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Abstract

Detecting duplicates in document image databases
1s a problem of growing tmportance. The task is
made difficult by the various degradations suffered
by printed documents, and by conflicting notions of
what it means to be a “duplicate.” To address these
1ssues, this paper describes a framework for clarify-
g and formalizing the duplicate detection problem.
Four distinct models are presented, each with a cor-
responding algorithm for its solution adapted from
the realm of approrimate string matching. The ro-
bustness of these techniques is demonstrated through
a set of experiments using data derived from real-
world noise sources.

1 Introduction

As information management and networking tech-
nologies continue to proliferate, databases of doc-
ument images and their associated meta-data are
growing rapidly in size and importance. A key prob-
lem facing such systems is determining whether du-
plicates already exist in the database when a new
document arrives. This 1s challenging both because
of the various ways a document can become de-
graded and because of the many possible interpreta-
tions of what it means to be a “duplicate.”

For example, one document might be a photocopy
of another, or a fax. The copies could be visually
identical, or one might have additional handwritten
notes appended to 1t. If the original document was
generated on-line, a duplicate could contain exactly
the same text, only formatted in a different way
(changes in font, line spacings and lengths, etc.).
A duplicate might possess substantially the same
content, but with minor alterations due to editing
(i.e., earlier or later versions of the same document).
Of course, in any of these cases the scanned im-
age of either or both of the documents may con-
tain significant “noise” due to the way the hardcopy
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was handled or anomalies in the scanning process.
All of these interpretations are reasonable; later a
framework is described for clarifying and formaliz-
ing them.

Whatever the definition, the process of determin-
ing whether one document is a duplicate of another
involves two steps:

1. Extracting appropriate information (features)
from the incoming document image.

2. Comparing the features against those pre-
viously extracted from documents in the
database.

What features to use, and how they are compared,
are the two primary issues to be resolved. Different
choices lead to models which will be appropriate for
different applications.

Previous work on detecting duplicates (e.g., [2,
6, 7, 19]) has concentrated mostly on exploring the
first step above, turning to more traditional mea-
sures when it comes to the second. In this paper,
the focus is on the models and algorithms associ-
ated with comparing document representations (i.e.,
the second step), while features are taken to be the
uncorrected text output from a commercial OCR
package. A framework is given for categorizing and
studying different kinds of duplicates, along with al-
gorithms that extend the range of techniques avail-
able for searching document image databases. These
methods prove to be extremely robust, even in the
presence of low OCR accuracies.

The remainder of this paper is organized as fol-
lows. Section 2 presents four distinct but related
models for the duplicate detection problem moti-
vated in part by the literature for approximate string
matching. Each of these is solved optimally using
a dynamic programming algorithm, as described in
Section 3. Implementation issues are considered in
Section 4. Section b presents experimental results
that demonstrate the robustness of these techniques
across models and in the presence of real-world noise.
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Figure 1: The four duplicate classes discussed in this paper.

Related work is reviewed in Section 6. Finally, con-
clusions and possible future research directions are
discussed in Section 7.

2 Models

For the purposes of this paper, the assumption is
that the documents of interest, while in 1image form,
are primarily textual in content. Viewed abstractly,
such a page is a series of lines, each consisting of a
sequence of symbols. In this string-of-strings view-
point, the term “symbol” can be defined quite liber-
ally. Tt could be interpreted as meaning characters,
of course, but representations at higher levels (e.g.,
words) or lower levels (e.g., basic features computed
from image components) are also possible.

What, then, is a duplicate? Rather than start
enumerating possibilities in an ad hoc manner, some
structure can be obtained by first partitioning the
problem along two dimensions: whether the dupli-
cation is full or partial, and whether the layout of
text across lines 1s maintained or not. The reasons
for this particular classification scheme are rooted in
the string formalisms to be described in the next sec-
tion. For now, the four possibilities are illustrated
with real-world examples and to introduce the ter-
minology:

1. If two documents are visually identical, one is
a photocopy or a fax of the other, say, they are
full-format duplicates. This category also cov-
ers documents distributed electronically (e.g.,
as PDF or PostScript) and printed without fur-
ther editing.

2. If two documents have identical textual content,
but not necessarily the same formatting, they
are full-content duplicates. This includes, for
example, the same e-mail message sent to two
people and printed using different-sized fonts,

or an HTML document downloaded from the
WWW and printed using different margin set-
tings.

3. If two documents share significant content with
the same formatting, they are partial-format
duplicates. Exactly how long the similar re-
gions must be will depend, in general, on the
application. Two instances of this are the copy-
and-pasting of whole paragraphs from one docu-
ment into another, and “redacting,” the editing
of a hardcopy document by obscuring portions
of the text so that it is no longer legible.

4. If two documents share content but their for-
matting is not necessarily the same, they
are partial-content duplicates. This arises in
the copy-and-pasting of individual sentences or
groups of sentences. A later version of a docu-
ment that has undergone several editing passes
is likely to be a partial-content duplicate.

These various types of duplication are shown in
Figure 1. In the next section, algorithms special-
ized to each of these cases are given. Note that
although the text used to illustrate the figure is
“clean,” 1t will be necessary to handle a full range
of document recognition errors, include characters
that have been misrecognized, omitted, or added,
words that have been improperly segmented, com-
plete lines that have been missed or inserted, etc.

Before moving on, it may be instructive to con-
sider briefly the relationships between the various
kinds of duplicates. This “universe” 1s depicted in
Figure 2, where several example data-points have
also been plotted. Note that there is overlap between
the classes, with partial-content duplicates encom-
passing all the other types.

Clearly, every format duplicate is also a content
duplicate; the former is a special case of the latter.
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From a formal standpoint, the distinction 1s whether
the page is treated as a 2-D stream consisting of lines
made up of characters, or as a 1-D stream of char-
acters in reading order. Note that the 2-D represen-
tation can be converted into a 1-D representation
by treating the new line character as a space [19].
This implies that any algorithm for detecting con-
tent duplicates can also be used to detect format
duplicates. There will undoubtedly be cases, how-
ever, where a search can be confined to, say, possible
photocopies of a document. Here, an algorithm spe-
cialized to finding format duplicates will yield higher
precision (i.e., fewer false “hits”) than the more gen-
eral algorithm, which also returns potential content
duplicates.

Note also that any full duplicate is also a partial
duplicate. Again, there are benefits in maintaining
the distinction, both in terms of retrieval precision
and because the special case admits heuristics that
greatly speed the computation, as is discussed in an-
other paper [11].

3 Basic Algorithms

If it were possible to assume that OCR was per-
fect or nearly so, the problem of locating duplicates
would be relatively straightforward. At best, this is
a highly optimistic assumption. Instead, it is safer to
acknowledge that OCR can be arbitrarily bad, with
no specific guarantee that any n consecutive charac-
ters will come through unscathed. If, for example,
the accuracy rate were 75% (a reasonable assump-
tion in the case of faxes, small fonts, etc.) and errors
are independent, the probability that a given n-gram
will survive is 0.24 for n = 5, and 0.056 for n = 10.
The chance that a complete sentence would make it
through without errors is miniscule. Hence, schemes
that depend on a majority of words or sentences be-
ing recognized correctly, while working reasonably

well for clean input, may break down in the case of
degraded documents.

Fortunately, the literature on approximate string
matching is rich with techniques for addressing such
concerns [b, 17, 20]. Moreover, the model correlates
well with the physical processes that result in errors,
so as a measure of similarity it is supported by intu-
ition. Drawing from this body of work, algorithms
are given for each of the four variants of duplicate
detection. In the context of their respective models,
all are guaranteed to return optimal solutions.

Beginning with some definitions, a string, D =
dids...d,, 18 a finite sequence of symbols cho-
sen from a finite alphabet, d; € X. String S =
$189 ...8m 18 a substring of string D = dyds...d,
if m < n and there exists an integer k in the range
[0,m — n] such that s; = djyp for i = 1,2,... m.
The set of all possible substrings of D is denoted
D*. Tn the 1-D case (i.e., content duplicates), a doc-
ument is simply a string. In the 2-D case (i.e., for-
mat duplicates), a document is a sequence of strings,
D= D'D?>...D™ where D! = did},...d..

A standard measure for approximate string
matching is provided by edit distance [8]. In the
simplest case, the following three operations are per-
mitted: (1) delete a symbol, (2) insert a symbol, (3)
substitute one symbol for another. Each of these 1s
assigned a cost, ¢ger, Cins, and cgyp, and the edit dis-
tance is defined as the minimum cost of any sequence
of basic operations that transforms one string into
the other.

3.1 Full-Content Duplicates

As it relates to full-content duplicates, this optimiza-
tion problem can be solved using a well-known dy-
namic programming algorithm [15, 21]. Let Q =
4192 . . . ¢m be the query document, D = dids...d,
be the database document, and define dist; ; to be
the distance between the first ¢ characters of ) and



the first j characters of . The initial conditions
are:

distloyo = 0
dist]iyo = dist]i_lyo + Cdel((h’) 1<1<m
distloyj = dist]()y]'_l + Cms(dj) 1<

and the main dynamic programming recurrence is:

caer(qi)
Cins(d))
csub(qia d])

dist]i_lyj +
dist]iyj_l +
dist]i_lyj_l +

distl; ; = min

(2)
for 1 <i<m, 1 <j<n. The computation builds
a matrix of distance values working from the upper
left corner (distlyo) to the lower right (distl, ),
as illustrated in Figure 3. Once it has completed, a
sequence of editing decisions that achieves the opti-
mum can be determined via backtracking.

As indicated above, the costs in general can be
a function of the symbol(s) in question. As a rule,
the deletion and insertion costs are assumed to be
greater than 0, while the substitution cost is greater
than 0 if the symbols do not match and less than
or equal to 0 if they do. In the event constant costs
are used, 1t 18 convenient to refer to them as simply
Cdels Cins, and ¢syp (When the two symbols are differ-
ent) or ¢mar (when they are the same). Tt is possible,
and indeed sometimes desirable, to specify cost func-
tions that are quite sophisticated. Moreover, the set
of basic editing operations can be supplemented as
appropriate. Both of these issues will be covered in
a later section.

Algorithm dist! provides the basis for a solution
to the full-content duplicate problem; the smaller
the distance, the more similar the two documents.
While OCR errors will raise this value somewhat,
to the extent they are modeled by symbol deletions,
insertions, and substitutions, they will be accounted
for.

3.2 Partial-Content Duplicates

The previous formulation requires the two strings
to be aligned in their entirety. For the partial du-
plicate problem, what is needed is the best match
between any two substrings of ) and D. Concep-
tually, this corresponds to generating all substring
pairs in {@* x D*} and then comparing them using
algorithm disti. In practice, however, this would be
too inefficient.

Fortunately, the original computation can be
modified so that shorter regions of similarity can be
detected in two longer documents with no increase in
time complexity. The edit distance is made 0 along
the first row and column of the matrix, so the initial

conditions become:

Sdistloyo = 0
sdistl; g = 0 1<i<m (3)
sdistly; = 0 1<j57<n

In addition, another term is added to the inner-loop
recurrence capping the maximum distance at any
cell to be 0. This has the effect of allowing a match
to begin at any position between the two strings.
The recurrence is:

0
SdZStJZ] = min Sd?St]i_lyj + cdel(Qi)
’ sdistl; j_1 +  Cins(dj)

sdistli_1 j_1 +  coun(qi, dj)
(4)

for 1 <7< m, 1 <j<n. Finally, the resulting dis-
tance matrix is searched for its smallest value. This
reflects the end-point of the best substring match.
The starting point can be found by tracing back the
sequence of optimal editing decisions. Note there is
an added requirement that the cost when two sym-
bols match be strictly less than zero, otherwise every
entry in the matrix will be 0. This computation is
illustrated in Figure 4.

Algorithm sdist1 solves the partial-content dupli-
cate problem by computing

min{dist1(A,B) | A€ Q*, Be D"}

In other words, 1t locates the best-matching regions
of similarity between the two documents @) and D.
A and B, the two matching subregions, can be re-
covered if so desired.

3.3 Full-Format Duplicates

For the 2-D models (i.e., format duplicates), another
level 1s added to the optimization. The problem 1is
still one of editing, but at the higher level the basic
entities are now strings (lines). At the lower level, as
before, they are symbols. Say that Q = Q'Q”...Q"
and D = D' D? ... D' where each @ and DV is itself
a string. For full-format duplicates, the inner-loop
recurrence takes the same general form as the 1-D
case:

dist2;_1 ; + Cdel(Qi)
distgiyj = min dist,giy]'_l + Cms(D]) '
distZi_1 ;-1 + Csu(Q', D7)

(5)
for 1 <1<k, 1<j <l where Cy., Cins, and Cyyp
are the costs of deleting, inserting, and substituting
whole lines, respectively. The initial conditions are
defined analogously to Equation 1.

Since the basic editing operations now involve full
strings, it is natural to define the new costs as:

Caa(QY) = distl(Q', ¢)
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Cins(DV) = distl(¢, DY) (6)

Csun(Q*, D7) dist1(Q", DY)

where ¢ is the null string. Hence, the 2-D compu-
tation 1s defined in terms of the 1-D computation.
This is illustrated in Figure 5.

All else being equal, it can be shown that
dist2(Q, D) > dist1(Q, D) for any two documents @
and D. As noted earlier, dist! admits a larger class
of duplicates (full-content), while dist2 may provide
higher precision for the class it is intended for (full-
format).

3.4 Partial-Format Duplicates

Lastly, the extension for partial-format duplicates
combines the modifications for the partial (Equa-
tion 4) and format (Equation 5) problems:

0
. . Sdistgi_ly' +  Cae (@7

sdist2; ; = min sdist,?iyj_]l H Cms((Dj))

SdiStgi—l,j—l + Csub(QiaDj)

(7)

for 1 <<k, 1 <j <l Note that C4., Cins, and
Cisyp are defined as before in terms of dist! (i.e.,
FEquation 6), not in terms of the 1-D substring com-
putation as might be expected. The granularity of
this matching is whole lines. As before, the resulting
matrix must be searched for its smallest value, and
then traced back to find where the match starts.

At this point four different algorithms have been
presented, one for each of the models described in
Section 2.

4 TImplementation Issues

In this section, a number of issues associated with
implementing the algorithms of the previous section
are addressed. The inner loops are straightforward
to code. Even so, there are numerous degrees of free-
dom and possible extensions that, while they do not
change the underlying algorithm, do alter the nature
of the computation in interesting and possibly useful
ways.

4.1 Input Alphabet

Generally, string algorithms are viewed as operating
on character data. While this provides a natural link
to the output from OCR, the algorithms are more
general than this and can be used on any represen-
tation that obeys a 1-D or 2-D string model. The
former views a document as a stream of symbols
in reading order, where “symbol” could be any of
a variety of features that might be computed from
the 1mage including characters, shape codes, word
lengths, etc. The latter just adds to this a notion
of lines, each a sequence of symbols, again in some
reading order. The choice of which set of features to
use in a given application will depend on the speed
and/or robustness with which it can be computed.

4.2 Cost Assignments

The selection of an algorithm determines the edit-
ing model. However, within the context of a single
algorithm, the choice of cost functions can have a
significant impact. While it is fairly common for im-
plementations of Equations 1-4 to employ constant
editing costs, the general way in which the algo-
rithms are formulated is much more powerful than
this.

To illustrate, consider the question of white-
space errors which are common in OCR. By setting
cdel(sp) = cins(sp) = 0, in effect not charging for
such events, unimportant differences between two
OCR’ed versions of the same documents can be ig-
nored. Through an appropriate choice of cost func-
tions, the distinction between various input repre-
sentations is also eliminated. For example, char-
acters and shape codes will yield identical results
if the cost of character substitutions is determined
based on shape code classes (e.g., ¢sus(¢i,d;) = 0 for
¢,d; € {g9,p,q,y}, the set of descender characters).

If the distribution of the OCR errors can be es-
timated a priori (e.g., via a confusion matrix), this
can be exploited by setting the editing costs to be
inversely proportional to the frequencies of the error
patterns in question. So, for example, if the substi-
tution e — ¢ 1s ten times more likely to occur than
M — W, its cost is made one tenth as much. This
will yield a more sensitive comparison; values closer
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to the minimum when the documents are indeed du-
plicates under the model in question (differences due
to common OCR errors), and further away from the
minimum when they are not (true differences).

4.3 New Editing Operations

While the three basic editing operations (deletion,
insertion, and substitution) are sufficient to capture
all possible differences between two strings, the set
can be supplemented with more sophisticated opera-
tions to better model an underlying error process. In
the case of OCR, it may be desirable to add “split”
and “merge” operations to account for mistakes in
symbol segmentation [3]. The recurrence for dist!,
for example, would then become:

distl;_1;  + caer(qi)
distl; j_1 + cins(d;)

dist]iyj = min diSt]i_lyj—l + Csub(qiadj)
distli_1 j—2 + coprir(¢i,dj_1d;)
dist]i_zyj_1 + cmerge(qi—lqiadj)

(8)
for1<i<m, 1<j<n.

Other operations such as transpositions can also
be supported. In general, as long as the number of
symbols involved (the “look-back”) is bounded, the
recurrence can be augmented without changing the
computational complexity of the algorithm.

4.4 Normalization

For exact duplicates, the distance returned by any
of the four algorithms of Section 3 will either be
0 or a negative number that grows smaller as the
lengths of the documents increase. For dissimilar
documents, the maximum distance grows larger as
the lengths increase. It i1s always the case that, for
a given query, a smaller distance corresponds to a
better match. In order for the results for different
queries to be comparable, however, it is necessary to
normalize the distances.

If the target interval is [0, 1], where 0 represents a
perfect match and 1 a complete mismatch, then the

following formula provides an appropriate mapping:

dist — dist — mindist 9)
noTmast = mazxdist — mindist

where mindist and maxdist are, respectively, the
minimum and maximum possible distances for the
comparison in question.

Assuming a full-duplicate computation, and mak-
ing certain reasonable assumptions about the cost
functions, the minimum is obtained when all of the
characters in the query match the database docu-
ment and there are no extra, unmatched characters.
If the query is @ = q1q2 . ..q¢m, then:

m

mindist = Z csub(Qi, ¢i)

i=1

(10)

Or, more simply, mindist = m - ¢;4¢ When the costs
are constant.

The maximum distance, on the other hand, is de-
termined by the query and the set of all strings with
the same length as the database document. If the
cost functions are unconstrained, this in itself be-
comes an optimization problem. Fortunately, for
constant costs there i1s a simple closed-form solu-
tion. Without loss of generality, let the query be
the shorter of the two strings (i.e., m < n). There
are two possible “worst-case” scenarios: either all of
the symbols of the query are substituted and the re-
maining symbols of the database string are inserted,
or all of the query symbols are deleted and the entire
database string is inserted. Thus:

m'csub+(n_m) * Cins (11)

mazdist = min
M- Cdel + N - Cing

The partial-duplicate computations are normal-
1zed similarly.

4.5 Searching Databases

The algorithms given earlier are phrased in terms
of quantifying the similarity between strings (doc-
uments). The problem of searching a database for
duplicates can be cast in two ways:
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1. Return the top n matches (in ranked order).

2. Return all documents with distances below a

threshold .

Note that the first of these requires the computation
to complete before any results can be returned to
the user. The second can report potential matches
as they are encountered (and therefore hide some
of the computational latency), but requires setting
a threshold in advance. Both policies employ edit
distance as a subroutine, and hence can make use of
the techniques described to this point.

4.6 Speeding Things Up

Algorithms disti, sdistl, dist2, and sdist2 are op-
timal in the sense they return min-cost solutions to
their respective problems. All require time propor-
tional to the product of the lengths of the two doc-
uments being compared. In situations where the re-
sulting database search is too slow, there are a vari-
ety of ways to speed things up. These include:

e Computing edit distance faster.

e Avoiding having to compute edit distance for
every document in the database.

e Computing an approximation to edit distance.

These approaches can, of course, be used in combi-
nation.

Asymptotically faster algorithms and parallel
VLST architectures (e.g., [9]) fall in the first category.
Database indexing techniques occupy the second.
The third is represented by a well-known heuris-
tic based on the observation that, if two strings are
similar, the path of optimal editing decisions must
remain near the main diagonal (recall Figure 3).
Hence, the computation can be restricted to a band
close to the diagonal. Should the edit distance fall
below some threshold as determined by the width
of the band, the heuristic will return its true value,
otherwise it returns a value possibly greater than
the true distance (as a path other than the optimal
has been chosen). This basic concept, illustrated in

Figure 6, has been exploited to speed up the com-
putation in the fields of speech recognition [16] and
molecular biology [4].

Note that this heuristic applies only in the case
of the full-duplicate versions of the problem, as it
assumes the optimal editing path starts at (0,0) and
ends at (m,n). Tt can be shown, however, that this
approach will never miss a duplicate that would have
been returned by the slower, optimal algorithms.

Several new techniques for obtaining substantial
speed-ups (up to two orders of magnitude) for which
similar proofs-of-correctness can be given are pre-
sented elsewhere [11].

5 Experimental Results

To investigate the performance of the algorithms de-
scribed in this paper, two sets of experiments were
designed to explore different aspects of the problem
space. The first examined duplicate detection in the
presence of several real-world noise sources, while
the second studied the four duplicate models and
algorithms and how they relate.

For reasons of convenience, the same database was
used as in previous retrieval experiments [10, 13].
This consisted of 1,000 professionally written news
articles collected from Usenet. The shortest doc-
ument was 364 characters long, the longest 8,626,
and the average 2,974. Hence, the total size of the
database was approximately 3 megabytes.

The database was used as-is (i.e., no attempt was
made to inject OCR errors, either real or synthetic).
The query documents, however, and the intended
duplicates were all “authentic”: pages that had been
printed, scanned, and OCR’ed. These documents
were formatted in 11-point Times font with a 13-
point line spacing using Microsoft Word. Each page
was printed on one of two laserprinters, subjected to
anoise source in most cases, scanned at 300 dpi using
a UMAX Astra 1200S scanner, and then OCR’ed
with Caere OmniPage Limited Edition.

For the full-duplicate computations, the edit costs
were set to be ¢ge; = Cins = Csup = 1 and ¢ = 0.
For the partial-duplicate computations, the match
cost was ¢pqt = —1. The study of more complex
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costs assignments (e.g., those based on confusion
matrices) is left to a future paper.

5.1 Experiment 1

The goal of this experiment was to study dupli-
cate detection under various noise conditions: copier
degradations (multiple generations, excessively light
or dark), faxing, and handwritten mark-up (redac-
tion). The source document was 1,395 characters
long (26 lines, 203 words). Two sets of six pages
were created, one set to be inserted into the database
as the intended duplicates, and the other to serve
as the queries. The first set was printed on an HP
LaserJet 4MPlus laserprinter, the second on an HP
LaserJet 4MV. Within each set, one page was used
as-1s and the others were subjected to one of five
different noise sources:

Faxed The page was faxed in standard mode from
a Xerox Telecopier 7020 fax machine to a Xe-

rox 7042.

3rd Generation The page was copied to the third
generation on a Xerox 5034 copier.

Light The page was copied on the same copier with
the contrast set to the lightest possible setting.

Dark The page was copied with the contrast set to
the darkest possible setting.

Annotated Five separate text lines on the page
were completely obscured using a thick blue
marker pen. Different lines were excised in the
query and database documents. Also, “This is
important!” was handwritten in the margin.

The pages were then scanned and OCR’ed. In addi-
tion, the original ASCII text for the query document
was left in the database. Hence, each of six queries
was run against a database of 1,000 documents con-
taining seven intended duplicates (six that had been
OCR’ed, plus the original).

Table 1 below shows the OCR accuracies. Note
that the rates range widely, dropping as low as
73.5%. While the two different versions from the
same noise source are usually fairly close, they are
by no means identical. As expected, a large vari-
ety of OCR errors were encountered. Beyond this,

other kinds of degradations arose as well. For exam-
ple, the standard headers prepended to faxes were
transcribed (albeit with numerous mistakes), and
the lines that had been crossed-out were completely
missing from the annotated pages.

Table 1: OCR, accuracies for Experiment 1.

OCR Accuracy
Document Type | Database | Query
OCR 96.2% 96.0%
Faxed T7.7% 83.9%
3rd Generation 95.9% 96.1%
Light 86.1% 77.8%
Dark 94.0% 95.3%
Annotated 75.6% 73.5%

Since the query documents and their intended
matches have the same format, this is a full-format
duplicate detection problem and the dist2 algorithm
is most appropriate. The charts in Figures 7-12 plot,
for each query, the normalized edit distance for every
document in the database. Note that there 1s always
a clear distinction between true duplicates and ev-
erything else. This demonstrates that the technique
is robust when faced with the sorts of OCR errors
seen in practice.
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Figure 7: Full-format detection for OCR’ed query.

Studying the data further, it should come as no
surprise that the annotated documents yielded the
worst-case scenario. Recall that about 20% of the
text was completely obscured, a figure that places



8

£

n

2]

I

o

i

E Annotated,
_(% olLight

© Original  OCR'ed Faxed ,3rd Generation aDark
S

=

Document Index

Figure 8: Full-format detection for faxed query.
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Figure 9: Full-format detection for 3rd generation
query.

severe constraints on the performance of any com-
parison measure. Still, the normalized edit distance
in most of the charts is not much greater than this
value. When the annotated documents were com-
pared to each other (Figure 12), the amount of text
missing between the two amounted to 40%. Even so,
and despite all the other OCR errors that must have
occurred, it is possible to distinguish the duplicates
from non-duplicates.

It is also interesting to note that query and
database documents produced using the same noise
source are usually a slightly better match (the no-
table exception being the case of the annotated
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Figure 10: Full-format detection for light query.
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Figure 11: Full-format detection for dark query.
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Figure 12: Full-format detection for annotated

query.

pages). Whether it is possible to exploit this is a
topic for future research.

5.2 Experiment 2

The purpose of this experiment was to determine
how the different duplicate models relate empirically.
The four algorithms described in Section 3 were run
using the same source document as in the previous
experiment. Duplicates were constructed from the

query by:

1. Changing the line breaks to create a document
that was a full-content duplicate but not a full-
format duplicate.

2. Appending roughly equal amounts of unrelated
text to the beginning and end of the document
to create a partial-format duplicate approxi-
mately twice as long as the original.

3. Combining these first two steps to create a
partial-content duplicate.

The pages were then printed, scanned, and
OCR’ed. The OCR accuracies appear in Table 2.
As before, the original source text was left in the
database to serve as a second full-format duplicate
of the query. Hence, there were between two and five
duplicates in the database, depending on the model.



Table 2: OCR accuracies for Experiment 2.

OCR Accuracy
Document Type | Database | Query
Full-format 96.0% 95.9%
Full-content 96.1% n/a
Partial-format 94.9% n/a
Partial-content 96.0% n/a

The results for this experiment are shown in Fig-
ures 13-16. Since there is a fair amount of residual
similarity even in the non-matching cases, the nor-
malized edit distances are lower than for purely ran-
dom documents. Note that, as expected, algorithm
dist2 works best for full-format duplicates, and dist1
adds to this full-content duplicates (Figures 13 and
14). The partial-format algorithm sdist2 can detect
full- and partial-format duplicates, while sdist1 cov-
ers all four duplicate classes (Figures 15 and 16).
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Figure 13: Duplicate detection using dist2.

Less Similar

Partial-Contentg
* Partial-Format

More Similar

Original Eull-Format x Full-Content

Document Index

Figure 14: Duplicate detection using dist1.

6 Related Work

For the most part, past work on the subject has con-
centrated on identifying which features to extract
(the first step mentioned in Section 1) and not so
much on the different ways they might be compared
(the second step). The latter is typically handled
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Figure 15: Duplicate detection using sdist2.
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Figure 16: Duplicate detection using sdist1.

using one or another of the techniques from the lit-
erature.

Spitz, for example, employs character shape codes
as features and compares them using the standard
string matching algorithm (i.e., Equation 1) [19].
In the taxonomy presented in Section 2, this cor-
responds to the full-content problem. Doermann, et
al., also use shape codes, but extract n-grams for a
specific text line to index into a table of document
pointers [2]. Since this signature is computed from
a single line, it does not explicitly measure the sim-
ilarity of complete pages. The intention, though, is
that this is a method for addressing the full-format
problem. Hull, et al., describe three techniques:
one based on decomposing the page into a grid and
counting connected components within each cell, an-
other using word lengths as a hash key, and one
comparing image features (pass codes arising from
fax compression) under a Hausdorff distance mea-
sure [7]. More details on the last method appear
in [6]. The first and third of these fall in the full-
format category, while the second can be classified
as searching for full-content duplicates.

Also seemingly related is the general copy detec-
tion problem. There are significant differences, how-
ever, owing to the noise effects suffered by printed
pages and the OCR errors they induce. Methods
predicated on finding long strings of perfect similar-



ity may not work as reliably in practice when noisy
documents are included in the database. Some of
the better-known schemes in this category include
COPS [1] which is sentence-based, SCAM [18] which
is word-based, and various algorithms for search-
ing by computing checksums in predetermined “win-
dows” [14].

7 Conclusions and Future Research

This paper has examined a number of issues re-
lated to the detection of duplicates in document im-
age databases. Four distinct models for formalizing
the problem were presented, along with algorithms
for determining the optimal solution in each case.
Experimental results demonstrate that the models
match the real world, and the algorithms are robust
with respect to the kinds of OCR errors that are
likely to be encountered. Table 3 enumerates these
classes one last time. A solid dot highlights the al-
gorithm most suited to a particular problem, while
a hollow dot indicates that the algorithm will find
not only such duplicates but other types as well.

Since some of the problems seem to subsume oth-
ers, an obvious question is “Why bother with the less
general ones?” The answer lies in increased precision
for those situations where admitting a larger class
of duplicates is undesirable (e.g., when the targeted
duplicates are known to be photocopies). Special
cases also make it possible to develop more efficient
algorithms.

There are numerous ways this work could be ex-
tended. For example, there exists yet another model
for approximate string matching known as “word-
spotting” that applies when one of the strings must
be matched in its entirety and the other is allowed
the flexibility of choosing 1ts most similar substring.
This might arise when a paragraph is copied out
of one document and used to query the database
for other pages that contain it. Again, there is a
dynamic programming algorithm along the lines of
Equations 2 and 4 that solves the problem. Al-
though the sdist algorithms can also catch such du-
plicates, they do so at a potentially lower precision.

Finally, there may be advantages to adding more
levels to the symbol/line hierarchy. This could in-
clude text blocks as a collection of lines, columns as a
collection of text blocks, and pages as a collection of
columns. These would add new dimensions to the
optimization problem, but the techniques already
discussed may be generalizable. The most serious is-
sue appears to be the requirement the system follow
a unidirectional editing process at each level. Allow-
ing arbitrary block motion overcomes this, however,
and is addressed in another paper [12].
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