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ABSTRACT

An important step towards the goal of table understanding is a method for reliable table detection. This paper
describes a general solution for detecting tables based on computing an optimal partitioning of a document into
some number of tables. A dynamic programming algorithm is given to solve the resulting optimization problem.
This high-level framework is independent of any particular table quality measure and independent of the document
medium. Moreover, it does not rely on the presence of ruling lines or other table delimiters. We also present table
quality measures based on white space correlation and vertical connected component analysis. These measures can
be applied equally well to ASCII text and scanned images.

We report on some preliminary experiments using this method to detect tables in both ASCII text and scanned
images, yielding promising results. We present detailed evaluation of these results using three different criteria which
by themselves pose interesting research questions.

Keywords: table detection, document layout analysis, connected component analysis, document understanding,
information retrieval, multimedia communications .

1. INTRODUCTION

Tables are an important means for communicating information in written media, and understanding such tables 1s a
challenging problem in document layout analysis. Possible applications include extracting information for populating
databases which can later be manipulated or queried, and reformatting existing tables so that they can be presented
in a medium different than their original target (e.g., on a much smaller screen, or via a spoken language interface).

From the standpoint of the expected input, these applications can be partitioned into two distinct categories:
large-scale processing of identically structured tables in a predetermined format (e.g., phone company billing state-
ments), and more modest-scale processing of tables in widely ranging formats (e.g., tables found during Web searches,
tables in faxes or in personal e-mail). The latter category is particularly challenging because of the variety of styles
that must be handled “on-the-fly,” and by the fact that there is no guarantee the input table will be “well-formed”.

The table understanding problem can be broken into two logical steps: table detection and table recognition.
Much existing work on tables described in the literature addresses the latter step and assumes that the table has
already been identified and segmented out from the input (or that identifying the table is trivial — e.g., the whole
document is the table). The goal of table recognition includes determining the structure (either layout or logical
structure) of the given table. A number of papers report on methods for determining the layout structure that rely
solely on separator features such as vertical and horizontal lines or column spacing':? to segment the table into a
structure of cells. Others also use OCR results to aid in the segmentation of the table into regions such as body
(that is, the actual cells containing the tabular information), title block, column headers and row labels.> The work
by Hurst and Douglas® is concerned with taking a segmented table and using the contents of the resulting cells to
determine the logical structure of the table.

Most prior research on the problem of table detection has concentrated on detecting tables in scanned images,
and the vast majority of the work depends on the presence of at least some number of ruling lines (e.g., the work by
Laurentini and Viada®). Hirayama uses ruling lines as initial evidence of a table or figure and then further refines this
decision to distinguish tables from figures by a measure based on such features as the presence of characters. There
is, of course, no guarantee that such lines will be present in printed tables. Notable exceptions to this assumption
include a paper by Rahgozar and Cooperman” where a system based on graph-rewriting is described, and one by
Shamalian, Baird and Wood?® in which a system based on predefined layout structures is given.



There is much less prior art in the case of ASCII tables, although these are becoming increasingly important.
These may originate either in ASCIT form directly (e.g., as part of an e-mail message), or as the result of saving
a “richer” document (e.g., an HTML page) in “text-only” format. More often than not, ASCII tables contain no
ruling lines whatsoever, depending only on the 2-D layout of the cell contents to convey the table’s structure. Hence,
very little of the past research on printed tables is applicable in this case. Kieninger® describes a system for parsing
tables in ASCITI or paper documents that does not rely on ruling lines. This is based on a straightforward clustering
technique followed by a number of useful post-processing heuristics. A method based on LR(k) parsing is mentioned
in'? for a given class of tables (financial tables). However, neither of these works explicitly considers the detection
of tables.

In this paper, we describe a technique for detecting tables that does not rely on ruling lines and has the desirable
property that an identical high-level approach can be applied to tables expressed as ASCII text and those in image
format. The remainder of this paper is organized as follows. Section 2 describes the high-level structures of an
algorithm for detecting any number of tables in a document. The general algorithm is stated in terms independent
of any particular table quality measure. Two possible table quality measures are then presented. Section 3 presents
our experimental setup and results for both scanned document images as well as ASCII based documents. Finally,
conclusion and future directions are given in Section 4.

2. ALGORITHMS

In this section we describe our approach to solving the table detection problem. Tt consists of: (1) a high-level
framework that determines the optimization problem and an algorithm for its solution, and (2) table quality measures
that can be tuned for specific applications and/or the input media. We assume that the input is a single column
document segmentable into individual, non-overlapping text lines (referred to simply as “lines” henceforth). Our
general framework is independent of the table quality measures and, in particular, independent of the input medium.
It may in fact be desirable to experiment with a number of different table quality measures to determine which works
best in a given situation.

2.1. High-Level Framework

While it may be tempting to assume some form of delimiter (e.g., that tables will always be separated from the rest
of the text by at least one blank line or some minimum amount of white space), to preserve generality we do not
want to make any a priori assumptions about where table(s) might begin or end in the input. Instead, we compute
a value for all possible starting and ending positions and then choose the best possible way to partition the input
into some number of tables.

Say there are a total of n lines in the input, and let tab[i, j] be a measure of our confidence when lines ¢ through
J are interpreted as a single table. Let merit,..(i, [{ + 1, j]) be the merit of prepending line 7 to the table extending
from line ¢4 1 to line j, and meritqpy([i, j — 1], j) be the merit of appending line j to the table extending from line ¢
to line j — 1. Specific functions for merit,,. and merit,,, will be described in the next subsection, but as a rule they
return larger values for more compatible combinations. Then we define:

tabli,i]=0 1<i<n (1)

and
— merity. (4, [i+1,7]) + tabli+ 1, 5] .
tabli, j] = max{ tabli,j — 1] + meritayy([i,j — 1],7) Isi<jsn (2)
This computation builds an upper triangular matrix holding the values for all possible table starting and ending
positions. This requires time O(n?).

The best (i.e., highest quality) table in the input can then be found by searching the tab[i, j] matrix for its
maximum value. Say this occurs at index [a, b]. This means the best table extends from line a to line b. The second-
best table can then be located by excluding the region [a, b] and searching the regions [1,a — 1] and [b + 1, n] for the
next highest value. This is depicted in the diagram on the left side of Figure 1. For any k£ > 0, we can continue this
“greedy” procedure until we have found the k best tables (or, more likely, until the table quality measure has fallen
below some predetermined threshold).
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Figure 1. Partitioning the input into its best interpretation as some number of tables.

This approach could, however, lead to an unsatisfactory solution when the document contains more than one
table. Consider the situation illustrated on the right side of Figure 1. Here the region corresponding to tab[a,b] is
the single best table in the document. There are, however, two other tables, tab[e, d] and table, f], whose combined
confidence scores are greater than that of tabla,b] alone. We are excluded from choosing these tables, however,
because they overlap with tabla, b] which was selected first.

This situation can be remedied by formulating the partitioning of the input into tables as an optimization problem.
Let score[i, j] correspond to the best way to interpret lines ¢ through j as some number of (i.e., zero or more) tables.
The computation is defined as follows:

score[i, 1| = tab[i, 1] 1<i<n (3)

and
tabli, j]

max;<p<j {score[i, k] + scorelk +1,j]} Isi<jsn (4)

score[i, j] = max{
One way to interpret Equation 4 is that the best way to partition lines ¢ through j into some number of tables is to:

1. treat lines ¢ through j as coming from a single table, or

2. break the region into two subregions between lines k and k 4+ 1 and consider each separately.

Note that if region [i, j] contains exactly one table (or a portion thereof), case (1) will apply. Otherwise, there must
surely exist a k such that the region can be broken into two independent subregions (without splitting a table) and
then case (2) applies. Because of the two levels of optimization, algorithm score requires time O(n?).

The computation defined by score (Equation 4) is somewhat different from that defined by tab (Equation 2).
Whereas tab[i, j] represents the quality of the region covering lines 7 through j when interpreted as a single table,
score[i, j] represents the best way to decompose this region into some number of tables (i.e., zero or more) along with
separate, non-table text lines. The precise decomposition can be obtained by backtracking the sequence of decisions
made in evaluating Equation 4; this gives us the globally optimal strategy for partitioning the input into however
many tables it may have contained. The score algorithm correctly selects tab[e,d] and tabe, f] in the example on
the right side of Figure 1.

2.2. Specific Table Quality Measures

One of the simplest quality measures imaginable is the degree to which the white space in the text line to be added
correlates to the inter-column spacing in the presumed table. On a given line, we distinguish between inside spaces
and outside spaces; the former have at least one non-space character to the left and to the right, while the latter
have no non-space characters on one or both sides.




In the case of ASCII input, let o and 3 correspond to specific character positions on two lines. We define:

1 if @ and 3 are both inside space characters
acorr(a, f) = —1 if exactly one of & or 3 is an inside space (5)
0 otherwise

Let atexi[i, k] be the input text where the first index designates the line and the second the character on that line.
For two lines ¢ and j, we pad the shorter line with (outside) spaces to match the length of the longer line. Let this
length be m. Now we define the first line correlation measure:

m
Incorrys(i,j) = Z acorr(atext[i, k], atext[], k]) (6)
k=1
This is a measure of the correlation between the white space “streams” on the two lines in question. A positive value

indicates the lines correlate well (i.e., they may potentially belong to the same table). Figure 2 illustrates these
computations for two text lines that correlate well (top) and badly (bottom).
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Figure 2. Tllustrations of white space correlations for ASCII input.

We now define the set of merit functions:

J
. . . 1 .
merity,.(4,[i+ 1, j]) = Z per g s Incorrys(i, k) (7)
k=i+1 €
and
Jj-1 1
meritapy([i,j —11,7) = oo - Ineorrus(k, ) (8)
k=t

where 7 is a constant that determines the exponential decay. This gives one possible criterion for judging the quality
of ASCII tables. Figure 3 shows an example of a table detection result for ASCII input.

Note that the definition of acorr can be made much more sophisticated; it could, for example, also provide a
“bonus” for correlating two numeric characters (another strong table indicator). Likewise, [ncorry, could compute
a line correlation based on, say, edit distance (allowing character insertions and deletions) as opposed to this simple
Hamming-type distance.

In the case of image input, we can define an analogous measure computed from word bounding boxes, obtained
from low level layout analysis.!!
image as a string of pixel positions in raster order. Let o and 3 correspond to specific pixel positions along the
length of two lines. We define:

For this discussion it will be convenient to treat each segmented text line in the

1 if @ and 3 are both inside space pixels
icorrys(a, ) = ¢ —1 if exactly one of o or /3 is an inside space (9)
0 otherwise
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Figure 3. ASCII table detection example.

Mirroring the ASCII case, let dtext[i, k] be the image input segmented into text lines where the first index designates
the line and the second the pixel position on that line. Equation 6 for Incorr, is then re-written in terms of itext
and the pixel-based white space correlation defined by Equation 9, where m now represents the length in pixels of
the longer of the two lines.* Figure 4 illustrates this; note the similarities to the topmost example from Figure 2.
The two merit functions (7.e., Equations 7 and 8) are then specified exactly as before.
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Figure 4. Tllustration of white space correlations for image input.

Another possible way of formulating merit functions is through vertical connected component analysis (VCCA).
The basic units in VCCA are words. Words in ASCII text are sequences of characters delineated by spaces. In
printed text, word bounding boxes can be derived from low-level layout analysis.!' For this application, the vertical
“connectedness” is defined in the following way. Suppose the horizontal extents of two words Wi and W5 on adjacent
lines are (211, #12) and (a1, 222) respectively. Assuming 211 < 91 without loss of generality, Wy, Wy are vertically
connected if and only if:

T12 — T21

min((z12 — ©11), (22 — 221))
where 8 is a threshold (e.g., 0.6). Intuitively, two words on adjacent lines are considered vertically connected if they
overlap significantly and have similar lengths. The transitive closure of all pairs of vertically connected words defines
a vertical connected component. The connected components can be efficiently computed using an equivalence class
algorithm with complexity O(M + N), where M is the number of words and N is the number of vertically connected
pairs of words.'? Kieninger used a similar operation for “block” expansion, but with no constraints on the widths
of the overlapping words and the overlap itself.”

> 6 (10)

*This pixel-by-pixel summation is a convenient way of illustrating the computation. In an actual implementation, however,
Incorrys is computed much more efficiently using the starting and ending coordinates of the word bounding boxes along the
two lines.




One problem with the above algorithm is that the connected components thus defined are broken up by occasional
“inconsistent” lines, i¢.e., a blank line or a line of run-on text. These lines are often caused by mistakes in typing
(in ASCIT tables) or errors in low-level layout analysis (in scanned tables), but can also be inserted intentionally.
Human eyes can easily detect the continuity of connected components across such disruptions.

One way to capture such breaks in continuity is to fill the gaps and delete the protruding lines using morphological
dilation and erosion operations before VCCA is applied.'® However our experiments showed that these operations
tend to have many unwanted side effects which lead to more false positives in table detection. Therefore we modify
the VCCA process itself instead. In particular, when generating pairs of words that are vertically connected, instead
of looking only at words on adjacent lines, we examine all words within K lines of each other, where K is the
maximum length of the break (currently set to 2). This may lead to unconventional connected components that
contain holes or a piece of a different component, but it works well for the purpose of table detection.

Vertical connected components roughly correspond to the columns of a table. The “connectedness” criterion
(Equation 10) is designed such that it insures some amount of consistency within a column while allowing for skewed
(non-Manhattan) columns. Although at this stage connected components are by no means perfect columns, they
capture crucial structural information which can be used to measure the consistency between a line and a region.
Figure 5 shows a portion of an ASCIT table on the top and the corresponding connected components (with different
upper-case characters representing different components) on the bottom.

18  Joe Olive 2.240 -0.314 -0.801 0.480 1.604
19 Dan Lopresti 2.240 -0.314 0.636 -0.3812.181
20 Ramanujan Kashi 2.240 -0.314 -0.80 1 1.3402.464
21 Gordon Wilfong — 0.439 -0.314 2.073 1.340 2.660
22 Jianying Hu - 0.439 -0.314 2.073 1.340 2.660

AA  BBB CCCCC
AA Il CCCCCCCC
AA JJJJJJJJJ Ccccee

AA  JJJJJJJIKKD

DDDDD EEEEEE FFFFFFGGGGG HHHHH
DDDDD EEEEEE FFFFF GGGGGG HHHHH
DDDDD EEEEEE FFFFFF GGGGG HHHHH

AA JJJJJJ CCCCCCC D DDDDD EEEEEE FFFFF GGGGG HHHHH

DDDDD EEEEEE FFFFF GGGGG HHHHH

Figure 5. ASCII text (top) and the corresponding connected components (bottom).

After VCCA, each line is assigned a list of records containing the labels (and any other necessary attributes) of
connected components intersecting this line. For any pair of lines 7 and j, let S(4,j) denote the set of connected
components intersecting both lines, called shared components; and U(i, j) denote the set of connected components
intersecting only one of the lines, called unique components. We now define our second line correlation measure:

Incorre.(i,5) = SCy(k)+ > SCu(k) (11)

keS(i) FEU(i )

where SCi(k) and SCy (k) are scores assigned to connected component k depending on whether it is a shared or
unique component. These scores could in general be functions of the attributes (e.g., height) of the connected
component, but in our initial investigations they are assigned constant values (2.5 and —1.0 respectively). Note that
although this second line correlation measure seems to depend only on two neighboring lines, it in fact incorporates
much more global information through the precomputed connected components.

The two line correlation measures (Equations 6 and 11) are complementary to each other in the sense that the
first measure is more localized but more robust, while the second incorporates more structural information but is
less robust. The overall line correlation measure is defined as a linear combination of these two:

(12)
where w is a weight to be adjusted depending on the application. The two merit functions (i.e., Equations 7 and 8)
are then rewritten using (ncorr instead of Incorry.

Incorr(i,j) = (1 — w) X Incorrys(i,§) + w X Incorre.(i, j)



3. EXPERIMENTAL EVALUATION

In this section, we present preliminary experimental results of using our algorithm to detect tables in ASCII text and
scanned image documents. The test database was composed of 25 ASCIT documents (mostly e-mail messages) and
25 scanned journal pages. Each test sample was in single column format and contained one or more tables. None of
the ASCII tables had ruling lines, while most scanned tables had some ruling lines. Any ruling lines detected by low
level page segmentation were ignored in these experiments.

The evaluation of table detection results is itself an interesting issue for which there is currently no accepted
standard metric. We present evaluation results using three different approaches in order to provide a more complete
understanding of the performance.

3.1. Structural Evaluation

In considering the output from our algorithm, it becomes evident that certain classes of errors may arise as depicted in
Figure 6. Relative to a ground truth, these include non-table regions improperly labeled as tables (insertion errors),
tables missed completely (deletion errors), larger tables broken into a number of smaller ones (splitting errors), and
groups of smaller tables combined to form larger ones (merging errors). This leads naturally to the use of an edit
distance model for assessing the results of table detection.

Recognition Result Ground Truth

insertion

1:3 substitution (split)

Table regions

1:1 substitution (match)

2:1 substitution (merge)

deletion

[ R
— o —— ———

Figure 6. Various possible errors in table detection.

For the purposes of this evaluation, a table T is considered to be a region consisting of one or more contiguous
text lines ranging from line 7 to line j inclusive, T' = [i, j]. A document contains some number of non-overlapping
(but possibly adjacent) tables listed consecutively in order of occurrence. Let R = THTE ... TH be the recognized
document and G = TETS ... T be the ground truth. Note that m need not equal n in general, and that T;¥ need
not necessarily be the table corresponding to T\ for any particular i (recall Figure 6).

We define tewval (for table evaluation) recursively, where teval; ; is the distance computed between the first ¢ tables
of R and the first j tables of G. The costs functions are: cg.i(), the cost of deleting a particular table; ¢;ns(), the
cost of inserting a particular table; and egyp,, (), a generalized substitution cost that maps a series of k tables from
one document to [ tables from the other. The initial conditions are:

tevalpy = 0
tevalio = tevali—y o+ caa(TF) 1<i<m (13)
tevaly; = tevaly;_1+ cms(TjG) 1<j<n

and the main dynamic programming recurrence is:

tevali_lyj =+ Cdel(TZ’R)
. teval; j_1 + cms(TjG)
teval; ; = min

(14)
min teval,_g j—1 + Csubp. (Tﬁk_l_1 TR T]»G_H_1 LT

J
1<k<i, 1<1<]

for 1 <+ <m, 1< j<n. Once the computation has completed, teval,, ,, is a measure of the similarity of the two
documents in terms of their table structure. The smaller the value, the more closely the recognition result matches




the ground truth. Moreover, by tracing back the sequence of optimal decisions made when evaluating the recurrence,
it becomes possible recover a detailed interpretation of the errors that were determined to have arisen.

Note that the cost functions in the above formulation are completely general. For the tests that follow, we
calculate a cost by aligning the tables in question on a line-by-line basis and tallying the number of lines that match.
These are charged —1, while mismatches are charged 1. Although quite simple, this scheme appears to work well in
practice. This value is then normalized to the target interval [—1,1], where —1 represents an exact correspondence
(i.e., perfect recognition relative to the ground truth) and 1 represents the opposite:

tevaly, n — min_teval)

(15)

where min_teval and maz_teval are, respectively, the minimum and maximum possible distances for the comparison

norm_teval = 2 -
maz_teval — min_teval

in question.

We used the above mentioned evaluation measure to study the effects of threshold on the detection of tables.
This is shown for both ASCIT and image documents in Figure 7. The plot shows the average over 25 documents of
the structural similarity measure, norm_teval, across a range of threshold values. There is a fairly large variance
exhibited in the test set of 25 documents and we have examined the individual plots (they are not presented here
for space reasons). This plot helps us choose a range of threshold values to obtain acceptable values of detection
performance. The scales on the abscissae for the two adjacent plots are different for the ASCIT and image documents.
This is because the two merit functions are proportional to character and pixel spacings, respectively. The ordinates
which represents the structural similarity measure, norm_teval, ranges from -1 to 1 with the -1 being a perfect match
between the test sample and its corresponding ground-truth and 1 being the worst possible match. Note that errors
at lower threshold values (left portions of individual plots) are likely to be caused by spurious tables (insertion errors)
while those at higher threshold values are more likely to be caused by missed tables (deletion errors).
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Figure 7. The effect of threshold on performance for original ASCIT and scanned documents.

The effect of varying the weight in Equation 12 was also studied using this evaluation scheme. The weight w as
mentioned in Equation 12 is the weight assigned to the connected component (CC) part of the table quality measure.
Figure 8 shows the structural similarity measure, norm_teval of detecting tables plotted against varying values of
weight, w. As before, the structural similarity measure plotted, is the average of the 25 documents in both the
ASCIT and the image cases. Note that in both plots, at higher values of w, the overall performance as measured by
the structural similarity measure degrades. The usefulness of the CC component is more pronounced in not-so-well
aligned tables and is observed in individual plots of the documents. With this plot, one can then choose the range
of weights to maximize performance in detecting tables.

Finally, we used this evaluation scheme to compare the ground-truth results amongst the four authors. All
possible pairwise combination of 4 individuals gives 6 such correlations. Figure 9 shows the plot of the average
correlation for each of the 25 documents (both in the ASCIT and the image case). This data shows that while there
is fairly close agreement in most cases, several of the documents in our test set cause difficulties even for human
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Figure 8. The effect of weight on performance for ASCIT and scanned documents.

interpreters (deciding what count as tables and the location of their boundaries), which demonstrates the challenging
nature of the table detection problem.
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Figure 9. Ground-truth variations in ASCII and scanned documents.

One of the most common errors made by our algorithm was the splitting error. This is illustrated in Figure 10(a)
where the first four lines of the original table are classified as one table and the last two lines have been classified
as a second table. This 1s partly because of the differences in length of the first column in the table. Another
common error was interpreting well-aligned text lines as tables. This is also seen in Figure 10(a) where pseudo-code
is classified as a table. Merging errors tend to occur when two tables are adjacent to each other and have similar
spatial structure, as shown in Figure 10(b).

3.2. Global Evaluation

Under this approach the performance of our table detection algorithm is measured in terms of the number of tables
correctly identified. A table can be considered to consist of two parts: table headings and the body of the table. Due
to the simplicity of our current quality measures, table headings are not always detected as part of the table. For
this experiment we considered a table to be correctly detected if at least the entire body of the table was correctly
detected; i.e., every line in the body of the table is identified as being part of the same table, and no neighboring
non-table line is included. Note that although the headers are not considered, this is still a rather strict measure.
A table where all but one line in the body is detected 1s still considered an error. Similarly a table where all lines
are detected as table lines but the table 1tself is split into two tables is also considered an error. Table 1 shows the
precision and recall measure for both ASCII and printed documents, each at a particular threshold. In this context,
precision is the percentage of detected tables that are correct and recall is the percentage of true tables that are
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Figure 10. (a) Splitting (top) and insertion (bottom) errors; (b) Merging error.

correctly detected. Considering the strictness of this measure, the accuracies for both the image and the ASCII
tables are reasonably high.

Table 1. Precision and recall for detecting ASCII and printed tables.

Medium | Recall | Precision
Image | 81 % 91 %
ASCII 83 % 93 %

3.3. Local Evaluation

In this approach the performance of our algorithm is evaluated at the line level. After table detection, each line is
labeled as either a table line or a non-table line. For a table line, no distinction is made as to which table it belongs
to. In this context, precision is the percentage of detected table lines that are actually present in a true table, and
recall is the percentage of true table lines identified by our algorithm. The ground-truth was generated based on the
input of the four authors. Each of the authors classified every line of the input as either a table line or a non-table
line. A line was classified as a table or non-table line if three or four voters classified it that way. Lines that split the

vote evenly were ignored. As seen in Figure 11(a), our algorithm does well in detecting table lines in both ASCII
and images.

In order to highlight the medium-independent characteristic of our algorithm, we conducted another experiment
by printing the ASCIIT documents in 12-point Courier font and then scanning them back in. These scanned documents
were then input to our table detection algorithm. The precision and recall scores for this experiment are shown in

Figure 11(b). As seen from the curves, similar performance in detecting table lines was obtained with both the
original ASCII and the corresponding scanned documents.
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Figure 11. (a) Precision vs. recall curves for local evaluation; (b) Precision vs. recall curves for ASCIT and

printed/scanned versions of the same documents.

4. CONCLUSIONS

This paper describes a new approach for detecting tables across multiple media which does not rely on the presence
of ruling lines or other delimiters. The approach consists of a general framework which partitions a document into
a number of tables based on a set of table quality measures. The general framework is independent of the table
quality measure or input format. The set of table quality measures presented has been applied to both ASCIT and
printed documents. Preliminary experiments on ASCII and printed documents demonstrate the effectiveness of this
approach. The evaluation schemes developed in this paper are not only useful in general performance evaluation of
the entire system, but also useful in improving and tuning the underlying algorithms. These evaluation schemes can
be further refined based on the final application of table detection. Results from this initial analysis can be used by
later stages of document processing, including table understanding and rendering. Future work includes exploring
more sophisticated table quality measures such as including syntactic elements of documents and parsing the table
contents.
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