], of which in a learning process, new information is being added to the
process’s learning structure without establishing any relationship with the concepts already
existing in the knowledge of the learner. A slightly better way of learning was proposed
later by Millward [11], known as “meaningful learning” by which new information is roughly
related to the relevant concepts already existing in the knowledge structure of the learner.

In the remainder of this section, several details of semantic matching will be described.
Pre-processing and character segmentation were described in our previous work [9]. Similar
work can also be found elsewhere [20][13].

4.2 Radical extraction

Radicals in Chinese language are small structural parts that form a character. A radical can
be a character itself, or can only go with another radical in a character. The extraction of
radicals from segmented characters is a non-trivial task. Almost any Chinese handwriting
recognition systems have to deal with extraction of radicals or similar information. Some
systems [25][26][27][3] [12][4][6] extract feature strokes segments and then form them into
radicals. This method would most likely fail on informal cursive Chinese handwriting since

10
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Figure 9: Diagram of semantic matching.

there are so many variations of writing feature stroke in cursive Chinese. Some OCR systems
extract radicals based on one assumption that there exist gaps between radicals. This again
can not apply to free-format Chinese handwriting. Radicals are often connected together
within a character for cursive handwriting thus makes the extraction difficult.

On the other hand, temporal order of strokes are often preserved in on-line handwriting.
Almost every Chinese character embeds a particular order of strokes for writing. This order
is taught when a child learns how to write. As personal writing styles changes, this temporal
order may change. But one person normally write in a consistent way, he/she writes in the
same order every time he/she writes the same character. This applies to radicals as well.

The semantic database (also called radical database) consists of a set of basic radicals,
which are generated through a training process. The number of samples that need to be
collected for training is small since the number of basic radicals in Chinese is very small
(200 or so) in compare to the large number of Chinese characters (3000 or so) that are
commonly used.

The same elastic matching algorithm (implemented with word spotting) combined with
layout detection is used to extract radicals. The word spotting is used to match a radical
to a character that contains this radical. However, because radicals contain much fewer
strokes than a character or an annotation, this makes the elastic matching less reliable than
working on entire annotation. The layout detection of radicals is based on the fact that for
a particular radical, it can only reside at a known location within a character. For instance,
Cheng and Hsu[2] classify radicals into seven layouts. We divide the bounding box of each
character into 3 X 3 = 9 equal size regions and calculate the number of stroke points each
region contains. As shown in Figure 10, the number of stroke points in each region form a
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sequence of 9 numbers. This is called radical layout profile.
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Figure 10: The definition of radical layout profile.

When the semantic database is generated, the layout profile for each radical can be
pre-computed. In implementation, every input character is matched partially with limited
number of radicals in the semantic database. The returned list of top ranked radicals are
then traced back to the original input character in order to compute the layout profile for the
radical candidate. The similarity between this newly computed layout profile and the pre-
computed profile for the extracting radical is then calculated. Let Pr = ri7or3TaT5767778T9
be the normalized layout profile (by its maximum value) for a radical in the semantic
database, and Pr = t1tat3tststgtrigte be the normalized profile for traced radical stroke.
The similarity measure is defined as:

S = ¢(Pg, Pr) — d(Pr, Pr),

whereas ¢(Pr, Pr) is the correlation expressed as:
9
C(PR, PT) = Z’)"iti.
1=1

and d(Pr, Pr) is the distance thus pays penalty to the overall similarity measure. It is
defined as:

d(PR, PT) = z:(’)"Z — ti)2.

The similarity values are used to fine tune the order of top ranked extracted radicals. That
the distance is greater than correlation yields a negative similarity, and this value will be
eliminated in sorting the ranks. Since the number of radicals in the semantic database is
limited the matching time on a fast CPU computer will be small. Figure 11 illustrates an
example of radical layout profile and its similarity to the profile for radical model.

As shown in Figure 11, when radicals in the semantic database are matched against a
questioned character by computing the minimum distance, the elastic matching with word
spotting tries to find the best location that the radical fits within the character. This
location can be traced back in the ink matching algorithm in order to computer the radical
layout profile. With the similarity measure, the correctly located radicals yields a higher
value than those not.

12
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Figure 11: An example of radical detection, radical layout profile and similarity measure.

4.3 Classification

We use the results from radical extraction to obtain the most likely candidates thus reduce
the range of searching. First of all, each character is represented by its extracted radical
number X or NULL if there are no known radicals contained in the character, or X7, X5 if
two radicals are extracted. Each handwritten annotation is then represented by a sequence
of radical numbers. An example is illustrated in Figure 12, which is excerpted from the
famous poem by Chinese famous poet Li Po. This famous poem has be used as the book
cover of Document Image Analysis edited by Bunke, P.Wang and Bird.

AMEYEEm—H \ LS

— 103; 103.80; 149,003; 83; ; 77; 83;

3| [

Figure 12: Radical representation of annotations.

The size of reference data can be reduced via a classification procedure in order to
identify the most likely candidates. Each reference annotation is coded with a sequence of
radical numbers by using radical extraction. When each query comes into the system, it
is also converted to a radical code sequence via radical extraction. Edit distances are then
computed on sequence of radical codes between the query and each item in the reference
database using dynamic programming. The items in the reference database with least
distances can be selected as most likely candidates. The time for computing edit distance
is significantly less than that required for matching ink strokes (1 : 40) since the selection of
most likely candidates is working on the sequence of extracted radical codes — a significant
reduction of information from raw ink strokes. The number of most likely candidates to be

13



selected is a system parameter, it will be discussed more in Section 5.

Similar to the dynamic programming procedure in AIM, we have three basic operations
in computing edit distances for radical codes: insertion, deletion and substitution. Instead
of work on strokes, we now work on characters. Currently, the cost of insertion and deletion
were assigned a constant number. The cost of substitution is determined by the number of
occurrence that a radical code in one character does not exist in the other. For instance,
if the two characters to be substituted are encoded as: ¢; = 1,3 and ¢ = 3,17, then the
substitution cost is 2. If ¢; = 1,3 and ¢o = 14,17, then the substitution cost is 4. As can
be seen, currently all the radicals are equally weight in computing the cost.

4.4 Matching

To make the matching more reliable, each annotation in the most likely candidate list will
be matched against the query annotation using the same approximate ink matching as
described earlier in this paper, and a top match list is generated. As illustrated in Figure 9,
the matching can be applied to both ink vs. ink query and ink vs. typed text query, as the
feasibility of matching typed text is still under exploration.

5 Experimental Evaluations

An experimental procedure was developed to systematically evaluate the components of
semantic matching network. The entire semantic matching scheme is still under construction
since it is comparatively new. However, the experimental results that will be described in
this section show more than encouraging results.

In our experimental procedure, several issues have to be addressed and performance
(feasibility) has to be evaluated. They are:

e Approximate ink matching - AIM can be used stand alone in our ink annotation
application. It is also a core technique that is used by the radical extraction.

e Radical extraction - The key component in the semantic matching network.

e Classification - The classification for selecting most likely candidates has to allow
false/missed radical extraction.

5.1 Data Collection

For our experiments, we collected 200 Chinese annotations, they are movie titles that are
translated into Chinese. A graphical user interface (shown in Figure 13) is built to make
the collection of handwriting easier. The content of the entry is displayed to prompt user to
write with a stylus in the white rectangle area. Clicking “Next” button will automatically
save the annotation and prompt the user for the next entry.

Four subjects were asked to write 200 Chinese annotations twice. They first wrote 200
annotations and these data were stored as reference ink database. Then they wrote the
same 200 annotations again after a period of time, these data were stored as ink queries.

14
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5.2 Evaluation of Approximate Ink Matching

In our experiment, we allow each of the ink queries to match against all 200 annotations
in the reference ink database. Since the contents of these two sets of data are known, we
would know in advance what results we should expect. Each matching will yield a list of
200 values, each representing the distance between one item in the reference ink database
and the query. These distances are then sorted and a rank number is given to each item.

When it comes to evaluating the retrieving performance of AIM, as does for any IR
system, visualization can also play an important role in improving the system interactive
recall/precision as stated by Veerasamy et al[21]. The top match list as shown in Figure 4 in
our ink annotation system effectively displays the relevance judgement to the user without
any burden on the processing time. In evaluating the AIM performance, we will observe
how the retrieval rate changes with the number of top matches returned.

We have experimented with both VQ ink matching algorithm and elastic ink matching
algorithm on the four data sets we collected. Figure 14 and Figure 15 show the recall
for each individual writer using VQ and elastic ink matching versions respectively. The
entire charts show recall as a function of the number of top matches returned. Although
our experiments are run on a small test database, it is a promising result that for VQ ink
matching algorithm, about 62% recall can be achieved at first hit. This number will be
80% if 5 top matches are viewed, that accounts only for 2.5% of the entire database. The
VQ ink matching runs at about 2 seconds per query on a DEC Alpha workstation for our
database. The performance has improved significantly for elastic algorithm. About 92%
recall is achieved at first hit, this number will increase to 96% with 5 top matches. The
speed for elastic ink matching is 160 seconds per query. As can be seen, the elastic ink
matching algorithm is more reliable than VQ algorithm, yet the computation time is high.

15
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5.3 Evaluation of Radical Extraction

The radical extraction algorithm uses word spotting elastic matching combined with layout
detection. To evaluate this, the data is obtained from running on a small radical database
which consists of 45 most frequently used radicals as identified by Xiao and Dai [24]. The
radical extraction then runs on each item in our pre-selected ink database (consisting of
characters that contain these frequently used radicals) against each radical. The recalls
of radical extraction with and without using layout detection are illustrated in Figure 16.
As can be seen, the performance of radical extraction significantly improves once radical
layout is being used. Although we are still in the process of improving radical extraction
and developing more robust and sophisticated algorithm, this result looks promising.

5.4 Evaluation of Classification

In classification, each character is converted to a radical representation or NULL if no known
radicals is contained in the character. This is an information reduction at a rate of 3000
(characters) to nearly 200 (common radicals) or even less. An evaluation procedure was
developed in order to test the feasibility of classification that relies on such information
reduction.

In our experiments, we extract the radicals manually from 200 annotations in our pre-
viously collected database (translated movie titles in Chinese) and construct a sequence of
radical code for each item. In this encoding process, we used the nearly 200 radicals listed in
the radical index table in the Chinese-English Dictionary[5] and 45 mostly frequently used
radicals identified by Xiao and Dai[24] respectively. Again, from 0 to 2 radical numbers
are coded for each character. English letters, punctuations are ignored and simply coded
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Figure 15: Elastic matching: Recall vs. number of top matches returned for four users
(represented by solid, “+” and “0” and “*” lines respectively).

NULL. These manually extracted radical sequences only simulate the ideal case when all
radicals are extracted perfectly. However, as will be described later in this section, we have
to allow false or missed extraction of radicals.

In experiments, each radical coded annotation is compared with all other items in the
entire database and a list of edit distances are computed using dynamic programming. By
scanning each annotation at its edit distances, we obtain the number of hits at each distance
from 0 to maximum distance. Figure 17 shows the average number of hits a query can get
within a specific distance from 0 to maximum.

In Figure 17, we can interpret the distance axis as the margin for missing of radicals in
radical extraction. As missed/incorrect radical rate increases, the distance increases, thus
a higher number of hits occurs, which means there are greater number of most likely candi-
dates within the database. The saving of computation time by classification depends on the
number of most likely candidates that have to be selected for subsequent ink matching. At
a given edit distance, a lower value in number of hits means more discrimination power for
the classifier, thus the fewer number of most likely candidates can be selected for subsequent
ink matching which in turn yields more saving of computation.

Furthermore, the saving of computation time for semantic matching is upper bound
(minimum saving) by the horizontal line in Figure 17'. The curve below the line indicates
the saving. The encouraging finding from this experiment is that under the upper bound
line of saving, the classifier does have tolerance of distance which allows for miss/incorrect

!The timing is computed based on the fact that each query takes 160 seconds to match the entire database
(200 titles), the radical extraction takes about 30 seconds for an average 5 character long annotation, and
the classification time (computing edit distance for radical code sequences) is approximately 4 seconds per
query.
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radical extraction.

Also shown in Figure 17 is that the overall performance gain from semantic matching
depends on the distance threshold, which in turn is determined by the performance of radical
extraction. When less number of radicals are used for character encoding (e.g. 45 suggested
by Xiao and Dai[24]), the saving of computation time for final ink matching is not as good
as using 200 radicals, however, this makes radical extraction less time consuming and more
reliable. The obtain of optimal number of radicals, the selection of representative radicals
and the distance threshold on the selection of most likely candidates (classification) is a
challenge task for the training process.

6 Conclusions

In this paper, we have described ink matching techniques that can be used for Chinese
annotation search in a document system. Our ink annotation system allows a user to write
notes anywhere on a page, and then later search for them as an aid to information retrieval.
We have also given some experimental results on running ink matching algorithm on Chinese
annotations. We have also performed systematic evaluations on several key components of
our current system which are still under further development. The experimental results
show that our basic approximate ink matching perform well on cursive Chinese handdrawn
annotations with 92% recall for the first hit, and 96% recall for the top five matches returned.
The experimental evaluations further show some promising results on radical extraction and
classification along our line of semantic matching.

However, we think there are several ways in which the techniques we have described can
be improved. Although the current semantic matching network uses semantics of Chinese
for matching cursive handdrawn annotations, the fundamental matching technique of our
system — approximate ink matching (AIM) — was developed previously for a language inde-
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pendent environment. Therefore, a more complicated training procedure can be developed
toward Chinese language and system parameters can be adapted to work better for Chinese
handwriting. For instance, strokes are currently segmented at local minima of the y values.
This is generally good for a system with mixed writing in Chinese and English. However,
our informal test show that the choice of segmentation algorithm may have a significant
impact on Chinese and English ink matching.

Further improvement can be explored in the selection of features in the VQ version of
the algorithm. The feature set we use is generally good for common gestures, it may not
be the best one for Chinese. This seems likely since Chinese is stroke based, the angles
of strokes are particularly important. Changing the slope of a single stroke in a character
slightly can change the meaning of the word. Other system parameters such as the weights
for VQ features, the scaling factors for the basic costs in dynamic programming procedure
may also be fine tuned through an empirical training process.

Finally, as stated in this paper, we are also doing further research on semantic matching.
The extraction of radicals does not have to be perfect as illustrated in Section 4. However,
the reliability of the radical extraction does affect the performance of the entire system. The
number of radicals and the selection of radicals may be obtained from a training process
as this is a component of Learning by knowledge. Some radicals are more immune to noise,
while others are not. Careful selection of radicals to be used can increase the performance
of radical extraction and thus the overall matching.

The ink matching scheme we proposed is more sophisticated than the conventional
"syntactic” methods without contextual information [23][11]; it requires more memory and
a backtracking procedure. More work need to be done in the future to overcome these
difficulties. A larger dictionary (lexicon) and more intelligent machine of inferring and
reasoning will also be helpful.
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