
Cross-Domain Approximate String Matching
�

Daniel Lopresti Gordon Wilfong
Lucent Technologies, Bell Labs
Murray Hill, NJ 07974, USA�
dlopresti � gtw � @bell-labs.com

Abstract

Approximate string matching is an important paradigm
in domains ranging from speech recognition to information
retrieval and molecular biology. In this paper, we introduce
a new formalism for a class of applications that takes two
strings as input, each specified in terms of a particular do-
main, and performs a comparison motivated by constraints
derived from a third, possibly different domain. This issue
arises, for example, when searching multimedia databases
built using imperfect recognition technologies (e.g., speech,
optical character, and handwritingrecognition). We present
a polynomial time algorithm for solving the problem, and
describe several variations that can also be solved effi-
ciently.

1. Introduction

Approximate string matching is a widely-studied
paradigm with important applications in domains ranging
from speech recognition to information retrieval and molec-
ular biology [10, 3, 2, 12, 17, 4]. A key principle in this field
is the concept of string edit distance, a measure for quanti-
fying the similarity between two strings as well as for un-
derstanding the precise ways in which related strings may
differ. In its most popular formulation, three basic opera-
tions are permitted: the deletion, insertion, and substitution
of individual symbols. Each of these operations is assigned
a cost, and the edit distance between two strings is then de-
fined as the cost of the least expensive sequence of opera-
tions that transforms one string into the other.

This basic model has been both specialized and ex-
tended in numerous ways, including adding new operations
(e.g., transpositions [15], block motion [5]), generalizing
from simple strings to formal languages (e.g., regular and
context-free languages [1, 7]), and editing other types of
data structures (e.g., trees [13], 2-D strings [8]). Another

�
Presented at the Sixth International Symposium on String Processing

and Information Retrieval, Cancún, Mexico, September 1999.

fertile area for research has been to develop techniques for
performing the edit distance computation faster [4].

One particularly interesting class of applications in-
volves taking strings specified in one domain and perform-
ing a comparison motivated by constraints from another. A
good example of this is the case of text strings – words
or sentences – that are specified, say, by their ASCII en-
codings, but which we would like to compare in terms of
the way they are pronounced. For instance, the strings
“through” and “threw” differ significantly in their ASCII
representations, so a substantial amount of editing would
be required to transform one into the other. Their pronun-
ciations in English, however, are identical (���	�
�
). Hence,
we would like to be able to say that while their textual edit
distance is large, their phonetic edit distance is small.

The situation becomes even more complex when we
combine this with string editing for the purpose of mod-
eling error processes. Consider, for example, the prob-
lem of querying via voice a database that was created from
faxed documents. To accomplish this task, we must con-
tend with ASR errors from the speech recognition process,
a completely different class of errors from the OCR process,
and the issue of judging the similarity between spoken and
printed keywords. This is illustrated in Figure 1.

An analogous phenomenon can be seen in molecular bi-
ology. Table 1 presents the Genetic Code first put forth by
H. Gobind Khorana in June of 1966. Proteins are generated
from DNA via an intricate chemical decryption algorithm
involving messenger RNA. As indicated in the table, it takes
three RNA nucleotides, or a codon, to specify which amino
acid should be added next to the protein chain. Note that an
amino acid can have several different encodings into terms
of nucleotides.

Given two RNA sequences, one might naturally wonder
how similar the proteins they code for are. Taking this one
step further as before, it is possible to imagine each of the
RNA sequences first undergoing an editing process to cor-
rect for possible “noise” effects that may have occurred for
any of a number of reasons, biological or otherwise (e.g.,
mistakes in reading the sequencing gels).

1

Speech
Recognition

Optical Character
Recognition

Similar:
• spellings?
• pronunciations?
• ??

OCR ErrorsASR Errors

Voice
Query

Faxed Document
Database

Retrieval Model

Figure 1. Cross-domain information retrieval.

UUU Phe UCU Ser UAU Tyr UGU Cys
UUC UCC UAC UGC
UUA Leu UCA UAA Stop UGA Stop
UUG UCG UAG UGG Trp
CUU CCU Pro CAU His CGU Arg
CUC CCC CAC CGC
CUA CCA CAA Gln CGA
CUG CCG CAG CGG
AUU Ile ACU Thr AAU Asn AGU Ser
AUC ACC AAC AGC
AUA ACA AAA Lys AGA Arg
AUG Met ACG AAG AGG
GUU Val GCU Ala GAU Asp GGU Gly
GUC GCC GAC GGC
GUA GCA GAA Glu GGA
GUG GCG GAG GGG

Table 1. The Genetic Code.

Past approaches to this problem, which we call cross-
domain approximate string matching, have been ad hoc and
typically attempt to adapt the existing algorithm for string
edit distance by adding special substitution costs. As we
shall show in the next section, however, this may invalidate
the guarantee of optimality, reducing the algorithm to the
status of a heuristic.

In this paper, we introduce a formalization for cross-
domain approximate string matching that captures the in-
tentions just discussed. The task is phrased as a proper op-
timization problem, for which we present an algorithm that
is guaranteed to return the best solution in polynomial time.
The remainder of the paper is organized as follows. In Sec-

tion 2, we present some background on traditional string
editing and show why it cannot be used to solve the prob-
lem of interest. We formalize the cross-domain approxi-
mate string matching problem in Section 3, and give our
algorithm for solving it in Section 4. A proof of correct-
ness is sketched in Section 5. In Section 6, we analyze the
time complexity and present a heuristic for speeding up the
computation. Several variations on the problem and algo-
rithms for their solution are described in Section 7. Finally,
Section 8 offers our conclusions.

2. Approximate String Matching

We begin with some familiar definitions. An alphabet,�
, is a finite set of symbols. Define

���
to be the set of

all finite-length sequences of symbols chosen from
�

in-
cluding � , the sequence of length � . Each such sequence in���

is a string over
�

. String ���
	 � is a substring of string
�
�
����������������� consisting of the sequence of symbols
��������������������� for � �"!#�%$&�(' . For notational conve-
nience, we define �)�*	 + to be � .

Say , and - are two symbols from the alphabet in ques-
tion. Then we will often write the basic editing operations
as ,/.0� (the deletion of ,), � .0- (the insertion of -),
and ,1.2- (the substitution of - for ,). The costs charged
for performing these operations are ecost 3�,54��76 , ecost 3
��4�-�6 ,
and ecost 3�,54�-�6 , respectively.

Let 8 be a set of basic editing operations that transforms
string � into string 9 such that for any other such set 8;: , the
sum of the costs of the operations in 8�: is at least as large

2

as it is in 8 . Then the edit distance between strings � and
9 , ��� !�����3
� 4*9#6 , is defined to be the sum of the costs of the
operations in 8 . Finding such a set of operations is called
the approximate string matching problem.

This optimization problem can be solved using a well-
known dynamic programming algorithm [9, 16]. Let �%�
���*��� ��������� be one string and 9 ��� �������������
	 be the other.
By the notation above, edist 3
� �*	 ��4*9 �*	 �76 is the edit distance
between the first ! symbols of � and the first $ symbols of
9 . The algorithm establishes the initial conditions:

edist 3
��4��76 � �
edist 3
�#�*	 ��4��76 � edist 3
�#�*	 ������4��76
� ecost 3����*4��76
edist 3
��4*9 �*	 �76 � edist 3
��4*9 �*	 �����*6
� ecost 3
��4
���76 (1)

and the main dynamic programming recurrence is:

edist 3
�#�*	 �*4*9 �*	 �76��
����� �� � edist 3
�#�*	 ������4*9 �*	 �76
� ecost 3����*4��76

edist 3
�#�*	 �*4*9 �*	 ������6
� ecost 3
��4
���76
edist 3
�#�*	 ������4*9 �*	 ������6�� ecost 3����*4
����6 (2)

for �#� !5� ' , �#�/$ ��� . The computation builds a 2-D
matrix of distance values working from the upper left corner
(edist 3
��4��76) to the lower right (edist 3
� �*	 � 4*9 �*	 	�6). Once it
has completed, a sequence of editing decisions that achieves
the optimum can be determined via backtracking. The final
distance is a measure of the similarity of the two strings,
and the optimal sequence of editing operations highlights
the actual differences. The computation time is proportional
to the product of the lengths of the two strings, � 3�'�� 6 .

Note that for this algorithm to work, there is an underly-
ing assumption that each index within the source string will
be acted upon by at most one editing operation. Whether
this assumption holds is a function of the way the edit costs
are defined. If, for example, we had ecost 3�,54�-�65���#� and
ecost 3
- 4*,�6 ���#� for symbols ,���/- , then the edit distance
between any string containing , or - and any other string
would be undefined, just as the shortest path in a graph with
a negative cost cycle is undefined. (The algorithm defined
by Equation 2 would still return a value, but it would not
be the correct edit distance.) Assuming that all the costs are
least � eliminates this particular problem.

One other condition is necessary, however. Consider the
case of comparing the two strings “cat” and “hat” when all
of the editing operations are assigned an arbitrarily large
cost except for ecost 3 �74
! 6 � ecost 3 ! 4�� 6 �2� . Then the
edit distance between “cat” and “hat” is � , but this can only
be achieved by performing two operations on the first index
position of “cat”: cat . fat . hat. Again, the standard
dynamic programming algorithm (i.e., Equation 2) does not
allow for this.

What is needed is a guarantee that:

ecost 3�,54�-�65� ecost 3�,54�" 6
� ecost 3�"�4�-�6 (3)

for all possible combinations of symbols and editing oper-
ations. This is the well-known triangle inequality, and is
an implicit assumption throughout the literature on approx-
imate string matching. We will make use of it here as well.

Returning to the example of Section 1, consider the prob-
lem of comparing the strings “through” and “threw” in
terms of their pronunciations. In the past, this problem has
been attacked by incorporating multi-symbol substitutions
into the edit model and specializing the edit costs to take
phonetic similarities into account [14, 18]. So, we might
say ecost 3
�#%$ ��4 ��& 61� � . Then single-symbol deletions
and insertions can be used to model differences in the text
domain (say, typing or OCR errors), while the multi-symbol
substitutions capture phonetic relationships. As a result,
the strings “through” and “threw” will be judged to have
edit distance � , while the strings “th.rough” and “threw”
will have distance � (period insertion errors are common in
OCR). The previous dynamic programming algorithm will
work in this case.

There is, however, a serious conceptual problem with
this approach. Consider what happens if the first string is
recognized as “throu9h” by the OCR process. Mistaking
a `9' for a `g' is a common error in some systems. There
is, of course, no rule for suggesting how “ou9h” should be
pronounced. Hence, there is no way to know that it would
be close to “ew” once the OCR error was accounted for.
While we may also include a substitution operation with
ecost 3 '�4�$�6 � � , our ability to edit the substring is con-
strained by the fact that we are forced to make a choice:
we may use either a substitution motivated by OCR errors,
or one motivated by pronunciations, but not both. Looking
at it another way, the two low-cost substitution operations
we would like to allow, ' .($ and
�#%$ � . ��& , are not
compatible with the non-existent (i.e., infinite-cost) opera-
tion
�#)' �&. ��& ; the triangle inequality is violated. Any
attempt to apply the existing edit distance model and its as-
sociated dynamic programming algorithm will result in a
computation no longer guaranteed to return the optimal re-
sult. Equation 2 is reduced to the status of a heuristic.

In the next two sections, we formalize this problem and
present a new, optimal algorithm for its solution.

3. Cross-Domain Approximate String Match-
ing

We think of a domain as a means for producing strings of
symbols from a certain alphabet. Examples of domains and
their alphabets include: keyboard input (the ASCII char-
acter set), printed pages of typeset text (ASCII), handwrit-
ing (ASCII), speech (60 or so phonemes in the case of En-
glish), DNA (the four nucleic acids), and proteins (the 22
amino acids). In a particular domain, the manner in which
strings are produced suggests a means for judging the simi-

3

String A

String A'

Edit E1

String A''

Transcribe T1,3

Domain D1

String B

String B'

Edit E2

String B''

Transcribe T2,3

Domain D2

Domain D3

Edit E3

Figure 2. The cross-domain approximate string matching problem.

larity between two strings. In the domain of scanned pages
processed through optical character recognition, we might
regard the two strings “baseball” and “baseba11” as being
quite similar, as `l' (el) is frequently mistaken for `1' (one)
in OCR. On the other hand, in the typed-text domain “base-
ball” and “basebakk” might be more similar, as the `K' key
is adjacent to the `L' on QWERTY keyboards and a typist's
fingers may easily slip from one to the other.

For a given domain, we wish to capture the notion of
similarity between strings as suggested by the domain by
defining a model in which costs are given for editing op-
erations that allow us to transform one string into another.
More formally, we define an edit model

� � to consist of an
alphabet

� � , a finite collection � � of basic editing operations
, . ,�: each with cost � �
���� �*3�,54*,�: 6 , where ,54*,�:�� ���� ,
and an edit distance ��� !���� ��3
� 4�� : 6 between any two strings
as defined in Section 2. The basic operations will be as-
sumed to be single-symbol deletions, insertions, and sub-
stitutions. We will write an edit model

� � as a triple
3 � �*4��*��4 ��� !�������6 defining the alphabet, the set of basic op-
erations and their costs, and the edit distance resulting from
the given basic operations and their costs.

In addition to the edit model defined by a domain, there
are also transcriptions that map between domains. A tran-
scription model � �
	 � consists of two alphabets, the source
alphabet

� � and the target alphabet
� � , and a finite collec-

tion �*�
	 � of basic transcription operations (with costs) each
of which can be regarded as a substitution. We denote such
an operation by , . , : where , , called the left hand side,
is a string in

� �� and ,�: , called the right hand side, is � or a
single symbol in

� � , and we write �
�
���� �
	 ��3�,54*,�: 6 to mean
the cost of performing that substitution. A transcription of
string ��� ���� into ��:�� ���� is the action of performing a
series of substitutions (i.e., basic transcription operations),

replacing substrings of string � with 0 or 1 symbols from
alphabet

� � to yield string ��: . The cost of the transcription
is just the sum of the costs of the substitutions.

Notice that, in general, there may not be any transcrip-
tion from string � to string � : . For instance, if ��: contains a
symbol , , but , is not a symbol in any transcription's right
hand side, then there is no transcription from any string �
to ��: . Therefore the transcription distance between two
strings � and ��: , � � !������
	 ��3
� 4���:�6 , is defined to be 	 if there
is no transcription from � to � : or the minimum cost of any
transcription of � into ��: in the case that one or more tran-
scriptions from � to ��: exist. Each transcription model � �
	 �
will be written as a 4-tuple 3 � �*4 � ��4��*�
	 ��4 � � !������
	 �76 where

� �
is the source alphabet,

� � is the target alphabet, � �
	 � is the
set of allowable substitutions (and their costs), and � � !���� �
	 �
is the transcription distance defined by the costs of the sub-
stitutions.

Note that the definitions of edit and transcription models
are quite similar in that they involve transforming one string
into another at some cost. The key difference is that edit
models transform strings from the same alphabet, whereas
transcription models, in general, transform strings from one
alphabet to another.

The cross-domain approximate string matching problem
is, given:

1. domains
 � ,
 � , and
�� with associated edit mod-
els
� ��� 3 � �74����74 ��� !������*6 , � ��� 3 � �74�����4 ��� !����*��6 , and� ��� 3 � ��4�����4 ��� !����
�76 ,

2. transcription models � �*	 � � 3 � �74 � ��4����*	 �74 � � !������*	 ��6
and � ��	 ��� 3 � ��4 � ��4�����	 �74 � � !����*��	 ��6 ,

3. two strings, ��� � � � from
 � and 9�� � �� from
 � ,

4

Inputs

A

edist1(A,A')
A'

A''
tcost1,3(A',A'')

B''

ecost3(A'',B'')

B'

tcost2,3(B',B'')

B

edist2(B,B')

Edit

Transcribe

Edit

Transcribe

Edit

Figure 3. Depiction of the � �
���� computation.

determine:�)� !������*	 ��	 �73
� 4*9#6 � (4)

������������	�
 	���
���	�� 	� � � 	 � � � ��� ��

�� ��� !�������3
� 4���:�6
� � � !������*	 �73
��:�4���: : 6� ��� !����*�73�9 4*9 :�6�� � � !����*��	 ��3�9 :�4*9 : : 6� ��� !����
��3
��: :�4*9 : : 6
��

Equation 4 defines the optimal way to match string � to
string 9 by first editing each in its own domain, then tran-
scribing both resulting strings into the third domain, and
finally comparing the transcriptions using an edit model ap-
propriate for that domain. As such, it captures the notion of
cross-domain string matching discussed in Section 1. The
computation is perhaps more easily visualized by consider-
ing Figure 2.

4. Algorithms

A dynamic programming scheme will be defined to
solve the optimization problem of Equation 4. As a re-
minder, we have three domains
 � ,
 � and
�� involved in
this problem, defining edit models

� � � 3 � ��4����74 ��� !�������6 ,� � � 3 � ��4����74 ��� !����*��6 and
� �1� 3 � ��4�����4 ��� !����
�76 respec-

tively. Also there are two transcription models �;�*	 � �
3 � �74 � ��4����*	 �74 � � !������*	 ��6 and � ��	 � �%3 � ��4 � ��4�����	 ��4 � � !����*��	 ��6 .
As mentioned, each transcription � : . ��: : in ���*	 � and each
transcription 9 : . 9 : : in ����	 � is such that the length of ��: :
and 9 : : is 0 or 1. In addition, we will assume that � .2� is
in both � �*	 � and ����	 � and that this operation has cost 0.

Let �0� ���74*���74������*4*��� be a string in
� � � and 9 �����4
���74������*4
�
	 a string in

� �� . We wish to determine�)� !������*	 ��	 ��3
� 4*9#6 .
Consider first the case that � and 9 each correspond to

a single left hand side in some transcription. Thus the dis-
tance between them should include the edit cost of trans-
forming � into a string ��: that is a left hand side of some
transcription ��:�. ��: : in ���*	 � , the edit cost of transform-
ing 9 into a string 9 : that is the left hand side of some
transcription 9 :�.09 : : in ����	 � , the cost of transcribing ��:
to ��: : in

���
� , the cost of transcribing 9 : to 9 : : in

���
� , and

the edit distance between ��: : and 9 : : . This is depicted in
Figure 3. Thus we define:

� �
������*	 ��	 �73
� 4*9#6 � (5)

�������� ����� �����
�� � 	� � ��� � � ��� ��� �
�� ��� !�������3
� 4���:�6
� �
�
������*	 �73
��:�4���: : 6� ��� !����*�73�9 4*9 :�6�� �
�
����*��	 ��3�9 :�4*9 : : 6� � �
����
��3
��: :�4*9 : : 6

��

Note the similarity between the formulations of Equations 5
and 4.

Recall that �#�*	 � refers to the substring consisting of
the first ! symbols of � , and 9 �*	 � to the substring con-
sisting of the first $ symbols of 9 . Now we can define�)� !������*	 ��	 ��3
� 4*9#6 , the cross-domain distance between � and
9 , by defining �)� !���� �*	 ��	 ��3
�#�*	 �*4*9 �*	 ��6 recursively as:

�)� !������*	 ��	 �73
�#�*	 ��4*9 �*	 �76 � ��������� 4���4*8! (6)

5

c r o s i s d o m a n s t r i n g m a t e h i n g
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

c r o s s d o m a i n s t r i n g m a t c h i n g
0 0

k r > s d O m A n s t r i N m a C i N
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

k r > s d O m A n s p r i N l a C i N
0 0

k r > s d O m A n s p r i N l a C i N
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

k r > s d O m A n s p r i N l a C i N

Figure 4. An example of cross-domain approximate string matching.

where� � �����
� ����� � � �)� !������*	 ��	 ��3
�#�*	 ��� � 4*9 �*	 �76 �� �
������*	 ��	 ��3
����� � ���*	 ��4��76�� 4

� � �����
� ��� � � � � �)� !������*	 ��	 ��3
�#�*	 �*4*9 �*	 ��� � � 6 �� �
������*	 ��	 ��3
��4*9 ��� � � ���*	 �76�� 4

8 � �����
� ����� �
	� ����� � � � �)� !������	 ��	 �73
�#�*	 ��� � 4*9 �*	 ��� � � 6 �� �
������*	 ��	 �73
����� � ���*	 ��4*9 ��� � � ���*	 �76��

and where we define the base case to be:�)� !������*	 ��	 �73
��4��76 � � �
������*	 ��	 ��3
��4��76�� (7)

That is, we test the hypothesis that the last left hand side of
a substitution in �)�*	 � is of length 	 and in 9 �*	 � is of length	�: . The cost of this hypothesis is the sum of the costs of
matching these two left hand sides and the earlier-computed
cost of doing the cross-domain matching of the substrings
�#�*	 ��� � and 9 �*	 ��� � � . Then �)� !���� is the minimum of all such
hypotheses. Note the similarity between the formulations
of Equations 6 and 2.

Figure 4 shows an optimal alignment generated when
the algorithm just described is run on two sample strings,
one from the ASCII text domain and the other from the do-
main of spoken English (i.e., phoneme sequences). The text
input (top), “crosis doman string matehing,” reflects sev-
eral edits (typing or OCR errors, perhaps) relative to the in-
tended target, “cross domain string matching.” The speech
input (bottom), “kr
 s dOmAnspriN laCiN,” is expressed
using a standard phonetic alphabet (see, e.g., [11]) and rep-
resents a pronounciation of the phrase “cross domain spring
latching.” Note the ASR error resulting in the missed word
boundary between “domain” and “spring.”

In this example, the edit costs are all set to � except for
exact matches which cost � , as do all transcriptions. After
the first set of edits, both the text string and the phoneme
string have been corrected to their intended targets. In the
final editing stage, the two remaining differences (“string”
vs. “spring” and “matching” vs. “latching”) are detected.
The cross-domain edit distance is computed to be � .
5. Proof of Correctness

A solution to Equation 4 defines two strings � : : and 9 : :
of
���
� . We can represent ��: : as , � ���������������
� and 9 : : as

-1�����
��� ����� ��� where each ��� is either a symbol of ��: : or � ,
each �*� is either a symbol of 9 : : or � , and the symbols that
are not � appear in the same order as they do in � : : and 9 : : .
That is, , is just ��: : with � between some of the symbols
of ��: : and similarly for - and 9 : : . We now discuss how we
choose where we place each � .

Note that a solution to ��� ! � ��3
��: :
4*9 : :�6 determines a set of
operations on � : : that transforms it into 9 : : with total cost��� ! �
��3
��: :
4*9 : :�6 . These operations in turn define , and -
with the property that � � and �*� are both symbols of

� � if �*�
was substituted for � � , ��� is � and �*� � � � if �*� was inserted,
and finally � � � � � and �*� �2� if ��� was deleted. The
representations , and - together are called an alignment
[10].

In an optimal solution to Equation 4, the transformation
from ��: to ��: : consists of transcriptions of the form � :�
	 � .
� � or ��:�
	 � .0� . Note, however, that there might be some
� � �"� with no corresponding transcription � :�
	 � . � in
an optimal solution. That is, � � is in the alignment only

6

due to the computation of �)� !���� ��3
� : : 4*9 : : 6 and not due to
any transcription. However, we have assumed that there is
a transcription of the form � . � in �7�*	 � and that the cost of
the transcription is 0. Thus, there is another optimal solution
to Equation 4 in which the 0 cost transcription � . � is
added to “produce” � � in , . Therefore there is an optimal
solution 8 for Equation 4 with the property that for every � �
in , there is some transcription � :�
	 � . � � in the solution.
Similarly, we can assume that there is a transcription in 8
of the form 9 � 	 ��. � � for every � � in - .

In this optimal solution 8 , for each left hand side � :�
	 �
or 9 :� 	 � of a transcription used, there is some corresponding
����	 � such that ����	 � is edited into ��:�
	 � or some correspond-
ing 9���	 � that is edited into 9 :� 	 � . Examining Equation 6
shows that all such partitionings of � and 9 into segments
that are in turn edited into left hand sides of transcriptions
are considered in searching for a minimum cost solution and
so, in particular, 8 is considered by Equation 6 in searching
for a minimum cost solution.

Theorem 1 The computation of �)� !������*	 ��	 ��3
� 4*9#6 as given
by Equation 6 produces a solution to the cross-domain ap-
proximate string matching problem defined in Equation 4.

6. Time Complexity

Define the 3�'�� ��6�� 3 � � ��6 matrix
	

where
	 3�!�4�$�6

is the value of �)� !���� �*	 ��	 ��3
�#�*	 �*4*9 �*	 �76 . Then computing�)� !������*	 ��	 ��3
�#�*	 � 4*9 �*	 	�6 is a matter of iteratively filling the
entries of

	
in order from smaller indices to larger ones,

since the value of �)� !���� �*	 ��	 �73
�#�*	 ��4*9 �*	 �76 depends only the
values of

	 3�! :
4�$7:�6 where � �(!�:�
(! and � � $7:�
 $ as
seen in Equation 6.

Let ��� denote the number of transcriptions in ���
	 � for
! � ��4�� . Define ,��
	 � to be the left hand side of a tran-
scription in � �
	 � for !��(��4�� and � � $ � ��� . Suppose the
length of the longest left hand side of any transcription in
�*�
	 � is ��� , ! �
��4�� . The value of ��� !���� �73
���
	 � 4*, �*	 ��6 can
be computed in time � 3�'�� ��6 using the standard dynamic
programming method mentioned in Section 2. The com-
putation of ��� !���� �73
���
	 � 4*, �*	 ��6 actually produces the values
of all ��� !������73
���
	 � 4*, �*	 ��6 for !�� 	 � ' . Thus, producing
all the values ��� !���� ��3
���
	 � 4*, �*	 ��6 for � �%!#� 	 �%' and
�#� $ � ��� can be done in � 3�' � �7� ����6 time. Similarly, the
value of each ��� !���� �73�9��
	 � 4*,���	 ��6 for ���/!�� 	 � � and ���
$ � �*� can be computed in � 3 � � �����*��6 time. The total time
 � for this preprocessing step is then � 3�' � �7� ��� � � � �����*��6 .

Using these precomputed values, we can compute any� �
������*	 ��	 ��3
���
	 ��4*9 � 	 � 6 in time � 3 ��� �*��6 and so we can com-
pute all such values for � �/!��&$ �/' and ��� 	 ����� �
in time

 ����� 3�' � � � ��� �*��6 . Now using these precomputed
values, we can compute each value �)� !���� �*	 ��	 �73
�#�*	 ��4*9 �*	 �76 in� 3�'�� 6 time, and so computing all such values can be done

in time

��� � 3�' � � � 6 . To summarize, using

� 3�' � �7� ��� � � � �����*� �&' � � � ��� �*��6
preprocessing time we can compute �)� !������*	 ��	 �73
�#�*	 � 4*9 �*	 	�6
in � 3�' � � � 6 additional time. For a specific set of edit and
transcription models, the values ��� , ��� , ��� and �*� are consid-
ered fixed constants and so the running time for computing�)� !������*	 ��	 ��3
�#�*	 � 4*9 �*	 	�6 becomes � 3�' � � � 6 or � 3 ���76 when
'%��� .

One obvious heuristic for speeding up the computation
would be to limit the length of the strings that we try to
match to a left hand side of a transcription. In the computa-
tion shown in Equation 6 it may be sensible to limit the size
of 	 and 	�: by some simple function of ��� and ��� respec-
tively. For instance, it might be reasonable to restrict 	 to
the range � ��4�� �7��� and 	�: to the range � ��4�� � ��� . Then the time
 � would become � 3�'�� � � ��� ���
� �� �*��6 and the time

 � would
be � 3 �7������'�� ��� �*��6 since only those � �
�����3
���
	 ��4*9 � 	 � 6 need
be computed where $ � ! is bounded by a function of ��� and
�
� 	 is bounded by a function of �7� . Finally, the time

 �
becomes � 3 �7������'�� 6 . Thus, for fixed edit and transcription
models, the time to compute

	 3�'14
� 6 using this heuristic
would be given by � 3�'�� 6 or � 3 � � 6 in the case '%��� .

7. Variations

In this section we consider two interesting variations on
cross-domain string matching. These arise from restricting
one or more of the degrees of freedom in the original prob-
lem (recall Figure 2). What happens, for example, if we do
not allow any editing in either of the first two domains,
 �
and
 � ? In the third domain,
 � ?

In the first of these cases, the problem specified in Equa-
tion 4 becomes:�)� !������*	 ��	 ��3
� 4*9#6 � (8)

������ � � 	 � � � ��� ��
�� � � !������*	 �73
� 4���: : 6 �

� � !����*��	 �73�9 4*9 : :�6 ���� !����
��3
��: :�4*9 : : 6
��

This is solved by changing � �
���� to be:� �
������*	 ��	 ��3
� 4*9#6 � (9)

���������� � � ���
�� � 	������� �
��� ��� �
�� �
�
������*	 ��3
� 4���: : 6 �

�
�
����*��	 �73�9 4*9 : :�6 �� �
����
��3
��: :�4*9 : : 6
��

with the main recurrence for �)� !���� , Equation 6, defined as
before. Note that, as with the heuristic presented in the pre-
vious section, the length of the strings matched to the left
hand side of a transcription is inherently bounded. Follow-
ing that earlier analysis, the time complexity in this case is

7

seen to be � 3�'�� � � ���
� �
� �� �*� � �7�����7'�� ��� �*��� �7������'�� 6 , or� 3 � � 6 when '%��� and ��� and ��� are constants.
This particular variation exhibits an intriguing relation-

ship to the “generalized” string matching problem [10] (also
referred to as the “consensus sequence” problem [6]). In-
deed, if the edit costs in the third domain are all set to be 	
except for exact matches which are given cost � , and if the
transcriptions in the first two domains are defined to mimic
a specific set of editing operations (deletions, insertions,
and substitutions), then Equations 6 and 9 solve exactly this
same problem (in exactly the same time, � 3 � � 6). Hence,
this particular variation of cross-domain string matching is
actually a more general form of “generalized” string match-
ing.

On the other hand, if editing is not allowed in the third
domain the problem specification becomes:�)� !������*	 ��	 ��3
� 4*9#6 � (10)������������	�
���
���	�� 	

����� ��
� ��� !�������3
� 4���: 6 � � � !������*	 ��3
��:�4 � 6����� !����*�73�9 4*9 :�6 � � � !����*��	 ��3�9 :�4 � 6 �

with:� �
������*	 ��	 ��3
� 4*9#6 � (11)������ � �������
�� � 	��� ������� ��� �
� ��� !������73
� 4���: 6 � �
�
������*	 ��3
��:�4 � 6����� !����*��3�9 4*9 :�6 � �
�
����*��	 ��3�9 :�4 � 6 �

and Equation 6 for �)� !���� defined as before. The time com-
plexity in this case remains the same as in the original, un-
restricted problem (i.e., � 3 � �76).
8. Conclusions

We have defined a model for the problem of compar-
ing two strings that have been produced in (possibly) differ-
ent domains, both of which have transcriptions into some
common third domain. The distance measure in this model
accounts for the cost to edit away any potential errors in
the strings, the cost to transcribe the corrected strings into
the common domain, and the edit distance between the two
resulting transcribed strings. This allows us to capture ac-
curately the edit costs in all three domains, an important
feature since the edit models may vary considerably even if
their underlying alphabets are the same. The method we de-
rived for computing this distance measure between strings
has been shown to have running time that is polynomially
bounded.

There are a number of application areas for this type of
string comparison model, as outlined in Section 1. Our fu-
ture plans include implementing our algorithm and studying
its effectiveness in multimedia information retrieval.

References

[1] A. V. Aho and T. G. Peterson. A minimum distance error-
correcting parser for context-free languages. SIAM Journal
on Computing, 1(4):305–312, 1972.

[2] W. B. Frakes and R. Baeza-Yates. Information Retrieval:
Data Structures & Algorithms. Prentice Hall, Englewood
Cliffs, NJ, 1992.

[3] M. Gribskov and J. Devereux. Sequence Analysis Primer.
Stockton Press, New York, NY, 1991.

[4] D. Gusfield. Algorithms on Strings, Trees, and Sequences.
Cambridge University Press, Cambridge, UK, 1997.

[5] D. Lopresti and A. Tomkins. Block edit models for ap-
proximate string matching. Theoretical Computer Science,
(181):159–179, 1997.

[6] D. Lopresti and J. Zhou. Using consensus sequence voting
to correct OCR errors. Computer Vision and Image Under-
standing, 67(1):39–47, July 1997.

[7] G. Lyon. Syntax-directed least-errors analysis for context-
free languages: A practical approach. Communications
of the Association for Computing Machinery, 17(1):3–14,
1974.

[8] R. K. Moore. A dynamic programming algorithm for the dis-
tance between two finite areas. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 1(1):86–88, 1978.

[9] S. B. Needleman and C. D. Wunsch. A general method
applicable to the search for similarities in the amino-acid
sequences of two proteins. Journal of Molecular Biology,
48:443–453, 1970.

[10] D. Sankoff and J. B. Kruskal, editors. Time Warps, String
Edits, and Macromolecules: The Theory and Practice of Se-
quence Comparison. Addison-Wesley, Reading, MA, 1983.

[11] R. Sproat, editor. Multilingual Text-to-Speech Synthesis:
The Bell Labs Approach. Kluwer Academic Publishers,
Boston, MA, 1998.

[12] G. A. Stephen. String Searching Algorithms. World Scien-
tific, Singapore, 1994.

[13] K.-C. Tai. The tree-to-tree correction problem. Journal of
the Association for Computing Machinery, 26(3):422–433,
1979.

[14] J. Veronis. Computerized correction of phonographic errors.
Computers and the Humanities, 22:43–56, 1988.

[15] R. A. Wagner. On the complexity of the extended string-to-
string correction problem. In Proceedings of the 7th ACM
Symposium on Theory of Computing, pages 218–223. Asso-
ciation for Computing Machinery, 1975.

[16] R. A. Wagner and M. J. Fischer. The string-to-string cor-
rection problem. Journal of the Association for Computing
Machinery, 21:168–173, 1974.

[17] T. K. Yap, O. Frieder, and R. L. Martino. High Performance
Computational Methods for Biological Sequence Analysis.
Kluwer Academic Publishers, Boston, MA, 1996.

[18] J. Zobel and P. Dart. Phonetic string matching: Lessons from
information retrieval. In Proceedings of the 19th Annual
ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 166–172, Zurich, Switzerland,
August 1996.

8

