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Abstract

Detecting duplicates in document image databases is a problem of growing im-
portance. The task is made difficult by the various degradations suffered by printed
documents, and by conflicting notions of what it means to be a “duplicate.” To address
these issues, this paper introduces a framework for clarifying and formalizing the dupli-
cate detection problem. Four distinct models are presented, each with a corresponding
algorithm for its solution adapted from the realm of approximate string matching. The
robustness of these techniques is demonstrated through a set of experiments using data
derived from real-world noise sources. Also described are several heuristics that have
the potential to speed up the computation by several orders of magnitude.

Keywords: document analysis, optical character recognition, duplicate detection, ap-
proximate string matching, information retrieval.

1 Introduction

As information management and networking technologies continue to proliferate, databases
of document images and their associated meta-data are growing rapidly in size and impor-
tance. A key problem facing such systems is determining whether duplicates already exist in
the database when a new document arrives. This is challenging both because of the various
ways a document can become degraded and because of the many possible interpretations
of what it means to be a “duplicate.”
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The U.S. Government’s Gulf War Declassification Project, for example, has as its char-
ter the release of documentation that may shed light on the possible causes of Gulf War
Illness [9]. To date, over six million pages have been processed, with the ultimate goal of
making all of this data available on-line. As can be imagined, the range of documents is
enormous, and understanding the ways they relate to one another is a serious problem.
In one particular collection activity 564,000 pages were gathered, the majority of which
(292,000 pages) were later found to be duplicates of documents already on hand [7]. Hence,
the potential for savings in cost and labor is great.

In the case of systems that process incoming documents (e.g., faxes) for later retrieval or
for conversion between media types, certain of the steps may be computationally expensive.
If it were possible to recognize regions of duplication, some of this extra processing might be
avoided by making use of prior results. Moreover, by detecting common content, it may be
possible to recognize that one message contains portions quoted (or, perhaps, plagiarized)
from another, thereby better understanding their relationship.

Intuitively, the term “duplicate” can be given a number of informal definitions. For
example, one document might be a photocopy of another, or a fax. The copies could be
visually identical, or one might have additional handwritten notes appended to it. If the
original document was generated on-line, a duplicate could contain exactly the same text,
only formatted in a different way (changes in font, line spacings and lengths, etc.). A
duplicate might possess substantially the same content, but with minor alterations due to
editing (i.e., earlier or later versions of the same document). Of course, in any of these
cases the scanned image of either or both of the documents may contain significant “noise”
due to the way the hardcopy was handled or anomalies in the scanning process. All of these
interpretations are reasonable; later a framework is presented for clarifying and formalizing
them.

Whatever the definition, the process of determining whether one document is a duplicate
of another involves two steps:

1. Extracting appropriate information (features) from the incoming document image.

2. Comparing the features against those previously extracted from documents in the
database.

What features to use, and how they are compared, are the two primary issues to be resolved.
Different choices lead to models which will be appropriate for different applications.

As to evaluation criteria, speed and robustness are undoubtedly the most important.
Speaking in general terms, the more reliable the feature extraction, the better. It should
never be assumed, however, that feature extraction is perfect; robustness in the comparison
step is crucial. In terms of speed, the second step must be very fast if the database is large
and real-time performance is desired. Conversely, requirements for the first step are less
stringent if other time-consuming operations need to be performed on the input document
anyway. These may include scanning the page in the first place, noise filtering, compression,
and in many cases optical character recognition to facilitate later retrieval. In this context,
the incremental cost of feature extraction for duplicate detection is likely to be insignificant.



Previous work on detecting duplicates (e.g., [3, 11, 12, 13, 22, 24, 30]) has concentrated
mostly on exploring the first step above, turning to more traditional measures when it
comes to the second. In several recent papers [16, 17, 18], however, as well as here, the
focus is placed on models and algorithms for comparing document representations (i.e.,
the second step), with features taken to be the uncorrected text output from a commercial
OCR package. Presented are a framework for categorizing and studying different kinds of
duplicates, as well as algorithms that extend the range of techniques available for searching
document image databases. These methods prove to be extremely robust, even in the
presence of low OCR accuracies.

The remainder of this paper is organized as follows. Section 2 presents four distinct
but related models for the duplicate detection problem motivated in part by the litera-
ture for approximate string matching. Each of these is solved optimally using a dynamic
programming algorithm, as described in Section 3. Implementation issues are considered
in Section 4. In Section 5, several heuristics for speeding up the computation are given.
Section 6 presents experimental results that demonstrate the robustness of these techniques
across models and in the presence of real-world degradations. Related work is reviewed
in Section 7. Finally, conclusions and possible future research directions are discussed in
Section 8.

2 Models

For the purposes of this paper, the assumption is that the documents of interest, while in
image form, are primarily textual in content. Viewed abstractly, such a page is a series of
lines, each consisting of a sequence of symbols. In this string-of-strings viewpoint, the term
“symbol” can be defined quite liberally. It could be interpreted as meaning characters, of
course, but representations at higher levels (e.g., words) or lower levels (e.g., basic features
computed from image components) are also possible.

What, then, is a duplicate? Rather than start enumerating possibilities in an ad hoc
manner, some structure can be obtained by first partitioning the problem along two dimen-
sions: whether the duplication is full or partial, and whether the layout of text across lines
is maintained or not. The reasons for this particular classification scheme are rooted in the
string formalisms to be described in the next section. For now, the four possibilities are
illustrated with real-world examples and to introduce the terminology:

1. If two documents are visually identical, one is a photocopy or a fax of the other,
say, they are full-layout duplicates. This category also covers documents distributed
electronically (e.g., as PDF or PostScript) and printed without further editing.

2. If two documents have identical textual content, but not necessarily the same layout
(i.e., line breaks), they are full-content duplicates. This includes, for example, the
same e-mail message sent to two people and printed using different-sized fonts, or
an HTMI document downloaded from the WWW and printed using different margin
settings.



3. If two documents share significant content with the same layout, they are partial-layout
duplicates. Exactly how long the similar regions must be will depend, in general, on
the application. Two instances of this are the copy-and-pasting of whole paragraphs
from one document into another, and “redacting,” the editing of a hardcopy document
by obscuring portions of the text so that it is no longer legible.

4. If two documents share content but their layout is not necessarily the same, they are
partial-content duplicates. This arises in the copy-and-pasting of individual sentences
or groups of sentences. A later version of a document that has undergone several
editing passes is likely to be a partial-content duplicate.

These various types of duplication are shown in Figure 1. In the next section, algorithms
specialized to each of these cases are given. Note that although the text used to illustrate
the figure is error-free, it will be necessary to handle a full range of document recognition
mistakes, include characters that have been misrecognized, omitted, or added, words that
have been improperly segmented, complete lines that have been missed or inserted, etc.
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Figure 1: The four duplicate classes introduced in this paper.

Before moving on, it may be instructive to consider briefly the relationships between the
various kinds of duplicates. This “universe” is depicted in Figure 2, where several example
data-points have also been plotted. Note that there is overlap between the classes, with
partial-content duplicates encompassing all the other types.

Clearly, every layout duplicate is also a content duplicate; the former is a special case of
the latter. From a formal standpoint, the distinction is whether the page is treated as a 2-D
stream consisting of lines made up of characters, or as a 1-D stream of characters in reading
order. Note that the 2-D representation can be converted into a 1-D representation by
treating the new line character as a space [30]. This implies that any algorithm for detecting
content duplicates can also be used to detect layout duplicates. There will undoubtedly be
cases, however, where a search can be confined to, say, possible photocopies of a document.
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Figure 2: The universe of duplicates.

Here, an algorithm specialized to finding layout duplicates will yield higher precision (i.e.,
fewer false “hits”) than the more general algorithm, which also returns potential content
duplicates.

Note also that any full duplicate is also a partial duplicate. Again, there are benefits
in maintaining the distinction, both in terms of retrieval precision and because the special
case admits heuristics that greatly speed the computation, as will be discussed in Section 5.

3 Basic Algorithms

If it were possible to assume that OCR was perfect or nearly so, the problem of locating
duplicates would be relatively straightforward. At best, this is a highly optimistic assump-
tion. Instead, it is safer to acknowledge that OCR can be arbitrarily bad, with no specific
guarantee that any n consecutive characters will come through unscathed. If, for example,
the accuracy rate were 75% (a reasonable assumption in the case of faxes, small fonts, etc.)
and errors are independent, the probability that a given n-gram will survive is 0.24 for
n = 5, and 0.056 for » = 10. The chance that a complete sentence would make it through
without errors is slight. Hence, schemes that depend on a majority of words or sentences
being recognized correctly, while working reasonably well for clean input, may break down
in the case of degraded documents.

Fortunately, the literature on approximate string matching is rich with techniques for
addressing such concerns [1, 10, 25, 31]. Moreover, the model correlates well with the
physical processes that result in errors, so as a measure of similarity it is supported by
intuition. Drawing from this body of work, algorithms are given for each of the four variants
of duplicate detection. In the context of their respective models, all are guaranteed to return
optimal solutions.

Beginning with some definitions, a string, D = dyds . ..d,, is a finite sequence of symbols
chosen from a finite alphabet, d; € 3. String 5 = s$182...5,, is a substring of string



D = dydy...d, if m < n and there exists an integer k in the range [0, m — n] such that
8; = dipr, for i = 1,2,...,m. The set of all possible substrings of D is denoted D*. In
the 1-D case (i.e., content duplicates), a document is simply a string. In the 2-D case
(i.e., layout duplicates), a document is a sequence of strings, D = D'D?...D™ where
D= didi...d.

A standard measure for approximate string matching is provided by edit distance [14].
In the simplest case, the following three operations are permitted: (1) delete a symbol, (2)
insert a symbol, (3) substitute one symbol for another. Each of these is assigned a cost,
Cdels Cins, and cgyp, and the edit distance is defined as the minimum cost of any sequence of
basic operations that transforms one string into the other.

3.1 The Full-Content Duplicate Problem

As it relates to full-content duplicates, this optimization problem can be solved using a
well-known dynamic programming algorithm [21, 34]. Let Q@ = ¢1¢2...¢, be the query
document, D = dydy...d, be the database document, and define dist1; ; to be the distance
between the first ¢ characters of () and the first j characters of D. The initial conditions
are:

di8t1070 =0
dist]Lo = dZ'St]Z'_LO + Cdel((]i) 1<1<m (1)
dist]od‘ = di8t107]‘_1 + Cms(d]‘) 1<53<n

and the main dynamic programming recurrence is:

distlioy; 4+ cqelqr)
distl; ; = min ¢ distl; ;4 4+ Cins(d;) I<i<m, 1<j<mn (2)
dZ.StJZ'_L]‘_l + Csub(%v d])

The computation builds a matrix of distance values working from the upper left corner
(distlyp) to the lower right (distl,, , ), as illustrated in Figure 3. Once it has completed, a
sequence of editing decisions that achieves the optimum can be determined via backtracking.

Database Document

Path of optimal digj1 dig
J— editing decisions

Csub(did) | Cael()
Final edit

\J/distance

Figure 3: The basic algorithm for string edit distance (dist1).

Query Document

Another way to view the computation is as a shortest path problem for a graph G =
(V, E,w), where the vertices correspond to cells in the distance matrix:

V={(,7)]0<i<m, 0<j<n}



there is an edge between adjacent vertices related by an editing operation:

E=A{l-17), ) 67— 10,0 [0 = 1,5 = 1), (4, 7)] [ 1 < i <m, 1< 5 <n}

and the weights on the edges correspond to the appropriate editing costs:

w([(i—1,7),(6,5)]) = caela)
w([(lvj - 1)7 (27])]) = Cins(dj)
w([(l -1,7- 1)7(27«7)]) Csub(indj)

All paths from vertex (0,0) to vertex (m,n) correspond to potential sequences of editing
operations. The length of the shortest path is the edit distance. This viewpoint, in terms
of paths through a graph, will prove useful when heuristics are discussed in Section 5.

As indicated above, the costs in general can be a function of the symbol(s) in question.
As a rule, the deletion and insertion costs are assumed to be greater than 0, while the
substitution cost is greater than 0 if the symbols do not match and less than or equal to
0 if they do. In the event constant costs are used, it is convenient to refer to them as
sSimply ety Cins, and csup (When the two symbols are different) or ¢,,,4¢ (when they are the
same). It is possible, and indeed sometimes desirable, to specify cost functions that are
quite sophisticated. Moreover, the set of basic editing operations can be supplemented as
appropriate. Both of these issues will be covered in a later section.

Algorithm dist! provides the basis for a solution to the full-content duplicate problem;
the smaller the distance, the more similar the two documents. While OCR errors will raise
this value somewhat, to the extent they are modeled by symbol deletions, insertions, and
substitutions, they will be accounted for.

3.2 The Partial-Content Duplicate Problem

The previous formulation requires the two strings to be aligned in their entirety. For the
partial duplicate problem, what is needed is the best match between any two substrings of
@) and D. Conceptually, this corresponds to generating all substring pairs in {Q* x D*}
and then comparing them using algorithm dist!. In practice, however, this would be too
inefficient.

Fortunately, the original computation can be modified so that shorter regions of simi-
larity can be detected in two longer documents with no increase in time complexity [29].
The edit distance is made 0 along the first row and column of the matrix, so the initial
conditions become:

8di8t1070 =0
sdistl;np = 0 1<i<m (3)
sdistlp; = 0 1<j<n

In addition, another term is added to the inner-loop recurrence capping the maximum
distance at any cell to be 0. This has the effect of allowing a match to begin at any position



between the two strings. The recurrence is:

0

sdistliv;  + cqalai)
8di8t1i7j_1 + Czns(d])
SdZ.St]Z'_L]‘_l + Csub(%vdj)

sdistl; ; = min 1<i<m,1<j<n (4)

Finally, the resulting distance matrix is searched for its smallest value. This reflects the
end-point of the best substring match. The starting point can be found by tracing back
the sequence of optimal editing decisions. Note there is an added requirement that the cost
when two symbols match be strictly less than zero, otherwise every entry in the matrix will
be 0. This computation is illustrated in Figure 4.

Best
matching

rin :
substrings Database Document

Path of optimal
editing decisions

Final edit distance
[ (min over all values)

Quéry Document

Figure 4: The substring algorithm for edit distance (sdist1).

Algorithm sdist1 solves the partial-content duplicate problem by computing
min{disti(A,B)| A€ Q", B€ D"}

In other words, it locates the best-matching regions of similarity between the two documents
) and D. A and B, the two matching subregions, can be recovered if so desired.

3.3 The Full-Layout Duplicate Problem

For the 2-D models (i.e., layout duplicates), another level is added to the optimization.
The problem is still one of editing, but at the higher level the basic entities are now strings
(lines). At the lower level, as before, they are symbols. Say that @ = Q'Q?...Q* and
D = D'D?...D' where each Q% and D7 is itself a string. For full-layout duplicates, the
inner-loop recurrence takes the same general form as the 1-D case:

dist2;_q ; + Cdel(Qi)

dist&"]‘ = min di8t2i7j_1 4 Cms(D]) 1<e <k 1<j5<I (5)
diStgi—l,j—l + Csub(leD])

where Cyep, Cins, and Cl,p are the costs of deleting, inserting, and substituting whole lines,
respectively. The initial conditions are defined analogously to FEquation 1.



Since the basic editing operations now involve full strings, it is natural to define the new
costs as:

Q%
Caat(Q) = dist!(Q',¢) (= caald)))
k=1

|D|

disti(¢, D7) (=Y eins(d)) (6)
k=1

Coup(Q', D7) = dist1(Q*, D7)

where ¢ is the null string. Hence, the 2-D computation is defined in terms of the 1-D
computation. This is illustrated in Figure 5.

Database Document . . Database Line
Path of optimal line
|5 — editing decisions © Path of optimal symbol
3| N 5 P editing decisions
~ = P
~ 5
gl ) 3 Line edit
&l . \\ \ distance
— 2y Final edit

distance
Figure 5: The 2-D algorithm for edit distance (dist2).

All else being equal, it can be shown that dist2(Q, D) > dist1(Q, D) for any two docu-
ments @ and D. As noted earlier, dist! admits a larger class of duplicates (full-content),
while dist2 may provide higher precision for the class it is intended for (full-layout).

3.4 The Partial-Layout Duplicate Problem

Lastly, the extension for partial-layout duplicates combines the modifications for the partial
(Equation 4) and layout (Equation 5) problems:

0

sdistZi_1;  + Caa(Q)
sdistZjo1 + Cins(D7)
SdZ.StQZ'_L]‘_l + Csub(leD])

Note that Cyer, Cins, and Cyyp are defined as before in terms of dist! (i.e., Equation 6), not
in terms of the 1-D substring computation as might be expected. The granularity of this
matching is whole lines. As before, the resulting matrix must be searched for its smallest
value, and then traced back to find where the match starts.

sdist2; ; = min 1<i<k, 1<j53<1 (7)

At this point four different algorithms have been presented, one for each of the models
described in Section 2.



4 Implementation Issues

In this section, a number of issues associated with implementing the algorithms of the previ-
ous section are addressed. The inner loops are straightforward to code, as demonstrated in
the case of dist! in Figure 6. Fven so, there are numerous degrees of freedom and possible
extensions that, while they do not change the underlying algorithm, do alter the nature of
the computation in interesting and possibly useful ways.

for i =1 tom {
for j =1 ton {
ddel = dist[i-1,j] + cdel(qlil)
dins dist[i,j-1] + cins(d[j]1)
dsub = dist[i-1,j-1] + csub(ql[il, d[jD)
dist[i,j] = MIN(ddel, dins, dsub)

Figure 6: Pseudo-code for the algorithm dist!.

4.1 Input Alphabet

Generally, string algorithms are viewed as operating on character data. While this provides
a natural link to the output from OCR, the algorithms are more general than this and can
be used on any representation that obeys a 1-D or 2-D string model. The former views a
document as a stream of symbols in reading order, where “symbol” could be any of a variety
of features that might be computed from the image including characters, shape codes, word
lengths, etc. The latter just adds to this a notion of lines, each a sequence of symbols, again
in some reading order. The choice of which set of features to use in a given application will
depend on the speed and/or robustness with which it can be computed.

4.2 Cost Assignments

The selection of an algorithm determines the editing model. However, within the context
of a single algorithm, the choice of cost functions can have a significant impact. While it is
fairly common for implementations of Equations 1-4 to employ constant editing costs, the
general way in which the algorithms are formulated is much more powerful than this.

To illustrate, consider the question of white-space errors which are common in OCR.
By setting cqei(sp) = ¢ins(sp) = 0, in effect not charging for such events, unimportant
differences between two OCR’ed versions of the same documents can be ignored. Through
an appropriate choice of cost functions, the distinction between various input representations
is also eliminated. For example, characters and shape codes will yield identical results if the
cost of character substitutions is determined based on shape code classes (e.g., ¢oup(gi, d;) =
0 for ¢;,d; € {g,p,q,y}, the set of descender characters).

10



If the distribution of the OCR errors can be estimated a priori (e.g., via a confusion
matrix), this can be exploited by setting the editing costs to be inversely proportional to
the frequencies of the error patterns in question. So, for example, if the substitution e — ¢
is ten times more likely to occur than M — W, its cost is made one tenth as much. This
will yield a more sensitive comparison; values closer to the minimum when the documents
are indeed duplicates under the model in question (differences due to common OCR errors),
and further away from the minimum when they are not (true differences).

4.3 New Editing Operations

While the three basic editing operations (deletion, insertion, and substitution) are sufficient
to capture all possible differences between two strings, the set can be supplemented with
more sophisticated operations to better model an underlying error process. In the case of
OCR, it may be desirable to add “split” and “merge” operations to account for mistakes in
symbol segmentation [5]. The recurrence for dist1, for example, would then become:

distlioy; 4+ cqelqr)

di8t1i7]‘_1 Cms(d]‘)

distl; ; = min < distl;_q j_4 Csub(gisd;) 1<i<m, 1<j<n (8)
distl;_y j—2 split( i, dj—1d;)
diStJi—Q,j—l Cmerge(%—l%v d])

Other operations such as transpositions can also be supported. In general, as long as the
number of symbols involved (the “look-back™) is bounded, the recurrence can be augmented
without changing the computational complexity of the algorithm.

4.4 Normalization

For exact duplicates, the distance returned by any of the four algorithms of Section 3 will
either be 0 or a negative number that grows smaller as the lengths of the documents increase.
For dissimilar documents, the maximum distance grows larger as the lengths increase. It is
always the case that, for a given query, a smaller distance corresponds to a better match.
In order for the results for different queries to be comparable, however, it is necessary to
normalize the distances.

If the target interval is [0, 1], where 0 represents a perfect match and 1 a complete
mismatch, then the following formula provides an appropriate mapping:

dist — mindist

normdist = - — 9
maxdist — mindist (9)

where mindist and maxdist are, respectively, the minimum and maximum possible distances
for the comparison in question.

Assuming a full-duplicate computation, and making certain reasonable assumptions
about the cost functions, the minimum is obtained when all of the characters in the query
match the database document and there are no extra, unmatched characters. If the query

11



is Q = q192 . .. ¢, then: -
mindist = Z csub(4is i) (10)
=1
Or, more simply, mindist = m - €4 When the costs are constant.

The maximum distance, on the other hand, is determined by the query and the set
of all strings with the same length as the database document. If the cost functions are
unconstrained, this in itself becomes an optimization problem. Fortunately, for constant
costs there is a simple closed-form solution. Without loss of generality, let the query be
the shorter of the two strings (i.e., m < n). There are two possible “worst-case” scenarios:
either all of the symbols of the query are substituted and the remaining symbols of the
database string are inserted, or all of the query symbols are deleted and the entire database
string is inserted. Thus:

m'csub+(n_m)'cins (11)

mazdist = min
m - Cdel +n- Cins

The partial-duplicate computations are normalized similarly.

4.5 Searching Databases

The algorithms given earlier are phrased in terms of quantifying the similarity between
strings (documents). The problem of searching a database for duplicates can be cast in two
ways:

1. Return the top n matches (in ranked order).
2. Return all documents with distances below a threshold 7.

Note that the first of these requires the computation to complete before any results can
be returned to the user. The second can report potential matches as they are encountered
(and therefore hide some of the computational latency), but requires setting a threshold in
advance. Both policies employ edit distance as a subroutine, and hence can make use of
the techniques described to this point.

5 Speeding Things Up

Algorithms distl, sdistl, dist2, and sdist2 are optimal in the sense they return min-cost
solutions to their respective problems. All require time proportional to the product of the
lengths of the two documents being compared. In situations where the resulting database
search is too slow, there are a variety of ways to speed things up. These include:

e Computing edit distance faster.
e Avoiding having to compute edit distance for every document in the database.

e Computing an approximation to edit distance.

12



These approaches can, of course, be used in combination.

Asymptotically faster algorithms (e.g., [2, 33]) and parallel VLSI architectures (e.g., [8,
15]) fall in the first category, while database indexing and hashing techniques (e.g., [4])
occupy the second. Ukkonen, for example, describes an algorithm that could be used
to solve the full-content problem that runs in time O(distl,, , - min(m,n)) provided the
cost functions obey certain restrictive assumptions [33]. Bunke presents a preprocessing
technique that allows an input document to be compared against a predetermined database
in time dependent only on the length of the document [2]. Unfortunately, this requires
exponential preprocessing time and, more importantly, exponential space, and hence does
not seem practical for large databases. Lipton and Lopresti introduced the notion using a
special-purpose, highly parallel VLSI architecture to speed the edit distance computation
in cases where the expense of a dedicated hardware solution can be justified [15]. For a
more detailed treatment of these and related issues, the reader is directed to the surveys
cited in the bibliography [1, 10, 25, 31].

The third category is represented by a well-known heuristic based on the observation
that, if two strings are similar, the path of optimal editing decisions must remain near
the main diagonal (recall Figure 3). Hence, the computation can be restricted to a band
close to the diagonal. Should the edit distance fall below some threshold as determined by
the width of the band, the heuristic will return its true value, otherwise it returns a value
possibly greater than the true distance (as a path other than the optimal has been chosen).
This basic concept, illustrated in Figure 7, has been exploited to speed up the computation
in the fields of speech recognition [23] and molecular biology [6].

Database Document
§ Not computed
S e P @ Heuristic returns
§ @ true distance
g | Computed (2) Heuristic returns
o S @ upper bound

Figure 7: A heuristic for string edit distance.

Note that this heuristic applies only in the case of the full-duplicate versions of the
problem, as it assumes the optimal editing path starts at (0,0) and ends at (m,n). In this
section, several other techniques are described for speeding up the computation.

5.1 Aborting the Computation

All of the optimal algorithms compute the entire distance matrix even when the strings are
not very similar. Likewise, the heuristic just described, although faster, computes the entire
length of its band. For certain costs assignments, however, and assuming a threshold 7 has
been set in advance, it is possible to determine part-way through the computation that no
below-threshold solution exists. As a result, the computation can be aborted at this point,
with a corresponding savings in time.

13



Definition 1 A full-duplicate edit distance computation, dist € {distl,dist2}, has the
monotonic increasing property if the following conditions are satisfied:

cdel(4)s Cins(d;), Coun(qi,d;) >0  Vg;,d; € 5 (12)

Looking at the distance matrix, if the smallest value in a given row is greater than a certain
threshold, the final computation can never return a distance less than this. This is because
any path from (0,0) to (m,n), including the optimal one, must pass through this row at
some cell, and from that point on the distance will not decrease.

Theorem 1 Let Q and D be two strings of interest, and T be a predetermined threshold. If a
full-duplicate edit distance computation, dist € {dist1,dist2}, has the monotonic increasing
property, and if for some i:
in (dist; ;) > 13
\in (disti;) 2 7 (13)

then dist(Q, D) > T.

Hence, if after finishing an iteration of the inner loop (Figure 6) the minimum row distance
is found to be greater than the threshold, the remainder of the computation can be skipped;
the document in question cannot possibly be a good match. This phenomenon was used by
Spitz as a way of deciding when it was safe to abort a comparison [30]. Ukkonen makes an
analogous observation [33].

5.2 Pruning the Search

Both of the previous heuristics still fill out portions of the distance matrix in a regular fash-
ion, including cells that have no chance of ever participating in a below-threshold solution.
Until all possibility is completely ruled out, the computation must proceed. By taking an
even finer-grained approach, however, it is possible to accelerate the process further. In-
stead of the standard distance matrix, a more flexible data structure is employed: a livelist
holding cells waiting to be computed that have the potential to be on a path leading to a
below-threshold solution.

Let dist; ; be the distance value computed at cell (4, 7). By monotonicity, any path to
cell (m,n) passing through cell (4,j) must have cost at least dist; ;. This is because the
continuation of the path can have cost 0, at best.

Lemma 1 Let QQ and D be two strings of interest, and 7 be a predetermined threshold. If a
full-duplicate edit distance computation, dist € {dist1,dist2}, has the monotonic increasing
property, and if dist; ; > T, then every path passing through cell (i,j) on the way to (m,n)
has distance at least T.

In other words, there is no need to continue the computation from cell (7, j) since it cannot
possibly result in a solution below the threshold of interest. Note that while Theorem 1
and Lemma 1 both depend on the monotonicity property, the former is a statement about
the computation as a whole, whereas the latter is a looser condition that applies to an
individual cell.
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Lemma 1 gives a criterion for managing the livelist. A given cell is placed on the list
if and only if at least one of the cells it depends on is computed and found to be below
threshold. Expressed in pseudo-code, the main loop for the 1-D version is given in Figure 8.
The computation begins with an initialization phase that places the appropriate cells from
the first row and column of the distance matrix on the livelist. The 2-D computation is
similar, with the heuristic applied only at the higher level.

while livelist not empty {
remove next (i,j) from livelist

ddel = dins = dsub = +infinity

if hdist[i-1.j] was computed then {ddel = hdist[i-1,j] + cdel(q[il)}

if hdist[i.j-1] was computed then {dins = hdist[i,j-1] + cins(d[j1)}

if hdist[i-1.j-1] was computed then {dsub = hdist[i-1,j-1] + csub(q[i], 4[j1)}
hdist[i,j] = MIN(ddel, dins, dsub)

if hdist[i,j] < threshold then {
append (i,j+1), (i+1,3j), and (i+1,j+1) to end of livelist
}
}

if hdist[m,n] was computed then {
return hdist[m,n]

} else {
return +infinity

}

Figure 8: Pseudo-code for the heuristic hdist! (compare to Figure 6).

Theorem 2 Let ) and D be two strings of interest, and 7 be a predetermined threshold. If a
full-duplicate edit distance computation, dist € {dist1,dist2}, has the monotonic increasing
property, then the corresponding hdist computation satisfies hdist(Q, D, 1) > dist(Q, D).
Furthermore, if dist(Q, D) < 7, then hdist(Q, D, 1) = dist(Q, D).

Note that hdist is parameterized in terms of the threshold. As will be shown in the next
section, it returns all matches below the threshold substantially faster than the correspond-
ing optimal algorithms. Care must be taken when implementing hdist, however, as the
overhead of replacing a simple data structure (the distance matrix) with the more complex
livelist strategy could overwhelm any time savings.

5.3 Pre-Filtering

All of the previous approaches compute edit distance or something that attempts to ap-
proximate it in the cases of interest. A different strategy for speeding things up is to look
for lower bounds that can be exploited. These are typically fast to compute, and can be
used as a pre-filter to decide whether even to begin comparing two strings. For example,
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as noted by Spitz [30], if the document lengths are too different there cannot be a match
(assuming the cost functions obey certain properties).

A slightly more sensitive version of this is to look for variations in line lengths in the
case of full- duplicates. Clearly, a document that has 10 lines of length 100 cannot be a
good full-layout match for a document that has 20 lines of length 50, even though their
total lengths are identical. At a minimum, the lengths of the lines must be equalized during
the editing process, ignoring any possible substitutions that must be accounted for. Note
that this measure does not require accessing the document contents, as the line lengths can
be stored separately as a compact “handle.”

As in solving the full-layout problem, a 2-D string comparison is performed, however
the cost functions are defined differently. Let ¢,,;n40; be the minimum cost for deleting any
symbol, Cindel = Mingex cder(@), and €pinins be the minimum cost for inserting any symbol,
Cminins = Mingeyx; Cins(B). Define lbnddist? to be the recurrence specified by Equation 5
when the cost functions are:

Caa(Q") Q'] - emindel

Cins(DT) = DI+ rainins (14)
0 if |Q = | D7

(1Q°] = 1D]) - eminger  if |Q"] > | D7

(1D = |Q"]) - €minins if Q'] < |D|

Csub(in D])

Note that none of the symbols in the strings need to be examined.
It is easy to show that the individual costs for the dist2 computation are always at least
as large as those for the lbnddist2 computation:

dist1(Q', )
dist1(¢, D7)

|Q2| * Cmindel
|Dj| * Cminins
o 0 if |Q] = |D7|
dist1 (Q', D7) > 3 (|Q = [DI]) - eminder il Q] > | D]
(1D = 1Q"]) - eminins  if |Q"] < [ D]

>
>

Theorem 3 Let () and D be two strings of interest. If a full-layout edit distance compu-
tation dist2 has the monotonic increasing property, then the corresponding bnddist2 com-
putation satisfies dist2(Q, D) > lbnddist2(Q, D).

As with hdist, lbnddist2 computes a bound. In this case, however, it is a lower bound, and it
is not guaranteed to be tight. By itself, it is not a very good measure of string similarity. It
is fast to compute, though, and provides a useful pre-filter for deciding whether to proceed
with a given comparison.

It is interesting to note that it may be possible to run Ilbnddist2 without performing
OCR under certain circumstances. Text lines can be identified and their lengths measured
(in terms of pixels) directly from an image. A number of assumptions would need to be
made, however, concerning such issues as scaling of the images, the use of different fonts,
etc. These topics are beyond the scope of the current paper.
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6 Experimental Results

To investigate the performance of the algorithms described in this paper, three sets of
experiments were designed. The first examined duplicate detection in the presence of various
real-world degradation effects. The second studied the four duplicate models and algorithms
and how they relate. Finally, the third experiment sought to quantify the speed-up provided
by the heuristics just presented.

The test database consisted of 1,000 professionally written news articles collected from
Usenet. The shortest document was 364 characters long, the longest 8,626, and the average
2,974. Hence, the total size of the database was approximately 3 megabytes. This corpus
was used as-is (i.e., no attempt was made to inject OCR errors, either real or synthetic).
The query documents, however, and the intended duplicates were all “authentic” (pages
that had been printed, scanned, and OCR’ed). These documents were formatted in 11-
point Times font with a 13-point line spacing using Microsoft Word. Each page was printed
on one of two laserprinters, impaired in some way in most cases, scanned at 300 dpi using
a UMAX Astra 1200S scanner, and then OCR’ed with Caere OmniPage Limited Edition.

For the full-duplicate computations, the edit costs were set to be ¢ge = Cins = Csup = 1
and ¢4 = 0. For the partial-duplicate computations, the match cost was ¢,,,¢ = —1. The
study of more complex costs assignments (e.g., those based on confusion matrices) is left to
a future paper.

6.1 Experiment 1

The goal of this experiment was to study duplicate detection under various noise conditions:
copier degradations (multiple generations, excessively light or dark), faxing, and handwrit-
ten mark-up (redaction). The source document was 1,395 characters long (26 lines, 203
words). Two sets of six pages were created, one set to be inserted into the database as the
intended duplicates, and the other to serve as the queries. The first set was printed on an
HP LaserJet 4MPlus laserprinter, the second on an HP LaserJet 4MV. Within each set,
one page was used as-is and the others were subjected to one of five different degradations:

Faxed The page was faxed in standard mode from a Xerox Telecopier 7020 fax machine
to a Xerox 7042.

3rd Generation The page was copied to the third generation on a Xerox 5034 copier.

Light The page was copied on the same copier with the contrast set to the lightest possible
setting.

Dark The page was copied with the contrast set to the darkest possible setting.

Annotated Five separate text lines on the page were completely obscured using a thick
blue marker pen. Different lines were excised in the query and database documents.
Also, “This is important!” was handwritten in the margin.

The pages were then scanned and OCR’ed. In addition, the original ASCII text for the query
document was left in the database. Hence, each of six queries was run against a database
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of 1,000 documents containing seven intended duplicates (six that had been OCR’ed, plus
the original).

Table 1 below shows the OCR, accuracies. Note that the rates range widely, dropping
as low as 73.5%. While the two different versions from the same noise source are usually
fairly close, they are by no means identical. As expected, a large variety of OCR errors
were encountered. Beyond this, other kinds of degradations arose as well. For example,
the standard headers prepended to faxes were transcribed (albeit with numerous mistakes),
and the lines that had been crossed-out were completely missing from the annotated pages.

OCR Accuracy
Document Type | Database | Query
Printed 96.2% 96.0%
Faxed T7.7% | 83.9%
3rd Generation 95.9% 96.1%
Light 86.1% 77.8%
Dark 94.0% 95.3%
Annotated 75.6% 73.5%

Table 1: OCR accuracies for test documents from Experiment 1.

Since the query documents and their intended matches have the same layout, this is a
full-layout duplicate detection problem and the dist2 algorithm is most appropriate. The
charts in Figures 9-11 plot, for each query, the normalized edit distance for every document
in the database. Note that there is always a clear distinction between true duplicates and
everything else. This demonstrates that the technique is robust when faced with the sorts
of OCR errors seen in practice.

0.3 Annotated,.

Normalized Edit Distance
o
(4]

Normalized Edit Distance
o
(4]

Annotated )
nnotated 0.2 5Light

Faxed -
x Original i . Dark
0.1 oLight 01 oPrinted Faxed ,3rd Generation ]

0 oOriginal _printed 3rd Generation » Dark 0.0

Document Index Document Index

Figure 9: Full-layout duplicate detection for printed (left) and faxed (right) queries.

Studying the data further, it should come as no surprise that the annotated documents
yielded the worst-case scenario. Recall that about 20% of the text was completely obscured,
a figure that places severe constraints on the performance of any comparison measure. Still,
the normalized edit distance in most of the charts is not much greater than this value.
When the annotated documents were compared to each other (the right side of Figure 11),
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Figure 10: Full-layout duplicate detection for 3rd generation (left) and light (right) queries.
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Figure 11: Full-layout duplicate detection for dark (left) and annotated (right) queries.

the amount of text missing between the two amounted to 40%. Even so, and despite all the
other OCR errors that must have occurred, it is possible to distinguish the duplicates from
non-duplicates.

It is also interesting to note that query and database documents produced using the
same noise source are usually a slightly better match (the notable exception being the case
of the annotated pages). Whether it is possible to exploit this is a topic for future research.

6.2 Experiment 2

The purpose of this experiment was to determine how the different duplicate models relate
empirically. The four algorithms described in Section 3 were run using the same source
document as in the previous experiment. Duplicates were constructed from the query by:

1. Changing the line breaks to create a document that was a full-content duplicate but
not a full-layout duplicate.

2. Appending roughly equal amounts of unrelated text to the beginning and end of
the document to create a partial-layout duplicate approximately twice as long as the
original.
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3. Combining these first two steps to create a partial-content duplicate.

The pages were then printed, scanned, and OCR’ed. The OCR accuracies appear in
Table 2. As before, the original source text was left in the database to serve as a second

full-layout duplicate of the query. Hence, there were between two and five duplicates in the

database, depending on the model.

OCR Accuracy
Document Type | Database | Query
Full-layout 96.0% | 95.9%
Full-content 96.1% n/a
Partial-layout 94.9% n/a
Partial-content 96.0% n/a

Table 2: OCR accuracies for test documents from Experiment 2.

The results for this experiment are shown in Figures 12-13. Since there is a fair amount

of residual similarity even in the non-matching cases, the normalized edit distances are

lower than for purely random documents. Note that, as expected, algorithm dist2 works
best for full-layout duplicates, and dist! adds to this full-content duplicates (Figure 12).
The partial-layout algorithm sdist2 can detect full- and partial-layout duplicates, while
sdist1 covers all four duplicate classes (Figure 13).
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Figure 12: Duplicate detection using algorithms dist2 (left) and dist! (right).

6.3 Experiment 3

The final experiment was designed to study the speed-up potential of some of the techniques

described in Section 5. The same database was used as in Experiment 1, with the straight

OCR’ed version of the document serving as the query. Hence, there were seven potential
duplicates (the six OCR’ed pages and the error-free original).

The algorithms described in this paper were coded in C on an SGI 02 workstation
running the IRIX operating system. The O2 was configured with a 200 MHz MIPS R5000
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Figure 13: Duplicate detection using algorithms sdist2 (left) and sdist! (right).

CPU and 64 MB of main memory. As a baseline, to compare the query against 1,000
documents, the optimal algorithms required 463.7 seconds for the 2-D case (dist2) and
964.0 seconds for the 1-D case (dist!). This extrapolates to 129 or 268 hours to search a
hypothetical database of 1,000,000 documents.

Table 3 below shows the speed-ups for the hdist2 and hdist! heuristics. The threshold
is a fraction of the maximum possible edit distance for the comparison in question. “Cells
Computed” measures the percentage of the original computation that is performed by the
heuristic. Note that the speed-up is not quite perfect. For example, for 7 = 0.10, 4.3% of
the cells are computed by hdist2, but the runtime is 4.5% of the original. The situation is
somewhat worse for the 1-D heuristic, as 4.5% of the cells are computed, but the runtime
is 7.0% of dist1. This is due to the overhead of maintaining the livelist, as opposed to the
simple loops of the original algorithms. Even so, a significant improvement in performance
is evident. The runtimes to search a database of 1,000,000 documents range from 2.2 to
103 hours.

2-D Heuristic (hdist2) 1-D Heuristic (hdist1)

Cells Dupes Cells Dupes

Threshold | Computed | Time | Speedup | Found | Computed | Time | Speedup | Found
0.05 1.5% 7.8 s x59.4 4/7 1.2% 18.9 s x51.0 4/7
0.10 4.3% 21.0s x22.1 5/7 4.5% 67.3 s x14.3 4/7
0.15 8.7% 42.2 s x11.0 5/7 10.1% 147.7 s X 6.5 5/7
0.20 14.4% 70.0 s X 6.6 6/7 17.5% 254.8 s X 3.8 6/7
0.25 21.0% 101.8 s x4.6 77 25.2% 370.2 s X 2.6 77

Table 3: Speed-ups for the heuristics for searching 1,000 documents.

The speed-ups for the lbnddist2 pre-filter followed by the hdist2 heuristic are given in
Table 4. When the threshold is relatively tight only true duplicates pass the pre-filter,
greatly accelerating the computation. Fven when it is fairly loose, however, there is still a
very large speed-up. The time to search a database of 1,000,000 documents ranges between
53 and 105 minutes.
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Pre-Filter (lbnddist2) + 2-D Heuristic (hdist?2)

Passed Cells Speedup Dupes

Threshold | Pre-Filter | Computed | Time | Incremental | Aggregate | Found
0.05 4/1,000 0.03% 3.2s X 2.4 x144.9 4/7
0.10 5/1,000 0.05% 34 X 6.2 x136.4 5/7
0.15 13/1,000 0.09% 3.6s x11.7 x128.8 5/7
0.20 73/1,000 0.33% 4.5 x15.6 x103.0 6/7
0.25 130/1,000 0.75% 6.3 s x16.2 X 73.6 s

Table 4: Speed-ups for the two stage heuristic for searching 1,000 documents.

While impressive in this example, the performance of the pre-filter depends heavily on
the distribution of line lengths in the database. Whereas hdist? and hdist2 are more general
techniques, lbnddist2 is quite specific. It will not work as well in the case of documents with
uniform line lengths, or when the cost functions are not as accommodating. If, for example,
a low penalty is charged for certain common OCR errors, say space deletions and insertions,
the bound, which is computed based on ¢pinder and ¢pminins (Equation 14), becomes loose
and the filter is much more porous.

7 Related Work

A number of researchers have begun to examine the problem of detecting duplicates in the
context of document image databases [3, 11, 12, 13, 22, 24, 30]. For the most part, past
work on the subject has concentrated on identifying which features to extract (the first
step mentioned in Section 1) and not on the different ways they might be compared (the
second step). The latter is typically handled using one or another of the techniques from
the literature.

Broadly speaking, these approaches can be classified depending on whether they operate
on low-level image features [11, 12, 22, 24] or on the output of a symbolic recognition process
such as OCR [3, 13, 30]. The former are more general in the sense they can be applied to
non-textual input (e.g., drawings, photographs), but more limiting in that they can only be
used to find full-layout duplicates.

Spitz, for example, employs character shape codes as features and compares them using
the standard string matching algorithm (i.e., Equation 1) [30]. In the taxonomy presented
in Section 2, this corresponds to the full-content problem. Doermann, et al., also use
shape codes, but extract n-grams for a specific text line to index into a table of document
pointers [3]. Since this signature is computed from a single line, it does not explicitly
measure the similarity of complete pages. The intention, though, is that this is a method
for addressing the full-layout problem. Hull, et al., describe three techniques: one based
on decomposing the page into a grid and counting connected components within each cell,
another using word lengths as a hash key, and one comparing image features (pass codes
arising from fax compression) under a Hausdorff distance measure [12]. More details on
the last method appear in [11]. The first and third of these fall in the full-layout category,
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while the second can be classified as searching for full-content duplicates. In a recent
paper, Lee and Hull describe a method for performing duplicate detection on symbolically
compressed images by solving the text deciphering problem through the use of Hidden
Markov Models [13]. They then apply n-gram indexing with term weighting to detect
duplicates, addressing the full-content problem.

Elsewhere, Taghva, et al., observed that traditional vector-space techniques from the
field of information retrieval (IR) are for the most part unaffected by OCR errors when the
input is relatively clean [32]. Also seemingly related is the general copy detection problem.
Shivakumar and Garcia-Molina have developed efficient methods for searching large on-line
databases for signs of copyright infringement [27]. A later paper of theirs considers the task
of identifying near-replicas on the World Wide Web (WWW) to improve the performance
of Web crawlers, archivers, and search engines [28]. All of these approaches are text-based,
employing character or word n-grams or longer syntactic entities (sentences, paragraphs,
etc.), and must allow for the fact that two documents need not be identical for the results
of their comparison to qualify as “interesting.” There are, however, significant differences
between a typical IR query and a complete document, and between the kinds of errors that
arise during OCR and the steps taken to conceal an attempt at plagiarism. A recent paper
studied these issues from the standpoint of duplicate detection [18].

Lastly, techniques developed for searching large filesystems for similar files might be
considered relevant. Manber presents such an algorithm based on computing checksums in
predetermined “windows” [20]. Again, since file editing operations and OCR errors appear
to be fundamentally different processes, it is not clear how well this kind of approach would
work for the problem at hand.

8 Conclusions and Future Research

This paper has examined a number of issues related to the detection of duplicates in doc-
ument image databases. Four distinct models for formalizing the problem were presented,
along with algorithms for determining the optimal solution in each case. Fxperimental re-
sults demonstrate that the models match the real world, and the algorithms are robust with
respect to the kinds of OCR errors that are likely to be encountered. Table 5 enumerates
these classes one last time. A solid dot highlights the algorithm most suited to a particular
problem, while a hollow dot indicates that the algorithm will find not only such duplicates
but other types as well.

Duplicate Algorithm
Type Examples dist2 | dist1 | sdist2 | sdist1
Full-layout photocopies, faxes . o o o
Full-content printed HTML . o
Partial-layout | redaction . o
Partial-content | copy-and-paste °

Table 5: The optimal algorithms and where they apply.

23



Since some of the problems seem to subsume others, an obvious question is “Why bother
with the less general ones?” The answer lies in increased precision for those situations where
admitting a larger class of duplicates is undesirable (e.g., when the targeted duplicates are
known to be photocopies). Special cases also make it possible to develop more efficient
algorithms.

Several heuristics were described for speeding up the full-duplicate computation. These
techniques fall into a variety of categories, but all generally involve deriving an approxima-
tion to the distance measure of interest. It was proven that the heuristics will never miss a
duplicate that would have been returned by the slower, optimal algorithms dist! and dist2.
Experimentally, the speed-ups seen are impressive.

There are numerous ways this work could be extended. For example, there exists yet
another model for approximate string matching known as “word-spotting” that applies when
one of the strings must be matched in its entirety and the other is allowed the flexibility of
choosing its most similar substring [26]. This might arise when a paragraph is copied out
of one document and used to query the database for other pages that contain it. Again,
there is a dynamic programming algorithm along the lines of Equations 2 and 4 that solves
the problem. Although the sdist algorithms can also catch such duplicates, they do so at a
potentially lower precision.

It may be advantageous to consider adding more levels to the symbol/line hierarchy.
This could include text blocks as a collection of lines, columns as a collection of text blocks,
and pages as a collection of columns. These would add new dimensions to the optimization
problem, but the techniques already discussed may be generalizable. The most serious issue
appears to be the requirement the system follow a unidirectional editing process at each
level. Allowing arbitrary block motion overcomes this, however, and is addressed in another
paper [19].

As noted earlier, the string algorithms are not limited to comparing ASCII characters.
Examining alternate symbolic representations that are less expensive to compute than full-
scale OCR, character shape codes for example [30], could prove to be productive.

Finally, there are a variety of questions concerning further speed-up of the computations.
The livelist heuristic is reminiscent of a technique known as “branch-and-bound,” although
the order in which the search is performed is more regular making the data structures
simpler. A true branch-and-bound implementation might potentially be faster than hdist
if the overhead were not too severe. Since the file 1/O alone for 1,000 documents totals
2.6 seconds, however, it is not possible to improve the speed much beyond that shown
in Table 4. Database indexing techniques consistent with the edit distance metric (for
which performance guarantees could be proven) would make an interesting topic for future
research. Likewise, the existence of any kind of heuristic with guaranteed performance for
the partial-duplicate problems is an open question.
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