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Abstract. Tables are an important means for communicating informa-
tion in written media, and understanding such tables is a challenging
problem in document layout analysis. In this paper, we describe a pro-
totype for a complete, end-to-end table understanding system that takes
raw ASCII text as input (e.g., an email message), spots and recognizes
the structure of any number of tables that it might contain, and gener-
ates a simple interactive man-machine dialog allowing a user to access the
table data via a spoken language interface. We describe general solutions
to the problems of: (1) spotting tables based on optimally partitioning
a document into some number of tables using dynamic programming,
and (2) recognizing the structure of a detected table region based on
hierarchical clustering to identify columns and spatial and lexical crite-
ria to classify headers. A new approach called random graph probing is
introduced to evaluate the performance of a table understanding system.

1 Introduction

Tables are an important means for communicating information in written me-
dia, and understanding such tables is a challenging problem in document lay-
out analysis. Possible applications include extracting information for populating
databases which can later be manipulated or queried, and reformulating existing
tables so that they can be presented in a medium different than their original
target (e.g., on a much smaller screen, or via a spoken language interface).

For example, in a system that reads email over the phone, it would be in-
convenient to be forced to listen to the entire body of a large table being read
sequentially. On the other hand, many tables are formatted in a way that makes
it quite natural to consider querying them via simple relational-database-type
commands. Clearly, being able to recognize and exploit such structure in a doc-
ument would be extremely useful.

In this paper, we describe a prototype for a complete, end-to-end system that
takes raw ASCII text as input, spots and parses any number of tables that it
might contain, and generates a simple interactive man-machine dialog allowing



a user to access the table data via a spoken language interface. This type of
application framework 1s both compelling and tremendously challenging, as it
spans the fields of document analysis, user interface design and development,
text-to-speech synthesis, speech recognition, and dialog systems. An overview
of our system is shown in Fig. 1. While many of the components are still the
subject of active research, preliminary indications are promising.
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Fig. 1. Overview.

The table understanding task is broken into two logical steps: table detec-
tion and table recognition. The first step aims to detect the presence of one
or more tables in a document and delineate each table from the surrounding
text. The goal of table recognition is to determine the structure (either layout
or logical structure) of a given table, and identify functional elements such as
columns, rows, headers, etc. We present algorithms for table understanding that
do not rely on ruling lines and work for generic tables. Separate algorithms were
designed for detection and recognition. In both cases, evidence is collected lo-
cally but decisions are made in an optimal fashion through a global search, thus
achieving higher reliability.

Although the current system only takes ASCII text as input, many of the
same modules will work for image data (e.g., faxes) as well. In particular, the
table detection algorithm has been tested successfully on scanned document
images ([4]). One unique problem in working with image data, though, is coping

with OCR errors.

2 Previous Work

Most prior research on the problem of table detection has concentrated on de-
tecting tables in scanned images, and the vast majority of the work depends
on the presence of at least some number of ruling lines (e.g., [9], [3]). Notable
exceptions to this assumption include a paper by Rahgozar and Cooperman [13]
where a system based on graph-rewriting is described, and one by Shamalian,
Baird and Wood [15] in which a system based on predefined layout structures is
given.



There is much less prior art in the case of ASCII tables, although these
are becoming increasingly important. These may originate either in ASCII form
directly (e.g., as part of an e-mail message), or as the result of saving a “richer”
document (e.g., an HTML page) in “text-only” format.

For table structure recognition, a number of papers report on methods for
determining the layout structure that rely solely on separator features such as
vertical and horizontal lines or column spacing [17, 2] to segment the table into a
structure of cells. Another commonly used technique for detecting columns uses
vertical projection profile methods [1,14] The work by Hurst and Douglas [5]
is concerned with taking a segmented table and using the contents of the re-
sulting cells to determine the logical structure of the table. A method based on
LR(k) parsing is mentioned in [8], however it only works for a given class of
tables (financial tables). Kieninger [7] proposed a bottom-up approach where
vertically overlapping words are grouped into blocks. Various complex heuristics
are then applied to split or merge the blocks into proposed columns. Recently,
Ng et al. proposed a machine learning based method for both table detection
and column/row segmentation [12]. They designed a set of features for each
subproblem and trained classifiers on a specific set of documents (Wall Street
Journal news articles). The performance of these classifiers relies largely on the
choice of features and the quality of training data. It is not clear whether the
proposed features can generalize to documents in other domains.

3 Table Detection Algorithm

The goal of table detection is to detect the presence of one or more tables in
a document and delineate their boundaries. We assume that the input is a sin-
gle column document segmentable into individual, non-overlapping text lines
(referred to simply as “lines” henceforth).

While it may be tempting to assume some form of delimiter (e.g., that tables
will always be separated from the rest of the text by at least one blank line or
some minimum amount of white space), to preserve generality we do not want to
make any « priori assumptions about where table(s) might begin or end in the
input. Instead, we compute a value for all possible starting and ending positions
and then choose the best possible way to partition into some number of tables.

Say there are a total of n lines in the input, and let tab[i, j] be a measure
of our confidence when lines ¢ through j are interpreted as a single table. Let
merity(1,[i + 1, j]) be the merit of prepending line i to the table extending
from line ¢ 4+ 1 to line j, and meritqpp([7,j — 1],7) be the merit of appending
line j to the table extending from line ¢ to line j — 1. We have chosen white
space correlation and vertical connected component analysis to model specific
functions for merit,,. and meritqp, [4]. As a rule they return larger values for
more compatible combinations and can be tuned for specific applications and/or
the input media. Then we define: tab[i, i =0, 1 <i <n and

merity(1,[i+ 1, 7]) + tabli+ 1, ]

tablij— 1] + meritap([ivj—11,5) ='<i=n (D

tabli,j] = max{



This computation builds an upper triangular matrix holding the values for all
possible table starting and ending positions.

We then formulate the partitioning of the input into tables as an optimization
problem. Let scoreli, j] correspond to the best way to interpret lines i through
J as some number of (i.e., zero or more) tables. The computation is defined as
follows: score[i,i] = tab[i,7], 1<i<n and

tabli, j] .
max;<p<j {score[i, k] + scorelk +1,j]} I<i<jsn (2)

scoreli, j] = max{
The precise decomposition of a page can be obtained by backtracking the
sequence of decisions made in computing score[l, n]. Any region on the optimal
path whose tab value is higher than a predetermined threshold is considered a
table region. The final output of the table detection stage are the boundaries of
the detected tables.

4 Table Structure Recognition

Many different terminologies have been used before by various researchers to
describe the structure of a table. We chose to base our model on Wang’s formal-
ism [16] because it provides a clean separation of content (logical model) from
form (physical/presentational model), offers a rigorous mathematical represen-
tation as the logical model, and allows a large amount of flexibility.

Fig. 2 illustrates the terminology used in this paper. At the lowest level,
a table contains two types of cells: Dcells for data cells and Acells for access
cells. These cells are organized into columns and rows. The column headers
are grouped into a region named boz and the row headers are grouped into a
region called stub. The header for box/stub is called a box head or a stub head.
The collection of all the Dcells comprises the body. The body is the only required
region of a table. Acells and all header regions are optional. While it is traditional
to regard document analysis results as tree-structured, we have adopted a slightly
more general representation, a directed acyclic graph (DAG). This flexibility is
important both because there are real-life tables that fall outside the Wang
model, and because the output from an imperfect recognition process may not
necessarily correspond to a legal instance of a table.

There are two basic classes of nodes in our table DAG: leaf nodes which have
no children and which contain content corresponding to a specific region on the
page (i.e., one or more text strings), and composite nodes which are simply un-
ordered collections (sets) of previously-defined leaf and composite nodes. Every
node has an optional label. For the graph corresponding to the table depicted
in Fig. 2, there are 28 leaf nodes labeled Dcell and 14 leaf nodes labeled ACell,
while Row and Column are composite nodes. Note that the indicated DCell (with
content “27 11/16”) is a child both of a node labeled Row (headed by “PURPLE
INC”) and of another node labeled Column (headed by “TODAY’S OPEN”);

hence, this graph is not a tree.
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Fig. 2. Table terminology (adapted from Wang’s Ph.D. thesis).

4.1 Column Segmentation

The input to the column segmentation step is the boundaries of the detected
table region. It is assumed that this region contains all or nearly all the lines oc-
cupied by the body of the table. Depending on the layout of the particular table,
it could also contain lines from column headers. At this point, no distinction is
made between the column of row headers (stub) and a “normal” column.

Hierarchical clustering 1s applied to all words in this region to identify their
likely groupings. Such groupings are represented as a binary tree constructed in
a bottom-up manner [6]. First the leaf level clusters are generated where each
word belongs to a unique cluster, then the two clusters with the minimum inter-
cluster distance are merged into a new cluster. The merging process is repeated
recursively until there is only one cluster left. The nature of the hierarchical
clustering algorithm insures that the proposed column segmentation algorithm
can handle imperfect vertical alignment very well.

In this application each word w; is represented by its starting and ending
horizontal positions represented by the position vector p; = (s;,€;), also called
span. The distance between two words w; and w; is then defined as the Euclidean
distance between the two position vectors p; and p;. For inter-cluster distance
computation, we chose to use the so called “average link”. In other words, the
distance between two clusters is computed as the average of the distances be-
tween all inter-cluster pairs of words.

The cluster tree generated in the above manner represents the hierarchical
structure of the table body in terms of vertical grouping of words. Each cut across
the tree provides one way of clustering these words. The cut where each resulting
cluster corresponds to a column is found using a breadth-first traversal of the
cluster tree starting from the root. A set of heuristics are applied to determine
how far to go along each branch to avoid splitting (going too far) or merging



(not going far enough) columns. The main heuristic currently used is that the
spacing between table columns tends to be more or less even across the table.

4.2 Header Detection and Row Segmentation

The potential headers are identified using a lexical distance measure and assum-
ing typical layout rules for headers used in most tables. To capture the potential
hierarchical structure, headers are represented by a tree structure which 1s ini-
tialized with the root representing the box, and & leaf nodes corresponding to the
k columns. We define the joint span of a list of n spans p; = (s;,€;),i=1...n
as pr., = [min(s;, i = 1...n),max(e;,i = 1...n)]. Once a higher level header is
found, the corresponding intermediary node is generated, and the joint span of
its subsidiary nodes is used to analyze the next line. Fig. 3 shows the box of the
table in Fig. 2 represented as a tree. This tree is then traversed to assign headers
to each column (higher lever headers are shared by more than one column).

ROOT

YESTERDAY'’S

BLUE INC 75 1/2 +11/8 74 9/16 -41/4
GREEN.CO 89 1/4 +2 88 5/8 -213/16

Fig. 3. The tree representation of the box of the table in Fig. 2.

Row segmentation is currently carried out using some simple heuristics: 1) A
blank line is always a row separator; 2) If a line contains non-empty strings for
the stub (if it exists) and at least one other column, or if it contains non-empty
strings for a majority of columns, then it 1s considered a core line, otherwise it is
considered a partial line. Each table row contains one and only one core line and
a partial line 1s always grouped with the core line above it. More sophisticated
methods for line grouping using statistical syntax analysis such as N-grams will
likely improve the performance and will be investigated in our future work.

5 Evaluation via Random Graph Probing

In this section we introduce a new approach to evaluating the performance of a
table recognition system. The method is based on random graph probing, and is
general enough that it could potentially be used to evaluate any algorithm that
attempts to extract certain structures from a document.



To enable the viewing of document analysis results and to support the ground-
truthing process, we have developed an interactive tool we call Daffy for browsing
and editing table DAG’s. Daffy makes it possible to: 1) display and edit graph-
ical mark-up; 2) define new mark-up types; 3) examine hierarchical structure;
and 4) run algorithm animation scripts for visualizing the effects of document
analysis. Daffy supports the full generality of the graph model described in the
preceding section for both image (TTF) and text (ASCII) input.

Given the table DAG from a recognition result and its corresponding ground-
truth, it is natural to consider comparing the two as a way of determining how
well the algorithm has done. However, any reasonable notion of graph match-
ing subsumes the subgraph isomorphism problem which is NP-complete. While
heuristics exist that are sometimes fast, their worst-case behavior is still expo-
nential (see, e.g., [10]). Another obstacle is that there may be several different
ways to represent the same table as a graph, all equally applicable. Minor dis-
crepancies in labeling and/or structure could create the appearance that two
graphs are dissimilar when in fact they are functionally equivalent from the
standpoint of the intended application.

At the other end of the spectrum, we could integrate table recognition with
the rest of the modules outlined in the Introduction and measure the performance
of the complete system on a specific task from a user’s perspective: Does it
provide the desired information? (this is “goal-directed evaluation” as discussed
by Nagy in [11]). This approach has its own shortcomings, however, as it limits
the generality of the results and makes it difficult to identify the precise source
of errors that arise when complex processes (such as that in Fig. 1) interact.

Our methodology works directly with the graph representation. However, in-
stead of trying to match the graphs under a formal editing model, we probe their
structure and content by asking relatively simple queries that mimic, perhaps,
the sorts of operations that might arise in a real application. Conceptually, the
idea is to place each of the two graphs under study inside a “black box” capable
of evaluating a set of graph-oriented operations (e.g., returning a list of all the
leaf nodes, or all nodes labeled in a certain way). We then pose a series of probes
and correlate the responses of the two systems. A measure of their similarity
is the number of times their outputs agree. Note that it is essential the probes
themselves have simple answers that are easily compared. They might return,
for example, a count of the number of nodes satisfying a certain property (e.g.,
possessing a particular label), or the content of a designated leaf node. The prob-
ing becomes recursive if the target of a probe is a graph itself (i.e., a composite
node). The intention is that this probing process abstracts the access of content
away from the specific details of the graph’s structural representation.

While the paradigm is open-ended, currently we have defined three categories
of probes:

Class 0 These probes count the number of occurrences of a given type of node
in the graph. Referring again to Fig. 2, a typical Class 0 probe might be
paraphrased as: “How many nodes labeled ‘Column’ does the graph have?”
The answer in this case is “b.”



Class 1 These probes combine content and label specifications. Currently they
apply only to leaf nodes. A representative Class 1 probe might be: “How
many leaf nodes labeled ‘Acell’” with content ‘OPEN’ does the graph have?”
The reply here 1s “2.”

Class 2 These are the most sophisticated probes we have implemented to date.
Class 2 probes mimic simple database-type queries, although phrased en-
tirely in terms of graph manipulations. For a given target node, keys that
uniquely determine its row and column are identified. These are used to in-
dex into the graph, retrieving the content of the node (if any) that lies at
their intersection. An example of a Class 2 probe for the table in Fig. 2 is:
“What is the value of “TODAY’S OPEN’ for ‘RED INC’?” The response
would be “221/4.”

The generation of a probe set is based on one or the other of the graphs
in question. That graph will obviously return the definitive responses for all of
the probes in the set, while the other graph will do more or less well depending
on how closely it matches the first. We then repeat the process from the other
direction, generating the probe set from the second graph and tallying the re-
sponses for both. The probes are synthesized automatically, working from the
table DAG output from the recognition and ground-truthing processes described
earlier. For specifying probes, we have implemented a graph-oriented query lan-
guage embedded in a general-purpose programming language; this offers a great
deal of power and flexibility.

6 Experimental Results

In this section, we present preliminary experimental results of using our algo-
rithm to detect and recognize tables in ASCII text documents . The test database
was composed of twenty six Wall Street Journal (WSJ) articles and twenty five
email messages. Fach test sample was in single column format and contains one
or more tables.

6.1 Table Detection

In considering the output from our table detection algorithm, it becomes evident
detection errors include non-table regions improperly labeled as tables (insertion
errors), tables missed completely (deletion errors), larger tables broken into a
number of smaller ones (splitting errors), and groups of smaller tables combined
to form larger ones (merging errors). This leads naturally to the use of an edit
distance model for assessing the results of table detection [4].

A one-to-one matching was done on the test sample and its corresponding
ground truth. The ground truth was generated by manually delineating the
boundaries of the tables. A useful feature of this evaluation scheme is that it
performs error analysis by quantifying the types of detection errors. To illustrate
this point, the sum of the errors due to insertion, deletion, substitution, merges



and splits for the documents of each class was plotted against the threshold. The
threshold refers to the value above which a region in a document is considered a
table. This is shown for both the WSJ and email documents in Fig. 4. As seen in
Fig. 4, for both sets of documents, errors at lower threshold values (left portions
of the individual plots) are likely to be insertion errors, which reduce as the
threshold is increased. On the other hand, at higher threshold values, deletion
errors increase significantly. Substitution errors are errors in tables which have
been detected but not accurately delineated. This is partly due to the header
lines which have been missed by the table detection algorithm. The drop-offs in
the substitution errors in both the classes of documents at higher thresholds are
due to the fact that entire tables were missed at these thresholds and these were
classified as deletion errors.
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Fig.4. Count of detection errors for WSJ and ASCII documents.

6.2 Table Recognition

Tables that were split or merged by our table detection algorithm were removed
for the recognition evaluation. All the remaining tables along with the detected
boundaries were input to the table recognition algorithm described in Section 4.
The functional elements which among others include headers, rows and columns
are represented as a graph. Random graph probing as explained in Section 5 is
used to evaluate the performance of the table recognition algorithm. The test
documents used for table recognition were ground-truthed manually using the
Daffy interface (Section 5).

The accuracies of the probes for each of the three classes is plotted in Fig. 5
for the WSJ documents and Fig. 6 for the email documents. Also superimposed
on the plot is the total accuracy (combining all the classes). The overall accu-
racy was 82% for the WSJ documents and 73% for the email documents. The
better performance for the WSJ database, we believe, is due to the more ho-
mogeneous collection of its documents with a few classes of table structures. In
sharp contrast, the email documents were a heterogeneous collection with varied
layouts.
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Fig. 5 contains several documents for which the Class 2 score was zero. One
reason was that the table in such documents had only two rows (a row contain-
ing headers and a row containing data) and no Class 2 queries were generated.
Another reason was that currently, our algorithm does not capture hierarchical
row headers and this leads to incorrect recognition of table structure in such
tables. It must be noted that several plausible interpretations of a single ta-
ble (ground-truths) can be made and this makes the evaluation task extremely
challenging.

7 Table Query Interface

For mobile and remote information access, it 1s desirable to be able to reformulate
a recognized table to facilitate query by a spoken language interface. To enable
this and other potential applications we have developed a prototype platform,
MEdzit, for developing, debugging, and demonstrating structured man-machine
dialogs. It is intended to be easy enough to use that non-specialists can quickly
author dialogs with little or no programming effort, yet powerful enough that
sophisticated dialogs can be supported. The system makes extensive use of Bell
Labs speech recognition (ASR) and text-to-speech (TTS) technologies.

Like Daffy, MEdit is interactive and employs a graphical user interface pro-
grammed in Tcl/Tk. At the highest level, MEdit adopts a finite state machine



(FSM) paradigm. The mouse is used to place and move nodes, and to draw edges
to connect them. Execution of the dialog can be initiated at any selected node,
or at a single designated “start” node. At a slightly lower level, each node in
the FSM corresponds to an arbitrary program (i.e., script) written in Tcl. This
program is executed whenever the node in question is entered. Edges correspond
to two programs: one called when the edge is evaluated by the node it leads
from, and another called when the edge is traversed.

When nodes and edges are instantiated, they are given default scripts. Com-
plete, simple dialogs can be built by replacing one or more values in these tem-
plates. The user is in no way limited by the default behavior of nodes and edges,
however, and arbitrarily complicated specifications can be written and executed.
In addition to allowing interactive dialog construction, MEdit provides an inter-
face for building dialogs programmatically; programs (e.g., a table recognition
system) can write programs that generate dialogs.

The following transcript illustrates a session involving our previous table
example:

SYSTEM: [ found a table with seven rows and five columns. The column headings are:

company, today’s open, today’s change, yesterday’s open, and yesterday’s change.
What next?

USER: Read company.

SYSTEM: Column one, company, is: Blue Inc, Green.com, Red Inc, Yellow Ltd,
Purple Inc, Brown.com, and Pink Ltd. What next?

USER: What s Green.com’s today’s open?

SYSTEM: Green.com’s today’s open is 89 1/4. What next?

USER: Read Purple Inc.

SYSTEM: Purple Inc, today’s open 27 11/16, today’s change —2 5/8, yesterday’s
open 27 5/8, yesterday’s change —1 1/8. What next? ...

While still far from human-like, it is clear how such an access mechanism could
greatly assist a user attempting to retrieve information from a document over
the phone.

8 Conclusions

This paper has presented a system and its associated algorithms that detects
and recognizes tables in ASCII text. Random graph probing was introduced as
a new paradigm for evaluating the performance of the table recognition system.
Further, a prototype was described which generates a simple interactive dialog
to query the recognized table using a spoken language interface. Preliminary ex-
periments on ASCII documents demonstrated the effectiveness of the approach.
Future work involves exploring more sophisticated table quality measures such as
including syntactic and semantic elements of documents both for detection and
recognition. Another area for further study is in the generation of more sophisti-
cated probes for evaluation of table structure and for extending this paradigm to
evaluate other algorithms that attempts to extract structure from documents.
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