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Abstract

The explosive growth of the World Wide Web has resulted in a distributed database
consisting of hundreds of millions of documents. While existing search engines index a
page based on the text that is readily extracted from its HTML encoding, an increasing
amount of the information on the Web is embedded in images. This situation presents a
new and exciting challenge for the fields of document analysis and information retrieval,
as WWW image text is typically rendered in color and at very low spatial resolutions.

In this paper, we survey the results of several years of our work in the area. For
the problem of locating text in Web images, we describe a procedure based on cluster-
ing in color space followed by a connected-components analysis that seems promising.
For character recognition, we discuss techniques using polynomial surface fitting and
“fuzzy” n-tuple classifiers. Also presented are the results of several experiments that
demonstrate where our methods perform well and where more work needs to be done.
We conclude with a discussion of topics for further research.

Keywords: document analysis, information retrieval, optical character recognition, WWW
mmage tert.

1 Introduction

Traditionally, the field of document analysis has focused on the translation of information
contained in paper documents to an electronic form. The myriad of problems that arise
in the process have been studied for decades. Some are widely accepted to be difficult,
while others have been addressed satisfactorily, at least in certain special cases. Many of
the problems still considered open have nonetheless received a good deal of attention in the
literature, and are well-understood, if not yet solved.

*Appears in Information Retrieval, 2(2/3): 177-206, May 2000.



A recent development of note, however, is the explosive growth of the World Wide
Web (WWW) and the rapid proliferation of electronic documents it has fostered. Since
1993, the number of WWW servers has been increasing at an exponential rate, currently
doubling every six months; it now totals over 7,000,000 [31]. The popular Alta Vista search
engine indexes 250,000,000 Web pages, and processes tens of millions of HT'TP requests
each day [1, 22]. While it is now generally acknowledged, even by members of the Web
community, that electronic documents will never totally supplant paper ones [28], there
are compelling reasons to consider whether the analysis techniques originally developed for
paper documents might have applications in the online world.

It might seem as though there are few, if any, “hard” problems in the case of electronic
documents. Simple procedures (translators) can be used to convert from one encoded
format to another. For example, OCR’ing the body of an HTML document is entirely
unnecessary, as the text it contains can be easily extracted using available parsers, as
illustrated in Figure 1. All of the popular Web search engines currently use this approach;
while they incorporate sophisticated indexing techniques to guarantee quick response-times,
they employ nothing in the way of complex document analysis. Thus, the problem would
appear to be primarily one of conversion and not analysis.
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Figure 1: Example of a WWW page (left) and its textual content (right).

First impressions can be deceiving, however. To motivate our discussion, we note that
the text string “Creative Writing,” featured prominently in the snapshot on the left side of
Figure 1, is completely absent from the extracted text on the right side of the figure. This
is because it exists only as a bitmap image, and current WWW tools fail to capture such
information. To the document analysis community, though, this problem is a classic one.

Raw ASCII text constitutes only one of the many data types in HTML documents. As
Web page design becomes more sophisticated, more and more of the text present on the
WWW is being embedded in images. The chart on the left in Figure 2 plots the percentage
of text that appears in bitmap format (typically GIF') for an informal sampling of 25 WWW
homepages. Note that there is a wide range, but that almost all pages present at least some



fraction of their text in image format. In some cases, the fraction is quite large (e.g., 72%
in the case of Page 13 in the chart). The average for these 25 pages is approximately 15%.!
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Figure 2: Percentages of total text presented in image format (left) and terms presented
only in image format (right) for an informal sampling of 25 WWW homepages.

Perhaps more revealing is the chart shown on the right in Figure 2. Here we indicate
the percentage of terms that appear in image format, but nowhere else in the HTML text.
These documents are currently not being indexed on this information, and any search for
the associated terms would fail. Note that for many of these pages, a nontrivial fraction
of the image text does not appear elsewhere (to a maximum of 89%). The average here is
34%.

These figures suggest that a significant amount of the information in Web documents
may be invisible to text-only methods. On the other hand, how information is actually
encoded may not be obvious or even important from a user’s perspective. The phrase
“Creative Writing” is simply a string of text on a Web page, and the user may well want
to search for it using a traditional keyword query. Consequently, there is a need to develop
techniques for recovering the text in Web images.

In this paper, we survey the results of several years of our work in this area [15, 17, 33,
34, 35]. In particular, we focus on two key problems that distinguish the analysis of Web
text from traditional black-on-white printed text: locating text strings in color images, and
recognizing isolated, low-resolution, multi-colored characters. While these tasks are central
to the automated processing of Web images, they are not by themselves sufficient to build
a complete, end-to-end system. Hence, the results we report should be interpreted as first
steps towards the ultimate goal of enabling access to all of the textual information contained

!Throughout this paper, we shall present statistics and experimental evaluations based on small, infor-
mally gathered datasets of WWW images containing text. Unless otherwise stated, all data was collected
from real Web pages, without regard to how easy it would be to process using the algorithms under con-
sideration. Although not necessarily identical in every case, there was some amount of overlap between
the various datasets we used. Because of the enormous scope of the WWW and the small size of our test
sets, the results we report cannot be considered definitive — only suggestive of an interesting and potentially
important problem in document analysis and information retrieval.



in Web documents.

The remainder of this paper is organized as follows. In Section 2, we describe the two
most common formats for images on the Web and the various technical issues that arise.
We discuss the problem of locating text in WWW images in Section 3. In Section 4, we
consider the recognition of characters that have been extracted from Web images. Section 5
reviews other work generally related to the problems in question. Finally, in Section 6 we
offer our conclusions and suggest topics for further research.

2 WWW Image Formats and Related Issues

In principle, any format could be used to distribute images over the Web. All that is
required is writing an appropriate browser “plug-in” to support it. However, two formats in
particular have emerged as de facto standards: GIF and JPEG. Each of these is applicable
in its own specific domain. While it is possible to adopt the high-level view that all Web
images are simply 2-D arrays of pixels, there are good reasons to distinguish between the
formats and their various “flavors.” Such an understanding can contribute to the design
of better-quality algorithms for locating and recognizing embedded text, as well as suggest
new topics for inquiry.

An important consideration, independent of format, is that WWW images are designed
to be viewed on computer monitors. This manifests itself in two ways: liberal use of color
(up to 24 bits deep), and low spatial resolution (72 ppi). The former can actually make up
for some of the limitations induced by the latter. Contrast this with the input to traditional
document analysis, which typically consists of black text on a white background, printed
and scanned at resolutions of 300 dpi or higher. A 10-point character nominally measures
83 pixels tall when scanned at 600 dpi. The same character may only be 10 pixels tall when
displayed on-screen and yet still remain readable if the proper colors are used. Figure 3
illustrates the difference in spatial resolutions for a line of text typeset in 10-point Helvetica.?

The quick brown tox jumps over the lazy dog. The quick brown fox jumps over the lazy dog.

quick quick

Figure 3: Text typeset in 10-point Helvetica for the Web (left) and printed/scanned (right).

Figure 4 presents some telling statistics for a small collection of characters gathered
from WWW pages. Note in particular the wide range of sizes and numbers of colors. For
comparison, the chart also shows the average areas for the same characters printed in Times
font at 600 dpi and scanned at 300 dpi. Many of the Web samples are comparable in size
to 4- or b-point printed characters.

2Most of the examples displayed in this paper originated as full-color images and as such are much more
legible. The need for hardcopy that can be reproduced economically means we must make do with grayscale
approximations here.
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Figure 4: Areas and numbers of colors for characters collected from Web images.

2.1 Image Formats

Turning our attention to image formats, GIF (for “Graphics Interchange Format”) was
originally developed by CompuServe for use in exchanging images via e-mail. It is by far
the most common image format encountered on the WWW today. In particular, nearly all
of the small icons one finds sprinkled across Web pages are GIIF’s, as well as many of the
larger images.

To save space and conserve bandwidth, GIF incorporates LZW compression. Since LZW
is a lossless scheme, the decompressed image is the same quality as the original; there is never
any degradation. Because the alphabet of possible symbols (i.e., colors) is relatively small,
LZW works well, especially when there are large regions of uniform color. These factors
make GIF an efficient format for stylized graphics, but less appropriate for photographs.

On the other hand, JPEG, developed by the Joint Photographic Experts Group, com-
bines DCT-based compression in the frequency domain with Huffman coding of the resulting
DCT coefficients.® Tt supports 24-bit color (i.e., any of over 16 million colors can appear in
an image). This makes it the best choice for continuous tone images such as photographs.

Unlike GIF, JPEG is lossy. Compression is achieved by discarding the high order DCT
coefficients. This saves space, but degrades the high frequency information in the image.
As a result, JPEG is somewhat problematic when applied to images that contain text
which is, in effect, a high frequency signal. JPEG’s block-oriented nature can lead to
visible distortion (artifacts) in the vicinity of characters. A textured “halo” is apparent
surrounding the letters in Figure 5 (especially obvious to the immediate left of the ‘Y’).
For this reason, JPEG is usually reserved for images consisting solely of photographic data

®To be precise, JPEG is not a file format, it is a compression algorithm. The proper name for the
associated file format is JFIF (JPEG File Interchange Format).



(e.g., the designer of the Web page shown in Figure 1 chose to make the image on the right
side a GIF, most likely because of the text it contains).

T

Figure 5: JPEG compression artifacts.

2.2 Anti-aliasing

Anti-aliasing is the process of reducing the jagged appearance of a sharp edge by blending
the pixels at its boundary with the background. It is independent of the image file format.
Figure 6 illustrates this effect for a fragment of text originally typeset in 48-point Times.

CK

Figure 6: Aliased (left) and anti-aliased (right) text fragments.

While anti-aliased edges are smoother and more pleasing to the eye, there are in fact
occasions where aliased text is preferable (see [26], page 96). This is particularly true for
small font sizes — here anti-aliasing may result in excessive blurring, making the text more
difficult to read (the text on the left side of Figure 3 was anti-aliased).

Since the matter is one of the designer’s preference, text encountered in a Web image
can be either anti-aliased or not. This issue could complicate the building of OCR classifiers
for such characters, as will be discussed later.

2.3 Spatial Sampling Effects

Lopresti, Nagy, Sarkar, and Zhou recently observed that when scanning a page, the effec-
tively random placement of the sampling grid (i.e., the CCD sensor array) relative to the
page can lead to significant variation in the resulting character bitmaps [14, 21]. An anal-
ogous effect occurs when producing a GIF or JPEG image using software such as Adobe



Photoshop. Abstract characters are placed on a virtual grid with a much finer resolution
than the final output. At some point, however, these must be mapped to the intended
resolution; the abstract characters are sampled at the coarser grid rate, yielding variability
much like the physical scanning process.

Figure 7 shows eight instances of the same 12-point Helvetica ‘e’ taken from an image
rendered at Web resolution. The difference in the bitmaps is dramatic and due entirely to
the placement of each character as the image was created.

gegeegegeepe

Figure 7: The spatial sampling effect for anti-aliased text (12-point Helvetica).

2.4 Other Issues

The process of designing a Web graphic is a highly creative, labor-intensive activity. Since
attracting attention is often the primary goal, a large number of different techniques are
employed. The powers of human perception still greatly exceed what is possible using a ma-
chine. Text can be overlayed on a complex background and made so nearly transparent that
it would be impossible to locate much less recognize using existing approaches. Consider,
for example, the letter ‘a’ in Figure 8 which blends perfectly into the background texture
and yet can easily be segmented out by a human. This makes the image more interesting,
but much harder to analyze for its textual content. Weinman presents a good survey of the
various issues that arise when designing graphics for the Web [26].

Figure 8: An image with hard-to-segment text.

Moreover, unlike printed documents which are static, Web pages can be dynamic. This
nature is manifested in several different ways. Perhaps most germane to the topic at hand
are the animated GIF’s now becoming popular. These are, in fact, part of the definition of
the GIF89a standard. To extract text contained in such images is a challenge beyond the
scope of the current paper.



It should also be noted that the problems of locating and recognizing text in WWW
images would be moot if designers always elected to include the embedded text in the
source document. The HTML image tag has an “alternate text” parameter ideally suited
to this purpose (the HTML comments tag could also be used). This is, however, merely a
convention; there is no way to enforce such a policy and many Web pages simply ignore it.

3 Locating Text in WWW Images

The general problem of locating text in color images has been addressed under different
contexts in the literature. Most of these methods, however, are designed to process scanned
images at a much higher resolution than what is available on the WWW. In a paper by
Zhong, Karu, and Jain, the authors discuss two approaches for automatically locating text
on CD covers [32]. Huang, et al. propose a technique based on grouping colors into clusters
for foreground /background segmentation of color images [6]. Doermann, Rivlin, and Weiss
present methods for identifying text (often stylized) in logos and trademarks [3]. Wu and
Manmatha describe a text extraction and recognition algorithm for the “OCR-able text”
in color images [29].

Some recent work with a connection to the subject focuses on locating text in video
streams. In a paper by Li, Kia, and Doermann, the authors propose resolution enhancement
based on Shannon interpolation to enable a better separation between text and background
in video images [11]. Lienhart and Stuber describe a method for digital video that utilizes
the inter-frame dependencies to enhance character segmentation [12].

Our approach for locating Web image text, to be described in the remainder of this
section, is to divide the problem into three stages: color clustering, character detection, and
layout analysis. Color clustering groups together multiple colors that are part of the same
text and reduces the overall number of colors present in the image. Character detection
identifies connected components in each color group and classifies them as “character”
or “non-character.” In the layout analysis stage, we check to see which of the detected
characters are consistent with possible text layouts and eliminate those that do not meet
the requirements.

An underlying assumption in our text detection algorithm is that each character is
rendered in a homogeneous color. This assumption covers GIF images in which the text is
composed of a single color, or a simple, uniform texture. It excludes instances where, for
example, a character is rendered with its top half one color and its bottom half a different
color.

3.1 Color Clustering

The goal of color clustering is to identify pixels from the same section of text and group
them into a single cluster. In an earlier work, we presented a global clustering procedure
that relies only on the RGB similarity of colors in the image [33]. The approach we describe
here employs a hierarchical method that combines both the RGB similarity and the local
spatial proximity of colors.



The RGB clustering method we use is based on the Fuclidean minimum-spanning-tree
(EMST) technique. The EMST-based clustering approach is a well-known method and has
been researched extensively over the years. It has been shown that the method works well
on a variety of distributions [4, 30].

Given N points in a M-dimensional Euclidean space, the Fuclidean minimum spanning
tree problem is usually formulated as a problem in graph theory: let the N points be nodes
and let there be a weighted edge joining every pair of nodes such that the weight of the
edge equals the distance between the two points. The Euclidean minimum-spanning-tree
is a tree connecting all nodes such that the sum-total of distances (weights) is a minimum.
Several robust and efficient algorithms are available to compute the EMST from a given
point set [20].

It is easy to see how an EMST can be used as a basis for clustering. By definition, each
edge in the EMST of a set of points 5 is the shortest edge connecting two partitions, P and
(5 = P), of S. Intuitively, points in the same cluster should be connected by shorter edges
than points in different clusters. Hence, by removing the longest edges from the EMST we
separate the points of S into disjoint clusters.

To apply the EMST clustering algorithm, we view each color as a point in a three
dimensional RGB space. For a Web image in GIF format, there are at most 256 unique
colors, hence, the number of nodes in an EMST is no more than 256. The distance between
two colors is computed as the Euclidean distance of their RGB elements. Once the EMST
is constructed, we compute the average distance of the edges. Fdges whose distances are
larger than the average by a predetermined amount are then removed from the EMST. The
EMST tree thus trimmed may contain several disjoint sub-trees, each of which corresponds
to a color cluster.

EMST-based clustering works well when the color of each character is clearly distinguish-
able from the background. The method is less successful for text involving large numbers
of colors. As mentioned earlier, text in Web images is often anti-aliased. This can intro-
duce numerous border pixels with similar but not quite identical colors. Figure 9(a) is one
such example. There are approximately 230 colors in the original version of this image,
of which 130 are different hues of blue used for the text. This effect is more apparent in
Figure 9(b), where a different random color has been assigned to each of the original colors
in Figure 9(a).

In the clustering process, this gradual change of color produces a chain-like EMST
linking colors from the foreground (dark blue) to the background (white). The EMST-
based clustering method may not properly break such a chain-like tree structure, resulting
in either a failure to separate the background from the foreground text, or fragmentation
of the characters.

When dealing with textures, the EMST-based approach may fail because it measures
color similarity using only RGB components. Figure 10 illustrates the problem. The letter
‘I.” in the image is rendered with a “checkerboard-like” texture. The actual color pattern is
replicated in Figure 11. The color values in RGB space are: A = (0,0,0), B = (100, 100, 100)
and C' = (175,175,175). To a human observer, it is obvious that colors A and B together
form the letter ‘I.” and that color C'is the background. However, in terms of RGB distance,
color B is closer to the background color C' (RGB distance = 75v/3) than to color A (RGB
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Figure 9: (a) Anti-aliased text in a GIF image. (b) Same image with colors reassigned.
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Figure 10: (a) A letter ‘L’. (b) Clustering based on RGB distance. (c¢) Clustering based on
combined RGB/spatial distance.

distance = 1004/3). Thus, in a color clustering scheme using a pure RGB distance, colors
B and C will be clustered together.

To address the issues just raised, we observe that colors that are spatially close to each
other tend to belong to the same object. In order to improve the clustering performance, we
incorporate a local clustering process prior to the application of the EMST method. This
procedure takes the spatial distribution of colors into consideration when grouping similar
colors.

First, we introduce a measure for the “spatial proximity” of colors: let d,(X) denote
the distance between a given pixel p and the closest pixel with color X. For example, if we
let p be the pixel at the fourth column and first row in Figure 11 and X be color B, then
d,(B) = 1. The closest pixel of color B is at the fifth column and first row, one pixel to
the right of p. If we let X be color C', then d,(C') = 2 since the closest pixels of color C' are
at the second and fifth columns of the first row. Denote by N an m X m neighborhood in

10
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Figure 11: Symbolic color map for the letter ‘L’ of Figure 10(a).

the image, and by ¢(p) the color of pixel p. Let set Pn(X) represent all pixels of color X
in the neighborhood N:
Pn(X)={pe Nlc(p)=X} (1)

Then the spatial distance from color X to color Y in the neighborhood of N is calculated

as follows:
1

#Pn(X)

where #Pn(X) is the number of elements of Py(X ). Equation 2 is the average of the
distances from every pixel of color X to the nearest pixel of color Y.

The distance defined in Equation 2 is not symmetric, i.e., D3(X,Y) and D3(Y, X) are
not necessarily equal. However, if pixels of two colors X and Y are from the same pattern
and thus spatially interwoven, both D% (X,Y) and D3,(Y, X)) will be small. To make the
distance symmetric, we define:

DN(X,Y) =

Y. dp(Y) (2)

pEPN(X)

DR(X,Y) + DY, X)
2

Dy(X,Y) = (3)

Let D(X,Y) be the RGB distance between colors X and Y. The combined RGB /spatial
distance between colors X and Y in neighborhood N is defined as the following function of
their RGB and spatial distances:

Dy(X,Y) = DY(X,Y) x Diy(X,Y) (4)
Continuing the example from Figure 11:

D3(A,B)=1.00  D3%(B,A)=1.00  D3(A,C)=1.46
D(C,A)=1.77T  DY(B,C)=159  D3(C,B)=2.12

Dy(A,B)=1.0 Dn(B,C)=1.86  Dy(A,C)=1.62
Dn(A,B) =100v/3 DN(B,C)=140v/3 Dy(A,C)=122V3

We observe that the new combined distance between 4 and B is smaller than the combined
distances between either A and €' or B and C. If we were to cluster the colors in Figure 11

11



using the distance defined in Equation 4, colors A and B would be correctly grouped together
(see Figure 10(c)).

In applying the local clustering scheme to actual images, we first divide the image into
non-overlapping m X m blocks and process each block independently. The parameter m is
chosen such that each region is roughly bi-tonal (m = 8 in the current implementation).
This allows us to make the assumption that there will likely be only two primary clusters
for pixels in the region: one corresponding to the foreground color and the other to the
background color. The clustering algorithm is a bottom-up approach that outputs one,
two, or three color clusters depending on the input block. The three-cluster situation may
arise in cases where the region contains a foreground object (e.g., a text fragment), its
shadow, and the background.

The clustering process first uses the well-known nearest-neighbor technique to group
pixels in a block into three clusters. It then decides either to combine the clusters further
or to stop clustering. This decision is based on comparing the remaining distances with a
fixed threshold. If all the colors are extremely similar and distributed evenly throughout
the block, the algorithm will output only one cluster.

3.2 Character Detection

Once the color space has been clustered, the next step is to find connected components
belonging to each color cluster and identify those components that correspond to text. Here
we use a classification process based on geometric features extracted from the connected
components. These include size, aspect ratio, the presence of holes and branches, ete. [33].

To reduce the complexity of the analysis, the classification process assumes that a text
component corresponds roughly to a single character. Unfortunately, the connected com-
ponents extracted from color clustering sometimes contain more than one character. Multi-
character components may arise when text is underlined or characters touch (e.g., due to
anti-aliasing), or when the clustering process fails for some other reason. Figure 12 shows
two examples where the single-character-component assumption is violated.

Our remedy is to introduce a segmentation step into the classification process. Notice
that this segmentation problem is different from the one in traditional document analysis:
in the latter case, the text is already identified and the object of the segmentation is to
isolate individual characters, whereas the goal here is to decide whether or not a connected
component is in fact text. Indiscriminately breaking components into smaller pieces will
result in an excessive number of false alarms since non-text objects can be made to look
like text when broken up.

The classification process is divided into three phases. In the first, we select candidate
text-like components based on features that are relatively invariant to touching. These
include size, stroke width, and white-to-black-area ratio. In the second phase, we single out
those components from the first phase that have an “elongated” shape (i.e., components
whose width /height ratio exceeds a given threshold) and apply the segmentation procedure.

The segmentation process first determines the dominant color for each component — this
is the color used by the majority of the pixels in the component. The dominant color of
a character usually appears in the interior of its structure, while other colors are present

12



Come see the cures of

]H{iil Dmgs l“ Dﬂ&hpl‘l’lﬂnt America’s Pharmaceutical Companics
(a)

(b)

Figure 12: Examples of characters touching in GIF images.

around its edges. We use this knowledge to aid the segmentation process.

Two criteria are used for segmentation. The first is an analysis of the color distribution
along scanlines. Currently, we assume that text is roughly horizontal. The segmentation
computes a histogram of foreground pixels at each column and identifies potential break-
points. A column position is designated as a potential break-point if it contains only a small
number of foreground pixels, of which few are the dominant color.

The second criterion is an examination of the color correlation between adjacent scan-
lines. The segmentation procedure checks the consistency between pixels in adjacent columns.
We expect columns that fall between characters to exhibit a low color correlation. Consider,
for example, Figure 12(b); if we take any two adjacent columns within the letter ‘s” or the
letter ‘0’, we see that the number of rows whose pixel-pairs are either both foreground or
both background is greater than the number of rows where only one pixel is foreground. On
the other hand, at the right edge of the ‘s’, the number of rows whose adjacent pixels have
the same type is much smaller than the number of rows whose adjacent pixels have different
types. This is where we place break-points. To avoid over-segmentation, we further re-
strict that the minimum distance between break-points be half the height of the connected
component.

Finally, all the components from the above two phases are subjected to an additional
filtering process. This makes use of more sophisticated features such as the number of holes
and the number of upward/downward ends to further weed out non-text components.

Figure 13 shows the character detection result for the GIF image from Figure 9(a). Note
that almost all of the pixels corresponding to characters have been identified, along with a
small number of false alarms.
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Figure 13: Results of the character detection stage.

3.3 Layout Analysis

The layout analysis we use can be viewed as a form of post-processing. Character detection
based solely on geometric features cannot be made 100% reliable. A wide range of non-text
objects may resemble characters and thus be erroneously classified. The post-processing
step attempts to eliminate these false alarms by using additional heuristics based on layout
criteria typical of text.

In post-processing, we consider each color cluster independently. We first group char-
acters to find words or text lines. Characters that are close in the horizontal direction and
whose top and bottom extents are aligned (or nearly so) are said to belong to the same
word. A measure of “goodness,” which we call the saliency of the text, is then calculated
for each word. The saliency of a word is computed as follows:

C
S = - - b}
1—|—Uh/h—|—Ub/h ( )

where o}, andiab are the standard deviations of the heights and the baselines of the characters
in the word, h is the average height, and ¢ is the character factor which is 0, 0.5, or 1 for a

word containing one, two, or more than two characters, respectively.

Saliency is a simple heuristic measure that reflects the degree of height and positional
alignments of the characters in a word. Clearly, the saliency measure gives higher scores
for words containing larger numbers of characters and having more regular typography.

Post-processing eliminates those words whose saliency measures are lower than a given
threshold. In addition, we apply a set of procedures to handle certain special cases:

Nested components Occasionally, the pixels inside the holes of characters such as letters
‘o’ and ‘b’ satisfy the criteria for being characters themselves. This results in false
words detected inside of actual words. An example of this can be seen in Figure 13,
where parts of the white background are classified as characters. These false alarms
tend to align fairly well and can often be grouped into words. However, they usually
have lower saliency measures than the words they lie within because their alignment
is not quite as good. Therefore, we eliminate all words that lie within another word
whose saliency score is higher.

Shadow text Text in GIF images sometimes includes a shadow effect. This may result in
the detection of partially overlapping words, one corresponding to the actual word, the
other to its shadow (see Figure 14). We note that a word’s shadow usually contains
fewer pixels than the word itself and can be eliminated on this basis.
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Figure 14: An example of text with a shadow effect.
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Figure 15: Final output of the algorithm for the example from Figure 9(a).

Figure 15 shows the final output of the algorithm for the input image from Figure 9(a).
Observe that the false alarms seen in Figure 13 have been eliminated.

3.4 Experimental Evaluation

We tested our text extraction algorithm on 482 GIF images collected from real WWW
pages. All of these images contained some amount of text. Table 1 summarizes several
statistics for the test database.

Our current method for evaluating performance is to manually transcribe the text from
each image before and after running our algorithm. In either case, the decision as to whether
a given character is “readable” is subjective. Generally, if enough pixels are missed (or
added) that a character’s shape is visibly affected, the character is regarded as unreadable
(see, for example, the letter ‘S’ in “HOTELS” in Figure 15). Although in many cases a
human could still read the text in question, OCR processes tend to be much more sensitive;
hence, we err on the side of being conservative. We then apply an approximate string
matching procedure to count the number of correctly detected characters.

Since most classifiers are capable of filtering out small and/or oddly-shaped components
as noise, it is impossible to know when a “false alarm” is likely to induce a recognition
error. Hence, for the purposes of the following analysis we ignore spurious, non-character
components that appear in the output.

‘ H Minimum ‘ Maximum ‘ Average ‘

Number of characters 2 496 34
Number of colors 2 256 61
Width (pixels) 20 667 285
Height (pixels) 8 799 75

Table 1: Test database statistics (482 GIF images).
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The results of this experiment are depicted graphically in the chart on the left in Fig-
ure 16. Here we plot the performance both for the approach mentioned earlier using only
RGB clustering as well as the algorithm just described based on combining RGB clustering
and spatial proximity. For the latter, the average character detection rate for this set of
examples was found to be 68.3%. While this may seem rather low, it is a significant improve-
ment over the RGB-only result (a 47% average detection rate for a similar database [33]).
The combined approach not only improved the overall performance, it also reduced the
percentage of “catastrophic” failures (images where the detection rate was 20% or less), as
indicated in the chart. Figure 17 shows some of the sample images and their corresponding
results.
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Figure 16: Web image text detection performance.

The test images used in the above experiment were selected randomly from WWW
pages without regard to several of the assumptions made earlier. As a consequence, some
contained non-homogeneously-colored text and/or non-horizontal layouts. To see how well
our algorithm performs when these conditions hold, we manually inspected the test set and
partitioned it into two groups: the first consisting of 315 images which met the assumptions,
and the second the remaining 167 images which did not. The chart on the right side of
Figure 16 shows the results when running our algorithm on the images from the first group.
The average character detection rate in this case rose to 78.8%.

Figure 18 presents some difficult examples from the second group of images. These
include non-linear text layout, embossed text, non-homogeneously-colored text, and stylized
text (a company logo). We broke this set into three distinct cases:

1. Skewed or wrapped text. Only a few instances of severe skew angles or wrapped text
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Figure 17: Examples of GIF images and the results of text detection.
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Figure 18: Examples of images the current algorithm cannot handle well.

were found in the test set. Most images in this category contained text skewed just
slightly off the horizontal.

2. Non-homogeneously-colored text. Detection rates for text in this class were low,
demonstrating the importance of the homogeneity assumption.

3. Extremely small text. Some text in Web GIF images is very small (3-5 pixels high).
This results in missed-detections since the algorithm uses a size threshold to filter out
“noise” in the image.

Table 2 shows a performance analysis for the images in each of these classes.

4 Recognizing Text in WWW Images
The difficulties faced in attempting to recognize characters extracted from WWW images

are analogous to the problems encountered in OCR’ing low resolution, poor quality text.
This topic has been previously examined from several perspectives. Lee, Pavlidis, and
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Number of | Average Character
Images Detection Rate
Case 1 (skewed) 18 70.5%
Case 2 (non-homogeneous) 12 36.9%
Case 3 (extremely small) 21 44.3%

Table 2: Performance on various difficult test cases.

Wasilkowski, for example, conducted a theoretical study on the trade-offs between spatial
resolution and quantization resolution in signal processing [8]. Their work shows that it is
possible to recognize text successfully at low resolutions if color information is preserved
during the digitization. It is predicted that for 10-point text the sampling rate could be as
low as 100 dpi (but not much lower).

Based on this result, Li and Pavlidis later proposed a character recognition technique
which extracts features directly from a gray level input image [25]. Their method takes the
digitized image as a terrain (with height denoting the “darkness” of the pixels) and analyzes
the topographic structures of the terrain. The pixels are classified into different topographic
feature classes such as ridge, pit, saddle, ravine, etc. according to the estimated first and
second directional derivatives of the image intensity surface. It then extracts the basic
structural information from the input image and represents the features as a topographic
feature graph. The recognition process then compares the graph with predefined prototype
graphs.

Li and Pavlidis’s method provides a powerful framework for analyzing shapes. The
surface fitting method that we describe here is, in spirit, similar to their approach. Our
method assumes that the foreground color is roughly uniform for a given character in a
Web image. It detects a representative foreground color for each character and computes
the difference between this color and the color of each pixel. The result forms a 3-D surface
similar to a terrain. We then derive a set of features from the surface for recognition.

Clearly, topographic feature analysis is computationally intensive. An alternative ap-
proach is to use techniques related to matched filters. A representative of this kind of
method is orthogonal expansions [10]. In this method, a character in color space is ex-
pressed as a linear superimposition of different orthogonal primitive patterns. Note that
a Web image usually contains a relatively small amount of text, hence the orthogonality
assumption is usually valid since the text is most likely of a single font. In addition, noise
commonly seen in scanned images, such as blurring or speckles, does not appear in Web
images so a small number of primitives may be sufficient.

In our approach, a text detection algorithm such as the procedure described in the
previous section is used to identify character-like connected components in each color class
based on their shapes. These character-like components are assumed to be segmented and
extracted from the original color input image. Typically, each represents a single character.
Next, we proceed to convert the extracted character images into gray scale by comparing the
difference between the representative color of the foreground and the color of each pixel.
The former is assigned a gray value of 255. All other colors are assigned gray values of
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255 — d, where d is the distance between the color and the representative color. We then
apply a recognition process to each character image.

4.1 The Polynomial Surface Fitting Method

The first recognition method we consider is based on polynomial surface fitting. We rep-
resent a character shape by a polynomial surface function. Here the shape in the intensity
image is treated as a 3-D surface, i.e., z = g(x,y) where (z,y) is the pixel location and z is
the intensity value. A polynomial function of certain degree can then be used to fit to this
surface.

In theory, the higher the degree of the polynomial, the better it can capture the shape of
the character. However, a high degree polynomial is also more sensitive to noise. Currently,
we use fourth degree polynomials for the surface representation [9, 24]:

z= f(a,y) = Z a;jaty’ (6)

0<i,j<4

The fitting of the polynomial surfaces is done based on the least square principle. Let
Z =Ak, L))o <k < K, 0 < L < .J} represent the image data, where (k,1) specifies
the pixel coordinates and t is the image intensity value. The best polynomial surface
representation is a vector of coefficient a;; such that the mean square error:

e (S gt~ 1) (7)

k,l

is minimized.

From the polynomial representation we then extract a set of features for recognition.
Notice that the monomial basis functions z'y’ described in the above equation are not
orthogonal to each other, thus the coeflicients of lower-order monomials will change when
the degree of the polynomial surface fit increases. Hence, the coefficient vector for monomial
basis functions is not a good feature vector. Instead, we use orthogonal Legendre polynomial
basis functions to represent the polynomial surface:

1 od™(2? = 1)"
n!2n dz™ (8)

P(n,z) =

The surface will have the following representation: 3 qc; .4 bijP(¢,2)P(j,y). Here b;; is
the coeflicient vector for Legendre polynomial basis functions. These coefficients are used as
a feature vector for the character shape. A linear classifier is used to compare each feature
vector with a reference vector for each character class and then assign the character to the
class with the closest distance.

The polynomial surface representation only captures the global shape of a character.
Characters whose shapes are similar to each other (e.g., ‘c’ and ‘e”) may not be distinguished
reliably using this method since variations in the fonts and color intensities may introduce
significant “cross-over” of the class distributions. One possible solution to this problem is
to group character classes of similar shape into “meta-classes” (e.g., ‘¢’ and ‘e’ would form
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a meta-class). An input pattern is first classified into one of the meta-classes. A second
stage classification is then used to distinguish among characters in the same meta-class by
examining finer features from the image.

For example, in the second recognition stage, we might use the topographic features
described by Li and Pavlidis to extract the skeleton from the image. Figure 19 shows the
ridge points in images of letters ‘a’ and ‘e’ detected by the method. As can be seen, the
method recovers the skeletons remarkably well despite severe distortion in the character
shapes.

| /

JLy
s

cd -

1
s

Figure 19: Ridge points detected in GIF images of ‘a’ and ‘e’.

4.2 The N-tuple Method

The polynomial surface representation method just described requires a significant amount
of time to compute. Furthermore, it does not work well when the resolution in terms of
color intensities is coarse to begin with (e.g., only a few shades of color are used to represent
a character). An alternative we have explored is to use an approach adapted from n-tuple
classifiers.

N-tuple classification is a relatively old idea, first proposed in 1959 [2]. Tt has received
only scant attention since the early days of OCR research. For recognizing text in Web
images, however, it appears quite promising, as we shall show.

An n-tuple is simply a set of locations in an image with specified colors. For a binary
image, an n-tuple represents the presence or absence of a specific configuration of black
and white pixels in a given pattern. For recognition, an n-tuple is superimposed onto an
input image and the colors at the given locations are compared. An n-tuple is said to “fit”
the image if the colors at all its locations match with the image color at the corresponding
locations. Usually, several n-tuples are used as templates and the tuples can be shifted over
the image in order to find the best fits.

Most n-tuple methods reported in the literature are defined over a binary input space.
An obvious way of applying such n-tuple methods to Web text OCR is to threshold the
color image into a binary bitmap and treat the problem as standard n-tuple classification.
The drawback of doing so is that the information contained in the color bits will be lost
in the thresholding process. The approach we developed, on the other hand, takes into
consideration the “fuzziness” of the differentiation between foreground objects (i.e., text
characters) and the background in the input image. Instead of an exact fit, our method
measures the degree a tuple matches the input image pattern and finds the class the tuple
matches with the maximum likelihood.
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To do so, we first assign to each pixel in the input image a value between 0 and 1 which
represents the certainty the pixel belongs to the foreground. Let P[i, j] be the input image
and cy be the representative color of the foreground determined by the text extraction
algorithm of the previous section. We define the normalized color difference between ¢y and
the pixel color at pixel (i,7) as a measure of confidence the pixel belongs to the foreground:

i, j]=1- maifjjﬂgz}i[];vc]f])v cy) v

where d() is the distance between ¢; and pixel color P[7, j]. From the definition, we have
0 < I[i,j] < 1. I[i,j] = 1 indicates a definite foreground pixel, and I[i, j] = 0 represents a
definite background pixel.

To apply the n-tuple method, let {t; = (pi1, pi2, .--pin)}, ¢ = 1,2, ...,m be a set of n-tuples
defined over the input image space of dimension W x H. Fach p;; specifies a location in
the image space. Given an image pattern, we first assess the probability that the pixel in
the image at location p;; as specified by the ith n-tuple is foreground and compute a joint
probability distribution for all location combinations.

Formally, let b = byby...b,,, where b; € {0,1}. We say pixel location p;; of tuple ¢ is
designated to be foreground if b; = 1, and background if b; = 0. When every b; in b
has been assigned a particular designation, we say that b represents a specific foreground
location configuration. TLet P°(¢ : bybs...b,) denotes the probability that the foreground
color appears in location configuration bybs...b, in the image pattern ¢. For example, for
a 7-tuple, P°(i : 0110000) represents the probability of the foreground color appears at
locations p;9 and p;3 simultaneously, but nowhere else. For an n-tuple, there are total of 27
different possible configurations. Let B be the set of all possible configurations of bybs...b,,.
For a given image pattern, P°(i : b1by...b,) is computed as:

P brba... H Ilpii) TT (0 = TTpis)) (10)

b;=0

One issue not yet addressed is how to select a set of appropriate n-tuples for the classifier.
For many non-trivial recognition problems, it is usually computationally intractable to find
the optimal choice of n-tuples. In our current implementation, the locations p;; for each
tuple are chosen randomly from the input image space.

During the training process, the value P°[i : b1by...b,] is evaluated for every pattern in
a character class C' and a summation is calculated:

P(i:byby..by) = > P(i: biby...by) (11)

ceC

We then estimate the conditional probability of the foreground appearing in configuration
b1by...b,, given class C' and tuple ¢ as:

P(l . blbzbn)

P(1:b1by...0,|C) = : 2
(i :b1bo 1) Zble...bnEB P(7 : b1ba...by,) (12)
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In the subsequent classification process, we compute the probability of an input pattern
@ given n-tuple 7 of class C' using the following equation:

P(zli:C)= > P7(i:biby...by)P(i: byby...b,|C') (13)
b1by...bnEB

and the probability of z given all the n-tuples of class C' is given as:
P(w|C):HP(x|i:C) (14)

A Bayesian maximum likelihood classifier is then used to determine the class of the
input pattern. We assume here that the a priori probabilities are the same for all character
classes and assign the pattern to the class for which P(2|C') is a maximum.

4.3 Experimental Results

To test the effectiveness of these two methods, we collected 50 images from the Web and
extracted from them 215 lowercase characters in 8 classes. Figure 20 shows some samples

of these characters, while Table 3 presents statistics for the test data.
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Figure 20: Sample characters from the test set.
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Character || Number of | Average | Average | Average
Class Samples Width Height Colors
a 32 14 14 6
c 26 8 10 5
e 37 10 12 5
i 17 5 11 3
n 27 11 13 7
0 29 9 10 4
8 26 8 10 4
t 21 7 14 3

Table 3: Test set statistics.

Character || Recognition
Class Accuracy
a 51.6%
c 88.5%
e 57.6%
i 100.0%
n 84.0%
) 44.8%
S 69.2%
t 85.7%
Average 69.7%

Table 4: Recognition accuracies for the surface fitting classifier.

For the surface fitting classifier, fourth degree explicit polynomial surfaces were com-
puted to represent each character. In the test, we used half of the characters as training
samples and stored the polynomial surface parameters as the feature vectors. We then
ran the classifier on the whole data set. The average distance from the character image
to be recognized to the stored feature vectors of a whole class was used as the distance
measure. The class that a character belongs to was chosen as the class with the smallest
character-to-class distance. We used the normalized Fuclidean distance between the poly-
nomial coefficient vectors instead of algebraic invariants to measure the distance between
two characters. This is because there was not much rotation in the character data set, and
the images could be scaled to compensate for differences in character size. Table 4 shows
the recognition accuracies for the eight classes as well the overall performance.

From the table, we can see that the recognition results were rather poor for character
classes ‘a’, ‘e’, ‘0’, and ‘s’. The reason for this is that the ‘c’, ‘e’, and ‘o’ triplet as well as the
‘a’ and ‘s’ pair have similar shapes and it is hard to distinguish them using fourth degree
polynomial surfaces since the small structural differences between these classes are usually
lost in the representation. Another reason for the poor performance here is that most of the
character images in our data set are coarse in the color space (as can be seen from Table 3,
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Character || Recognition
Class Accuracy
a 90.6%
c 92.3%
e 73.0%
i 94.1%
n 100.0%
) 96.6%
s 88.5%
t 85.7%
Average 89.3%

Table 5: Recognition accuracies for the n-tuple classifier.

the average number of unique colors in each image is quite low). A continuous surface
representation is not suitable for representing these images because of the high frequency
intensity changes.

For the n-tuple classifier, we scaled the sample images to fixed-size 8 x 8 bitmaps.
Next we set the parameters n and m (the tuple dimension and the size of the tuple set) and
generated the n-tuples. Again, we took half the samples from the sample set for training the
classifier. We then ran the classifier over the entire data set. Table 5 shows the recognition
rates for n = 10 and m = 10.

We experimented with a few combinations of » and m in the test. Figure 21 shows
the correlation between the recognition rate and the tuple dimension for a fixed m = 10.
Table 6 shows the correlation between the recognition accuracy and the tuple set size at
n = 10.

1 T T T T T
0.95 B
Recognition Accuracy as Function of Tuple Dimension
09 i
0.85 B
0.8 B
0.75 B
1 1 1 1 1
2 4 6 8 10 12 14

Figure 21: Correlation between recognition accuracy and tuple dimension (m = 10).
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Number of || Recognition
n-tuples Accuracy
1 76.3%
5 87.9%
10 89.3%
15 89.8%
20 90.2%

Table 6: Correlation between recognition accuracy and size of tuple set (n = 10).

The best recognition performance for the n-tuple classifier on this set of sample data is
90.2% at n = 10 and m = 20. Generally speaking, a large n tends to decrease the false alarm
rate while increasing the mis-classification rate. Similarly, a large m also tends to increase
the discrimination power of the classifier, although it also increases the computation needed.
However, too many “not-so-good” tuples may also reduce the performance. How to chose
tuples is currently an unresolved issue.

5 Other Related Work

There are many Web search engines now available. A number of these have become im-
mensely popular. They typically operate using indices built by automated WWW scanners
(called “robots”). As we observed earlier, this work has mainly concentrated on the query
processing and text retrieval aspects of the problem, ignoring the issues of complex doc-
ument analysis. Here documents are equated with the raw ASCII text that is readily
extracted by parsing the HTML.

Even once it becomes possible to build complete working systems for extracting text
from Web images, it is clear that recognition errors will be unavoidable. Indeed, this same
problem arises in the indexing other multimedia datatypes as well (e.g., speech, handwrit-
ing). Query mechanisms are needed that are robust in the presence of such “noise.” One
such approach, based on combining techniques from approximate string matching and fuzzy
logic, is described in papers by Lopresti and Zhou [13, 16].

A large amount of basic IR research related to the World Wide Web is also taking place
at universities and elsewhere. The Harvest system developed as an ARPA-funded project
of the Internet Research Task Force, for example, is an integrated set of tools to gather,
organize, and search information across the Internet [5]. Efficiency (i.e., caching, replication,
and scalability) is a primary concern. Harvest is provided with a number of “Summarizers”
that can extract text from a variety of formats (e.g., compressed tar archives, PostScript
files), but none are capable of sophisticated document analysis. The Harvest architecture is
general, however, and could be extended to incorporate such tools if they became available.

Work has also been done on developing methods to aid users in searching, filtering,
and retrieving Web images. For example, Paek describes a system that combines visual
features, text-related features, and the context of images within a document in an attempt
to understand the image content of Web documents [19]. The text features in his system
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are extracted from the URL and ALT tags on the Web page though, not from the images
themselves.

Lastly, we note that researchers have begun to examine the problems associated with
automatically processing paper documents for placement on the Web. Taghva, Condit,
and Borsack describe the Autotag system, which attempts to capture a document’s logical
structure and incorporate it in the electronic version through the use of SGML tags [23].
Nagy, Seth, and Viswanathan propose a similar approach and present a thoughtful study
of the various issues associated with automated document conversion [18].

6 Conclusions

In this paper, we have explored the problems of locating and recognizing text in WWW
images. The rapid growth of the World Wide Web and its natural evolution towards more
sophisticated uses of multimedia is creating significant opportunities as well as new chal-
lenges for document analysis as it relates to information retrieval. Although it may seem
somewhat anachronistic at first, the need for OCR still remains.

After a brief survey of Web image formats, we described a method for locating and
extracting text from color GIF images. Our technique employs a color clustering algorithm
that attempts to group colors from the same object together based on both RGB and spatial
proximities. Geometric as well as text layout features are then used to distinguish text-like
from non-text-like components. Experimental results show that the method is promising,
although there is also much room for improvement.

For example, better measures of “goodness” need to be developed. The current algo-
rithm uses a measure based solely on character alignment (the variation in the heights of
components). Since text detection is intended to be followed by recognition, a criterion that
reflects the quality of the character images would be useful. To recover broken or missing
characters, an iterative process could be introduced into the algorithm. After completing
the final stage of text detection, a refined clustering procedure might be applied to areas
where text has been located to ensure the integrity of the characters.

We then proceeded to describe two methods for recognizing text from Web images. The
first uses a polynomial surface fitting technique. The second is based on a “fuzzy” adaptation
of the classical n-tuple classifier. Both methods exploit the information contained in color
bits to compensate for low spatial sampling resolution (typically 72 ppi).

Preliminary experimental results show that the surface fitting method performs rather
poorly. We found that Web images often use only a few shades of color within a given
character. A continuous surface representation does not appear to be suitable for these
images because of the high frequency intensity changes.

On the other hand, preliminary results show that the fuzzy n-tuple method works quite
well. The major difficulty in using this approach is the selection of desirable n-tuples. It has
been shown that in general, generating distinguishing tuples is a computationally intractable
problem. Despite this, practical search strategies have been developed for finding “good”
tuples. For example, in a paper by Jung, Krishnamoorthy, Nagy, and Shapira, the authors
propose two algorithms for generating, from a small training set, a collection of n-tuples
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which are “shift” invariant [7]. Such n-tuples fit each positive pattern in at least p different
shift positions and fail to fit each negative pattern by at least n — ¢ pixels in each shift
position. “Shift invariance” is a desirable feature since this makes the tuples independent
of sample variations.

As we mentioned earlier, text in Web images usually undergoes relatively few types of
distortion. This makes the n-tuple method particularly applicable to the Web OCR problem.
A deeper understanding of the nature of these distortions may lead to the development of
a practical n-tuple generator for Web image OCR. Tt is also evident that gathering training
and testing data for building these specialized classifiers requires much effort. This explains
the small number of classes we were limited to in the experiments of Subsection 4.3. Just
as standard databases are now becoming popular in traditional document analysis, work on
Web image analysis would be greatly facilitated by amortizing the costs of assembling test
sets across the entire research community.

Better methods are also needed for performance evaluation. Ideally, OCR would be
run on the results of text detection and the performance of the entire end-to-end system
measured. However, this is itself a challenge that requires solving several more hard prob-
lems beyond what we have described in the current paper (e.g., noise filtering, character
segmentation).

We would be remiss not to mention that an important factor in the proliferation of image
text on the Web has been the lack of control designers have over typography in standard
HTMIL. Recent extensions to HTML, however, promise to offer much more flexibility in
this regard (e.g., [27]). A number of companies have banded together to develop standards
for directly supporting anti-aliased fonts, for example. Hence, one might argue that a key
reason for wanting to embed text in images will soon diminish, and therefore there is no need
to worry about addressing the problem. To believe this reasoning, however, is to believe
that the Web will become less multimedia-oriented in the future. This does not seem likely;
if anything, use of the Web to deliver image data will continue to grow.

Finally, we note that locating and recognizing text in images is only one class of doc-
ument analysis problems that have important implications for information retrieval on the
Web. The range of document and graphics structures present online mirrors what re-
searchers have studied on paper for decades. Table 7 list some such examples. The degree
to which existing techniques can be adapted or completely new methods are required is an
open question.

Topic in

Document Analysis Example WWW Application
Chemical graphics http://www.chemie.fu-berlin.de/chemistry /bio/amino-acids.html
Engineering drawings || http://www.research.digital.com /SRC/juno-2/flange.html
Equations http://aero.stanford.edu/OnLineAero/Acoustics.html
Maps http://www.gpsy.com/maps
Musical scores http://www-personal.umich.edu/~mhopkins/etudel.html
Org charts http://www.acm.org/sigchi/listserv/chiemail.htm
Photographs http://www.phillynews.com

Table 7: Possible WWW applications for document analysis.
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