Models and Algorithmsfor Duplicate Document Detection*

Daniel P. Lopresti
Bell Labs, Lucent Technologies Inc.
600 Mountain Avenue, Room 2C-552
Murray Hill, NJ 07974 USA
dpl @research.bell-labs.com

Abstract

This paper introduces a framework for clarifying and
formalizing the duplicate document detection problem.
Four distinct models are presented, each with a correspond-
ing algorithm for its solution derived from the realm of ap-
proximate string matching. The robustness of these tech-
niques is demonstrated through a set of experiments using
data reflecting real-world degradation effects.

1. Introduction

As information management and networking technolo-
gies continue to proliferate, document image databases are
growing rapidly in size and importance. A key problem fac-
ing such systems is determining whether duplicates already
exist in the database when a new document arrives. This is
challenging both because of the various ways a document
can become degraded and because of the many possible in-
terpretations of what it means to be a “duplicate.”

For example, one document might be a photocopy of an-
other, or a fax. The copies could be visually identical or
one might have additional handwritten notes appended to
it. If the original document was generated on-line, a dupli-
cate could contain exactly the same text, only formatted in
a different way (changes in font, line spacings and lengths,
etc.). A duplicate might possess substantially the same con-
tent, but with minor alterations due to editing (i.e., earlier
or later versions of the same document). Of course, in any
of these cases, the image of either or both of the documents
may contain significant “noise” due to the way the printed
page was handled or anomalies in the scanning process.

Whatever the definition, the process of determining
whether one document is a duplicate of another involves
two steps: (1) extracting appropriate information (features)

*Presented at the Fifth International Conferenceon Document Analysis
and Recognition, Bangalore, India, September 1999.

from the incoming document image, and (2) comparing the
features against those previously extracted from documents
in the database. Previous work on detecting duplicates (e.g.,
[1, 2, 4]) has concentrated mostly on exploring the first of
these, turning to more traditional measures when it comes
to the second. Here the emphasis is on the models and algo-
rithms associated with comparing document representations
(i.e., the second step), with features taken to be the uncor-
rected text output from a commercial OCR package.

The remainder of this paper is organized as follows. Sec-
tion 2 presents four distinct but related models for the du-
plicate detection problem. Each of these is solved optimally
using a dynamic programming algorithm, as discussed in
Section 3. Section 4 describes experimental results that
demonstrate the robustness of these techniques. Finally,
conclusions are given in Section 5.

2. Modedls

The focus in this work is on document pages that, while
in image form, are primarily textual in content. Viewed ab-
stractly, such a page is a series of lines, each consisting of
a sequence of symbols. In this string-of-strings viewpoint,
the term “symbol” can be defined quite liberally. It could
be interpreted as meaning characters, but higher- and lower-
level representations are also possible.

The problem can be partitioned along two dimensions:
whether the duplication is full or partial, and whether the
layout of text lines is maintained or not:

1. If two documents are visually identical, one is a pho-
tocopy or a fax of the other, say, they are full-layout
duplicates.

2. If two documents have identical textual content, but
not necessarily the same layout (i.e., line breaks), they
are full-content duplicates.

3. If two documents share significant content with the
same layout, they are partial-layout duplicates.

Full-Layout Full-Content The qui ck
The quick brown The quick brown The quick brown brown fox
foxjumpsover | ~mum—- | {0y jumps over fox jumpsover | ~m—- | s over

the azy dog. the azy the lazy o
elezy dog - same content | "9 ley dog
* same layout

the |
+ same content | gog.

« different layout

XX XX XXXX XXX XX XK XXKX XXX
X; X

XX X XX XXX

xxxxxxxxx | Partial-Content g’hzw'i"" g';

‘The quick brown

'DXJIqupser(~—- | | UTPS OVer
the lazy

« shared content | dog.

X
X0 XK XX « different layout

XK XXX XXX XX Partial-Layout | xxxxxxxxx
‘The quick brown The qick brown
fox jumpsover | < —- | fOX jUMpS OVer

he azy dog.
thelazy dog. u thelazy dog.
xcoxoxxxx | * shared content fooooo oo x X XX X000 X XX

xx
X
XX X XX XXX
XXX XX « same layout | ¥oxxx000x

XXX XXX XXX

Figure 1. The four duplicate classes.

4. If two documents share content but their layout is not
necessarily the same, they are partial-content dupli-
cates.

These various types of duplicationare shown in Figure 1.
Note that although the text used to illustrate the figure is
“clean,” in general it will be necessary to handle the full
range of potential document recognition errors.

3. Algorithms

The literature on approximate string matching is rich
with techniques for dealing with the sorts of errors that
arise when OCR'ing “difficult” documents. Beginning
with some definitions, a string, D = did,...d,, is a fi-
nite sequence of symbols chosen from a finite alphabet,
d; € X, String S = sys5...5, IS a substring of string
D = dyds...d, if m < n and there exists an integer & in
the range [0, n—m]such thats; = d; fori =1,2,...,m.
In the 1-D case (i.e., content duplicates), a document is sim-
ply a string. In the 2-D case (i.e., layout duplicates), a doc-
ument is a sequence of strings, D = D' D? ... D™ where
Di=did ... di.

A standard measure for approximate string matching is
provided by edit distance. In the simplest case, the follow-
ing three operations are permitted: (1) delete a symbol, (2)
insert a symbol, (3) substitute one symbol for another. Each
of these is assigned a cost, ¢gei, Cins, and cgqp, and the edit
distance is defined as the minimum cost of any sequence of
basic operations that transforms one string into the other.

3.1. The Full-Content Duplicate Problem

As it relates to full-content duplicates, this optimization
problem can be solved using a well-known dynamic pro-
gramming algorithm [5]. Let @ = ¢1¢s . . . ¢ be the query
document, D = did- . . .d, be the database document, and
define distl; ; to be the distance between the first i charac-
ters of () and the first j characters of D. The initial condi-

tions are:

diStloyo = 0
distl, o = distli_10 + caer(qi) (1)
diSt].oy]' = diStloyj_l + Cms(dj)
and the main dynamic programming recurrence is:
distli—i; + caer(qi)
diStlZ'J' = min diStliyj_l + Cms(dj) (2)

diStli_lyj_l + Csub(qia d])

for1 < i < m, 1 < j < n. The computation builds a
matrix of distance values working from the upper left corner
(distl, o) to the lower right (distl,, ,).

3.2. The Partial-Content Duplicate Problem

For the partial duplicate problem, what is needed is the
best match between any two substrings of @ and D. The
edit distance is made 0 along the first row and column of
the matrix, so the initial conditions become:

sdistly o = sdistl; ; = sdistly; = 0 (3)

In addition, another term is added to the inner-loop recur-
rence capping the maximum distance at any cell to be 0.
This has the effect of allowing a match to begin at any posi-
tion between the two strings. The recurrence is:

0
cer sdistl;_1; + caer(qi)
sdistl; ; = min sdistl;_1 + cins(d;) (4)

Sdistli_lyj—l + csub(qia d])

Finally, the resulting distance matrix is searched for its
smallest value. This reflects the end-point of the best sub-
string match. The starting point can be found by tracing
back the sequence of optimal editing decisions.

3.3. The Full-Layout Duplicate Problem

For the 2-D models (i.e., layout duplicates), another
level is added to the optimization. The problem is still

3

£

n

2]

173

i}

3

E Annotated,
_(% olight

) Original _printed ,Faxed ,3rd Generation aDark
S

=

Figure 2. Full-layout duplicate detection.

Less Similar

Partial-Contenty

« Full-Content

+ Partial-Layout

More Similar

Original Full-Layout

Less Similar

Partial-Contentg
* Partial-Layout

More Similar

Original Full-Layout x Full-Content

Figure 3. Duplicate detection using algorithms dist2 (left) and distl (right).

one of editing, but at the higher level the basic entities
are now strings (lines). Say that Q = Q'Q”...Q" and
D = D'D? ... D! where each Q' and D’ is itself a string.
For full-layout duplicates, the inner-loop recurrence takes
the same general form as the 1-D case:

dist2i_1; + Caa(Q')
dist2m»_1 + Czns(D])) (5)
dist2i_1 ;-1 + Coun(Q, D7)

forl < i<k, 1<j<I where Cy, Cins, and Cyy;p are
the costs of deleting, inserting, and substituting whole lines,
respectively. The initial conditions are defined analogously
to Equation 1.

Since the basic editing operations now involve full
strings, it is natural to define the new costs as:

Caa(@) = distl(Q", ¢)
Cins(D7) dist1(¢, D7) (6)
Coun(QF, D) distl(Q?, D7)

where ¢ is the null string. Hence, the 2-D computation is
defined in terms of the 1-D computation.

dist2m» = min

3.4. The Partial-Layout Duplicate Problem

Lastly, the extension for partial-layout duplicates com-
bines the modifications for the partial (Equation 4) and lay-
out (Equation 5) problems:

0
o) sdist ;4 Caa(Q)
sdist2; ; = min sdist2i ;1 + Cins(DY) (7

SdiStzi_lyj_1 + Csub(Qia Dj)

forl < i<k, 1<j<I Notethat Cyeq, Cins, and Clyp
are defined as before in terms of dist1 (i.e., Equation 6).

4. Experimental Results

To investigate the performance of the algorithms de-
scribed in this paper, two sets of experiments were designed.

The first examined duplicate detection in the presence of
various degradation effects, while the second studied the
four duplicate models and algorithms and how they relate.

The test database consisted of 1,000 professionally writ-
ten news articles collected from Usenet and was used as-is
(i.e., no attempt was made to inject OCR errors, either real
or synthetic). The query documents, however, and the in-
tended duplicates were all “authentic” (pages that had been
printed, scanned, and OCR'ed).

4.1. Experiment 1

The goal of this experiment was to study duplicate de-
tection under realistic noise conditions. The source docu-
ment was 1,395 characters long (26 lines, 203 words). Two
sets of six pages were created, one set to be inserted into the
database as the intended duplicates, and the other to serve as
the queries. Within each set, one page was used as-is and the
others were subjected to one of five different degradations:
faxing, excessively light or dark or 3rd generation photo-
copying, or handwritten markup (annotations) that com-
pletely obscured five of the lines on the page. The pages
were then scanned and OCR'ed. In addition, the original
ASCI| text for the query document was left in the database.
Hence, each of six queries was run against a database of
1,000 documents containing seven intended duplicates (Six
that had been OCR"ed, plus the original).

The OCR accuracies were found to range from 73.5% to
96.2%. As expected, a large variety of OCR errors were en-
countered, as well as other problems (e.g., fax headers were
transcribed and crossed-out lines were completely missed).

Since the query documents and their intended matches
have the same layout, this is a full-layout duplicate detec-
tion problem and the dist2 measure is appropriate. The chart
in Figures 2 plots, for the faxed query, the normalized edit
distance for every document in the database. Note that there
is always a clear distinction between true duplicates and ev-
erything else. This demonstrates that the technique is robust
when faced with the sorts of OCR errors seen in practice.

The charts for the remainder of the queries are similar

5]

E x Full-Content Partial-Contenty
n

n

9]

]

a

3

E

n

<] -

S ¢ Original)

= o, Full-Layout + Partial-Layout

S —
E

n

[}

)

)

4

3

E

2]

9 .

L | Original « Full-Content Partial-Content
= Full-Layout + Partial-Layout

Figure 4. Duplicate detection using algorithms sdist2 (left) and sdistl (right).

and can be found in another paper [3].
4.2. Experiment 2

The purpose of this experiment was to determine how
the different duplicate models relate empirically. The four
algorithms described in Section 3 were run using the same
source document as in the previous experiment. Duplicates
were constructed from the query by changing the line breaks
and/or appending roughly equal amounts of unrelated text
to the beginning and end of the document.

The pages were then printed, scanned, and OCR"ed. In
this case, the OCR accuracies were all fairly close, ranging
from 94.9% to 96.1%. As before, the original source text
was left in the database to serve as a second full-layout du-
plicate of the query. Hence, there were between two and
five duplicates in the database, depending on the model.

The results for this experiment are shown in Figures 3
and 4. Since there is a fair amount of residual similarity
even in the non-matching cases, the normalized edit dis-
tances are lower than for purely random documents. Note
that, as expected, algorithm dist2 works best for full-layout
duplicates, and distl adds to this full-content duplicates
(Figure 3). The partial-layout algorithm sdist2 can detect
full- and partial-layout duplicates, while sdistl covers all
four duplicate classes (Figure 4).

5. Conclusions

This paper has examined a humber of issues related to
the detection of duplicates in document image databases
using uncorrected OCR output. Four distinct models for
formalizing the problem were presented, along with algo-
rithms for determining the optimal solution in each case.
Table 1 enumerates these classes one last time. A solid
dot (e) highlights the algorithm most suited to a particular
problem, while a hollow dot (o) indicates that the algorithm
will find not only such duplicates but other types as well.

Since some of the problems seem to subsume others,
an obvious question is “Why bother with the less general

dist2 | distl | sdist2 | sdistl
Full-layout . o o o
Full-content o o
Partial-layout . o
Partial-content)

Table 1. The algorithms and where they apply.

ones?” The answer lies in increased precision for those sit-
uations where admitting a larger class of duplicates is un-
desirable (e.g., when the targeted duplicates are known to
be photocopies). Special cases may also make it possible to
develop more efficient algorithms.

References

[1] D. Doermann, H. Li, and O. Kia. The detection of du-
plicates in document image databases. In Proceedings
of the International Conference on Document Analysis
and Recognition, pages 314-318, UIm, Germany, Aug.
1997.

[2] J. J. Hull, J. Cullen, and M. Peairs. Document im-
age matching and retrieval techniques. In Proceedings
of the Symposium on Document Image Understanding
Technology, pages 31-35, Annapolis, MD, Apr. 1997.

[3] D. Lopresti. String techniques for duplicate document
detection. In Proceedings of the Symposium on Doc-
ument Image Understanding Technology, pages 101-
112, Annapolis, MD, Apr. 1999.

[4] A. L. Spitz. Duplicate document detection. In Proceed-
ings of Document Recognition 1V (IS&T/SPIE Elec-
tronic Imaging), pages 88-94, San Jose, CA, Feb. 1997.

[5] R. A. Wagner and M. J. Fischer. The string-to-string
correction problem. Journal of the Association for
Computing Machinery, 21:168-173, 1974.

