Comparing the Utility of Optical Character
Recognition and Character Shape Coding in
Duplicate Document Detection*

Daniel Lopresti! and A. Lawrence Spitz?

! Bell Labs, Lucent Technologies Inc.
600 Mountain Avenue, Room 2D-447
Murray Hill, NJ 07974
dlopresti@lucent.com
2 Document Recognition Technologies, Inc.
616 Ramona Street, Suite 20
Palo Alto, CA 94301

spitz@docrec.com

Abstract. In this paper we study the performance of optical charac-
ter recognition (OCR) and character shape coding (CSC) in support
of duplicate document detection. We employ a public domain database
supplemented by several common types of image degradation and apply
two fundamentally different approaches for comparing documents, string
edit distance and vector space (cosine) similarity. We show that CSC du-
plicate detection can be just as effective as OCR, at considerably lower
computational cost.

1 Introduction

In the development and maintenance of document image databases, it is impor-
tant to be able to detect duplicate documents in order to protect against having
multiple instances of the same document in the database, or at least to flag such
occurrences so the user can be informed. The presence of duplicates may not only
result in inefficiencies of storage, database maintenance, and search times, but
could introduce ambiguity because two seemingly identical copies of a document
might be marked-up differently.

For certain applications, e.g., document declassification, duplicate detection
is so crucial that a “false hit” (returning a non-duplicate) is far more tolerable
than a “miss” (not finding one of the duplicates present in the database).

On large databases, those having hundreds of thousands or millions of docu-
ments, computational efficiency becomes critical to minimize the time necessary
to decide whether or not a new document should be added to the database.
To this end, we examine two competing technologies for transforming document

* Presented at the Fourth International Workshop on Document Analysis Systems,
Rio de Janeiro, Brazil, December 2000.

images into representations that are easier to compare: optical character recog-
nition (OCR) and character shape coding (CSC). While the former is the better
known technology, the computational overhead for CSC is much lower, and it
offers some additional advantages in terms of handling poor quality images.

Previous work on the topic has taken place at differing levels of abstraction
of the document image. This can be broken into two broad classes: comparison
of images or image-related features, and comparison of character-based transfor-
mations of the image. In the least abstract case, Prokowski describes a method
based on optical correlation requiring special hardware [9]. Rogers et al. compare
images in software by matching power spectra of projection profiles [10]. Hull
et al. have described the direct comparison of document images using Hausdorf
distances between sets of CCITT Group IV pass codes [3,4]. This is a computa-
tionally intensive method, so much so that they compare only a one-square-inch
region of image data for each document pair, that square inch having been lo-
cated by the database provider during the segmentation process.

Hull has also based duplicate detection on hashed word-length sequence infor-
mation [2]. Spitz subjected images to character shape coding before performing
a string edit distance calculation [15]. Lopresti expanded on the string match-
ing paradigm emphasizing its applicability to differing levels of abstraction such
as words, characters and n-grams, and allowing for full and partial matches to
documents with the same and differing text layouts [5-7].

In this paper, we unite our previously separate work involving character shape
coding on the one hand, and algorithms for duplicate detection on the other, ex-
tending it in several important ways. We evaluate the effectiveness of CSC and
OCR for two fundamentally different comparison measures, string edit distance
and vector space (cosine) similarity, using a standard database of scanned doc-
ument images supplemented with newly-created duplicates exhibiting a wide
range of real-world degradations.

In Sect. 2, we describe the selection and modification of the page image data
upon which our study is based. Sect. 3 details the CSC and OCR transformations
applied to yield a document representation suitable for performing duplicate
detection. The two comparison measures we use, one based on approximate string
matching and the other the vector space metric from information retrieval, are
presented in Sect. 4. Experimental results are given in Sect. 5. Finally, we present
our conclusions and discuss possible topics for future research in Sect. 6.

2 Test Corpus

We used as a starting basis the University of Washington I database (UW1) [8].
We selected the 340 page-images that comprise the documents prefixed by the
letters e, 7, and s. The s and e sets contain 125 duplicate document images with
those from the s set scanned from original journal pages, and the e set scanned
from first generation photocopies. The ¢ set adds another 90 document pages
scanned from first and later generation photocopies.

We then chose 10 images from the s set for special treatment: s007, s00c,
s00f, s00q, s00L, s011, s013, s015, s01c, and s0le. While all originating from
journals; these exhibit a fairly broad range of document layout styles, content,
typography, formatting conventions, etc. The images were printed on an HP
LaserJet 8000 DN laserprinter, the resulting hardcopy was subjected to real-
world degradation (e.g., by faxing the page, copying it, or marking sections of
the text with an orange highlighter pen), and then the pages were rescanned, in
most cases at 300 dpi, using a UMAX Astra 1200S scanner. The new prefixes
and their corresponding interpretations are listed in Table 1.

Table 1. Duplicate documents used in this study.

Prefix Interpretation Prefix Interpretation

e |UWI1 photocopy r |Rescanned at 150 dpi
UW1 original Crumpled and flattened out
Fax (standard mode) Very light photocopy
Orange highlighter Very dark photocopy
Rescanned at 75 dpi Coffee-stained
Rescanned at 100 dpi

n o 8 g

R0 W v w

While none of these various forms of damage changed the content of the
page or made it unreadable from a human standpoint, they do create challenges
for recognition software. Light and dark photocopies, for example, can result in
numerous character-level segmentation errors (splits and merges, respectively).
Fax images are often regarded as among the most difficult to handle. Note also
that rescanning a page at a lower resolution presents an interesting tradeoff;
recognition accuracy suffers, but processing time as well as storage requirements
also drop (potentially by a factor of four when the resolution is cut in half).

Because we wish to concentrate on symbol-level effects, we sought to mini-
mize differences in the higher-level stages of document analysis. To achieve in-
dependence with regard to layout segmentation, and to guarantee consistency in
submitting exactly the same images to both CSC and OCR,, we used the informa-
tion in the zone attribute files supplied with the UW1 dataset. We cropped each
image to include all zones labeled as “upright text.” By restricting the input
in this way, we eliminated “text-with-special-symbols,” which usually implies
mathematical content, as well as the following kinds of zones: “advertisement,”
“announcement,” “drawing,” “halftone,” “logo,” “map,” “math,” “not-clear,”
“ruling,” “seal,” and “table.”

For the unmodified UW1 images (e, i, and s), we applied the coordinates
found in the UW1 zone box files. In the case of the printed/rescanned images,
where zone coordinates have been subject to translation, skew and (possibly
anamorphic) scaling, the zoning was performed manually based on the UW1
zone attributes. In the end, we prepared a total of 430 page images, of which

110 (= 10 x 11) corresponded to the duplicates of interest.

3 Image-to-Symbol Transformations

We transformed the character data in image zones into two symbolic represen-
tations: ASCII, using optical character recognition, and character shape codes.

3.1 Optical Character Recognition

We used Caere (now ScanSoft) OmniPage 9.0 as the OCR engine in our tests [1].
This is a commercial product which has benefited from considerable engineering
effort directed at handling noisy data and optimizing performance. We configured
the software to accept TIF files as input and to produce flat text, preserving
line breaks, as output. Since OmniPage apparently has a minimum page size,
small images were surrounded with white margins to make them acceptable. No
manual error correction was performed on the output.

3.2 Character Shape Coding

The generation of character shape codes (CSC’s) has been described extensively
elsewhere [12-14]. Character shape coding is a robust, computationally inex-
pensive process based on the gross shape and location of character images with
respect to their text lines. The page image is first converted into a list of con-
nected components. Components which are too large to be text, and all compo-
nents that are contained within the bounding boxes of these large components,
are removed from consideration since they are presumed to represent graphi-
cal, rather than textual, information. After page skew detection and correction,
as well as correction for any baseline curvature which often arises from photo-
copying, two important fiducial levels are defined for each text line: the baseline
and the height of an x-height character. Fig. 1 shows the relationship of a text
fragment to its text line.

IS teXt Provides

Fig. 1. Text line parameter positions.

The mapping of character image locations to the set of shape codes is given
in Table 2. Note that for codes 7 and j, the positions are for the lower of the two
components. Since character shape coding relies on gross features, it is robust
in the presence of font and size changes, scanning resolution, and most image
quality degradations such as skew and multiple generation photocopying [16].
The simplicity of character shape coding makes it an inherently fast process. In
some applications, shape coding runs more than an order of magnitude faster
than traditional OCR, processes.

Table 2. Character shape coding.

Character Components
csc Images Number Top Position Bottom Position
A | A-Zbdfhklt 1 above x-line baseline
X |acemnorsuvwxz 1 x-line baseline
g |gpqy 1 x-line below baseline
11 2 x-line baseline
A 2 x-line below baseline

However, this simplicity comes at a cost of missing some typographic com-
plexity. For the corpus of documents processed for this paper, the most impor-
tant shortfall is the inability to handle subscripts and superscripts correctly. In
small numbers, these characters will just add noise to the CSC-encoded output.
In large numbers, the statistical process of determining the baseline and x-line
might be corrupted leading to erroneous encoding of the entire line. We did not
observe this latter effect.

An additional problem arises when an all-upper-case text line is encountered.
Because there is no actual x-line to be found, the CSC process will erroneously
encode the text line as containing only x-height characters. However, since in
the duplicate detection application consistency is more important than absolute
accuracy, and since duplicates would contain the same all-upper-case text lines,
this limitation is not an issue.

3.3 Relative Accuracy

While consistency is more important than accuracy in duplicate detection, the
latter can serve as an indicator of potential utility. Measuring the performance
of OCR processes via string edit distance [17] is an established technique. We
used this same approach for quantifying the accuracy of CSC relative to the
transliterated ground truth.

As can be seen in Fig. 2, OCR accuracy is somewhat higher than CSC accu-
racy for the best documents. However, as the ability of OCR to transform the
image accurately degrades, its advantage over CSC disappears. Note that the
110 documents represented in the figure comprise the 20 scans supplied in the
UW1 dataset, plus the 90 duplicates created for this study.

4 Algorithms for Duplicate Detection

In this section, we summarize the two algorithms for duplicate detection used
in our experiments. The reader is referred to the original works in question for
more details.

Accuracy (%)

- CSC sorted by OCR accuracy ‘;
—— CSsC |
---- OCR |

Document Index

Fig.2. CSC and OCR accuracies as a function of decreasing image quality.

4.1 Approximate String Matching

Approximate string matching is based on the well-known concept of edit distance.
In the simplest case, the following three operations are permitted: (1) delete a
symbol, (2) insert a symbol, (3) substitute one symbol for another. Each of
these is assigned a cost, ¢ger, Cins, and cgyp, and the edit distance is defined as
the minimum cost of any sequence of basic operations that transforms one string
into the other.

This optimization problem can be solved using a dynamic programming al-
gorithm [17]. Let @ = q1q2...qm be the query document, D = dids...d, be
the database document, and define distl; ; to be the distance between the first
¢ symbols of () and the first j symbols of D. The initial conditions are:

distloyo =0
distl; o = distl;_1 o + caer(qi) I1<i<m, 1<j<n (1)
distloyj = dist]()y]'_l + Cms(dj)

and the main dynamic programming recurrence is:

distl;_1; + caer(qs)
distl; ; = min< distl; j_1 + cins(dj) 1<i<m, 1<j<n (2)
distl;_1j_1 + csus(qi, dj)

The computation builds a matrix of distance values working from the upper left
corner (distly o) to the lower right (distl,, »).

For the present work, we follow [5-7] and add another dimension to the
optimization. The problem is still one of editing, but at the higher level the basic

entities are now strings (i.e., text lines). Say that Q@ = Q'Q?...Q* and D =
D'D? ... D' where each Q' and IV is itself a string. The inner-loop recurrence
takes the same general form as the 1-D case:
dist2i—1; + Caa(QY)
dist2; ; = min} dist j_1 + Cins(D7) 1<i<k, 1<j<l (3)
dist2;—1 j—1 + Csup(QF, D7)

where Clger, Cins, and Cyyp are the costs of deleting, inserting, and substituting
whole lines, respectively. The initial conditions are defined analogously to Eq. 1.

Since the basic editing operations now involve full strings, it is natural to
define the new costs as:

Cdel(Qi) = dist](Qi, q[))
Cms(D]) = dist](d),D]) 1<i<k, 1<5<] (4)
Csub(Qi, Dj) = dist](Qi, Dj)

where ¢ is the null string. Hence, the 2-D computation is defined in terms of the
1-D computation.

For exact duplicates, the distance returned by the algorithms will either be
0 or a negative number that grows smaller as the lengths of the documents
increase. For dissimilar documents, the maximum distance grows larger as the
lengths increase. It is always the case that, for a given query, a smaller dis-
tance corresponds to a better match. To make the results for different queries
comparable, however, it is necessary to normalize the distances.

If the target interval is [0, 1], where 0 represents a perfect match and 1 a com-
plete mismatch, then the following formula provides an appropriate mapping:

dist — mindist

EditSim(Q, D) =

maxzdist — mindist (5)
where dist is one of the edit distance measures and mindist and mazdist are,
respectively, the minimum and maximum possible distances for the comparison
in question.

Making certain reasonable assumptions about the cost functions, the min-
imum 1s obtained when all of the characters in the query match the database
document and there are no extra, unmatched characters. If the query is Q =

4192 - . . ¢m, then:

m
mindist = Z Csub (i, ¢i) (6)
i=1
Or, more simply, mindist = m - ¢;q4¢ When the costs are constant and ¢4t 18 the
cost of an exact match.

The maximum distance, on the other hand, is determined by the query and
the set of all strings with the same length as the database document. If the cost
functions are unconstrained, this in itself becomes an optimization problem.
Fortunately, for constant costs there 1s a simple closed-form solution. Without
loss of generality, let the query be the shorter of the two strings (i.e., m < n).

There are two possible “worst-case” scenarios: either all of the symbols of the
query are substituted and the remaining symbols of the database string are
inserted, or all of the query symbols are deleted and the entire database string
is inserted. Thus:

m - Csyup + (77, - m) * Cins (7)

mazdist = min
M- Cdel + N - Cins

4.2 The Vector Space Measure

The vector space model first proposed by Salton is extremely popular in the field
of information retrieval [11]. This approach assigns large weights to terms that
occur frequently in a given document but rarely in others because such terms are
able to distinguish the document in question from the rest of the database. Let
tf.. be the frequency of term ¢; in document D;, n; be the number of documents
containing term tj, T be the total number of terms, and N be the size of the
database. Then a common weighting scheme (#f x idf) defines w;y, the weight
of term t; in document D;, to be:

Ui - log(N/ny)
T
VI (th)? - (log(N/ny))?
The summation in the denominator normalizes the length of the vector so that

all documents have an equal chance of being retrieved.
Given vectors for the query ; = (wi1, wsa, . .., wir) and the document D; =

(8)

Wik =

(wj1,wj2, ..., wir), a vector dot product is computed to quantify the similarity
between the two:

T
VSsim(Qy, D;) = Z Wik Wk (9)
k=1

5 Experimental Results

For the experiments reported in this paper, we employed the entire database of
430 pages processed through either CSC or OCR. The appropriate output for
the 10 s-prefixed documents listed in Sect. 2 were used as queries. Since the
database contained one duplicate for each category depicted in Table 1, there
were a total of 11 intended “hits” for each query (including one exact match).

For our edit distance measure, we ran algorithm dist2 (i.e., Eq. 3) with the
cost assignments ¢ge; = Cins = 1, csup = 2, and ¢nq¢ = —1. The distance was
normalized to between 0 and 1 as described in the previous section. For the
vector space computation, we employed word-unigram tokens. In the case of
the OCR output, we mapped all characters to their lower-case equivalents and
followed the standard IR, custom of filtering out stopwords. This particular step
was not applied to the CSC output. We made no attempt at stemming, another
common practice in IR.

Table 3 presents the string matching results for comparing each of the 10
queries against the database of 430 documents under the CSC and OCR trans-
formations. Note that there is always significant separation between the average
distances for the “duplicate” and “non-duplicate” classes. The values shown for
precision at 100% recall indicate the number of non-duplicates one must examine
to be sure of finding all of the duplicates; 1.0 is the best possible score (i.e., there
are no false hits mixed in with the true duplicates). In almost every instance,
the string technique is perfect for both the CSC and OCR representations. The
one aberration is query s013. Interestingly, CSC did badly for 4013 (the dark
photocopy) because of excessive black “speckle” noise, whereas OCR produced
poor quality output for a different document, 0013 (the 75 dpi scan). We note
that, in general, OCR was less robust at lower scanning resolutions than CSC.
Excluding these worst-case duplicates for s013 yields precision measures of 1.0

for both CSC and OCR.

Table 3. Performance of string matching for duplicate detection (CSC left, OCR right).

csc Prec. OCR Prec.
Average Distance @100% Average Distance @100%
Query| Dupes Non-Dupes Sep. Recall | Dupes Non-Dupes Sep. Recall
s007 |0.0964 0.7610 0.6646 1.00 [0.0772 0.8747 0.7975 1.00
s00c |0.1036 0.7061 0.6025 1.00 [0.0860 0.8400 0.7540 1.00
s00f 10.1132 0.8040 0.6909 1.00 [0.1316 0.8987 0.7672 1.00
s00g 10.2137 0.7023 0.4886 1.00 [0.2154 0.8356 0.6202 1.00
s00h 0.2539 0.6496 0.3958 1.00 [0.2147 0.8270 0.6123 1.00
s011 10.1702 0.7497 0.5795 1.00 [0.1134 0.8761 0.7627 1.00
s013 |0.1442 0.6478 0.5036 0.07 [0.1216 0.8249 0.7033 0.04
s015 10.1174 0.6655 0.5481 1.00 [0.0438 0.8281 0.7842 1.00
s01c |0.1590 0.6669 0.5079 1.00 [0.1260 0.8346 0.7085 1.00
s01e |0.1374 0.7370 0.5996 1.00 [0.0924 0.8680 0.7756 1.00
Avg. |0.1509 0.7090 0.5581 0.91 [0.1222 0.8508 0.7286 0.90

Analogous figures for the vector space measure are given in Table 4. The
obvious conclusion here is that the string algorithm is more robust than vector
space, at least with respect to the dataset under study. It is important to keep in
mind that a precision of 0.35 or 0.49, while far from perfect, is not as catastrophic
as a recognition accuracy of the same amount. It simply means that the user
must wade through roughly equal numbers of true and false hits.

Nevertheless, these results differ considerably from those reported in an ear-
lier study where the performance of the string and vector space techniques was
found to be comparable [6]. In looking at the reasons for this, we note that several
of the query documents in the present dataset are quite short (e.g., the OCR’ed
version of s00f is 502 bytes) — far shorter than the query used in [6] which was
1,395 bytes. Also, for each of our s queries, there are typically some number of
other pages from the same journal article (using the same distinctive terminol-

ogy) present in the database. These pages may be returned by vector space as
matches, even though they are not really duplicates of the query. Lastly, it is
conceivable that word-size tokens are wrong for use in this application. We ex-
amined character-trigrams, but found their performance even worse, especially
for the CSC representation. Still, some other size may produce better results
than what is seen here.

Table 4. Performance of vector space for duplicate detection (CSC left, OCR right).

csc Prec. OCR Prec.
Average Distance @100% Average Distance @100%
Query| Dupes Non-Dupes Sep. Recall | Dupes Non-Dupes Sep. Recall
s007 (0.4292 0.9786 0.5495 0.73 [0.2352 0.9840 0.7488 0.55
s00c |0.4509 0.9608 0.5099 0.41 (0.2103 0.9654 0.7550 0.31
s00f 10.5204 0.9781 0.4577 0.11 [0.3486 0.9756 0.6271 0.24
s00g 10.4765 0.9644 0.4879 0.38 [0.2743 0.9673 0.6930 0.17
s00h 0.5943 0.9677 0.3733 0.08 [0.2997 0.9838 0.6841 0.48
s011 |0.5936 0.9560 0.3624 0.09 [0.3127 0.9815 0.6688 0.16
s013 |0.4696 0.9760 0.5064 0.48 [0.1896 0.9914 0.8018 0.85
s015 |0.5953 0.9796 0.3843 0.73 [0.2103 0.9928 0.7826 1.00
s01c |0.5538 0.9570 0.4032 0.42 [0.2738 0.9854 0.7116 0.58
s01e |0.6262 0.9875 0.3612 0.03 [0.3159 0.9936 0.6777 0.58
Avg. |0.5310 0.9706 0.4396 0.35 [0.2670 0.9821 0.7150 0.49

Detailed results for one specific query, sf0c, are presented in Figs. 3 and
4. Here all 430 distance values are graphed for each representation/comparison
combination, with the intended duplicates marked by their appropriate prefix
letter. Both OCR and character shape codes work well for determining the pres-
ence or absence of duplicates under the string matching measure. Though the
“cloud” of non-duplicates is more diffuse in the case of CSC’s; these 1s almost
always a significant gap between the cloud and the closest actual duplicate. The
presence of this gap leads to high values of precision at 100% recall, minimizing
the number of non-duplicates that need to be examined. The failure of vector
space to distinguish cleanly the two classes is also apparent in the figures.

Table 5 provides another view of the results for the string matching algorithm,
averaging the distances for all duplicates of a given type. Clearly, the most
difficult degradations for CSC are dark photocopies and faxes. This 1s likely a
function of speckle noise — a more aggressive approach to noise reduction might
ameliorate the situation. On the other hand, OCR has increasing trouble as the
scanning resolution drops. Evidently OmniPage is optimized for a specific input
resolution, and performs poorly for anything outside that range. This may be
an area where CSC has an inherent advantage, since the fine typographic detail
necessary for full-scale OCR is largely irrelevant when computing shape codes.

10 x x X
B X e XK X X000, K BT o x
x 0.9 [X XTI wx T O A 2
x B om0 o X ¢ X K05, IR o X X
x B oo RO B e K R S g}@w *
0.8 o S X
o g o R e,
E x % S 07
° X X X % o St °
g0 Ko g X KX x o x K XK X 5% o
S 06[% ;f X R R O e I HEL X S os
k=l x x X x Xx 0% K Xx xx X k=l
w05 % x x x X w05
T * xx B °
N 04 N 04
© ©
£ 03 y £ 03
3 f s
0.2 o 0.2 q y
0.1 a w 0.1 f
ool_e g 9 r.u z 00_e s g r_ oy W
String Matching Results for Query s00c, CSC Representation String Matching Results for Query s00c, OCR Representation

Fig. 3. String matching results for query s00c (CSC left, OCR right).

1.0

% Mo g %
09 x Xx x"xo 0%
x
x
0.8|x x Y 0.8
x q o
o 07 o 07
e = 4
S 06 w S 06
%] %)
O o5 b 0 05
2 2 =
G 04 G 04
o o
O o3 r O o3
u y

0.2 g 2 0.2 f w

01| *© 01 '

0.0 s ool—& s 9 4

Vector Space Results for Query s00c, CSC Representation Vector Space Results for Query s00c, OCR Representation

Fig. 4. Vector space results for query s00c (CSC left, OCR right).

6 Conclusions and Future Research

In this paper, we have compared the performance of two image-to-symbol trans-
formations, optical character recognition and character shape coding, in support
of duplicate document detection. We found that CSC duplicate detection can be
just as effective as OCR, at considerably lower computational cost. We also dis-
covered that, for the dataset under study, approximate string matching is more
robust than vector space retrieval.

To model more accurately the document declassification application where
duplicate detection and removal is essential, we intend to apply, and possibly

Table 5. Performance by degradation type (string matching measure).

Average Distance Average Distance
Prefix Interpretation| CSC OCR Prefix Interpretation csc OCR

e UWI1 copy 0.0397890.005448 r 150 dpi 0.101373|0.060560
s UW1 original {0.000000{0.000000 u Crumpled 0.103709|0.052978
f Fax 0.287316|0.151144 w Very light copy|0.126319|0.080887
g Highlighter 0.098236|0.054466 y Very dark copy|0.332226(0.142019
o 75 dpi 0.244531(0.511369 z Coffee-stained [0.084438(0.046130
q 100 dpi 0.183039 (0.235255

adapt, the techniques described in this paper to a representative corpus of type-
written documents.

We also plan to try using the vector space measure as a pre-filter to elimi-

nate, at low cost, those documents that cannot possibly be duplicates by virtue
of their dissimilar vocabularies. It might also be interesting to pursue the addi-
tional computational advantage to had in string comparison when the alphabet
is relatively small (~ 10 symbols in the case of CSC vs. ~ 100 symbols for OCR).

References

10.

11.

12.

13.

Caere OmniPage Pro. http://www.caere.com/products/omnipage/pro/.

. J. J. Hull. Document image matching and retrieval with multiple distortion-

invariant descriptors. In A. L. Spitz and A. Dengel, editors, Document Analysis
Systems, pages 379-396. World Scientific, Singapore, 1995.

J. J. Hull. Document image similarity and equivalence detection. International
Journal on Document Analysis and Recognition, 1(1):37-42, February 1998.

J. J. Hull, J. Cullen, and M. Peairs. Document image matching and retrieval
techniques. In Proceedings of the Symposium on Document Image Understanding
Technology, pages 31-35, Annapolis, MD, April-May 1997.

D. Lopresti. Models and algorithms for duplicate document detection. In Proceed-
ings of the Fifth International Conference on Document Analysis and Recognition,
pages 297-300, Bangalore, India, September 1999.

D. Lopresti. A comparison of text-based methods for detecting duplication in
document image databases. In Proceedings of Document Recognition and Retrieval
VII (1S&T/SPIE FElectronic Imaging), volume 3967, pages 210-221, San Jose, CA,
January 2000.

D. Lopresti. String techniques for detecting duplicates in document databases.
International Journal on Document Analysis and Recognition, 2(4):186-199, June
2000.

I. T. Phillips and J. Ha. The implementation methodology for a CD-ROM English
document database. In Proceedings of the Second International Conference on
Document Analysis and Recognition, pages 484—487, Tsukuba Science City, Japan,
October 1993.

F. Prokoski. Database partitioning and duplicate document detection based on
optical correlation. In Proceedings of the Symposium on Document Image Under-
standing Technology, pages 86—97, Annapolis, MD, April 1999.

R. Rogers, V. Chalana, G. Marchisio, T. Nguyen, and A. Bruce. Duplicate doc-
ument detection in DocBrowse. In Proceedings of the Symposium on Document
Image Understanding Technology, pages 119-127, Annapolis, MD, April 1999.

G. Salton and J. Allan. Text retrieval using the vector processing model. In Pro-
ceedings of the Third Annual Symposium on Document Analysis and Information
Retrieval, pages 9-22, Las Vegas, NV, April 1994.

A. L. Spitz. Generalized line, word and character finding. In S. Impedovo, editor,
Progress in Image Analysis and Processing 111, pages 377-383. World Scientific,
Singapore, 1994.

A. L. Spitz. Text line characterization by connected component transformations. In
Proceedings of Document Recognition I (IS&T/SPIE Electronic Imaging), volume
2181, pages 97-105, San Jose, CA| February 1994.

14

15.

16.

17.

. A. L. Spitz. Using character shape codes for word spotting in document images.
In D. Dori and A. Bruckstein, editors, Shape, Structure and Pattern Recognition,
pages 382-389. World Scientific, Singapore, 1995.

A. L. Spitz. Duplicate document detection. In Proceedings of Document Recognition
IV (IS6T/SPIE Electronic Imaging), pages 88-94, San Jose, CA, February 1997.
A. L. Spitz and J. P. Marks. Measuring the robustness of character shape coding. In
Proceedings of the IAPR Workshop on Document Analysis Systems, pages 19-28,
Nagano, Japan, 1998.

R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal
of the Association for Computing Machinery, 21:168-173, 1974.

