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Abstract

While techniques for evaluating the performance of
lower-level document analysis tasks such as optical char-
acter recognition have gained acceptance in the field, at-
tempts to formalize the problem for higher-level algorithms
that incorporate more complex structure have been less suc-
cessful. In this paper, we describe an intuitive, easy-to-
implement scheme for the problem of performance evalu-
ation when document recognition results are represented in
the form of a directed acyclic graph. We present results from
two simulation studies based on different graph models and
one experiment using a well known page segmentation al-
gorithm to demonstrate the applicability of the approach.

1 Introduction

As document analysis systems grow more sophisticated,
it becomes increasingly important to be able to evaluate
their performance. With a few notable exceptions, however,
little has been achieved along these lines beyond the infor-
mal assertions that often accompany work published in the
field.

The directed acyclic graph, or DAG, is nearly universal
across recognition algorithms, but this rich representation is
typically discarded when it comes time for evaluation. Al-
though there is already a substantial amount of theory for
the problem of evaluating logical structure recognition, the
empirical literature has largely ignored this work and usu-
ally resorts to a manual approach to evaluation: counting
by hand the number of components that have been missed
or added.

In this paper, we examine in detail a paradigm we first
put forth in the context of our work on table recogni-
tion [1, 2]. This methodology, known as “graph probing,”
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offers an intuitive, easy-to-implement scheme for the gen-
eral problem of evaluating document recognition when the
results are represented in the form of a DAG.

2 Graph Probing

Given the DAG for a recognition result and for its cor-
responding ground-truth, it is natural to consider compar-
ing the two as a way of determining how well an algorithm
has done. Attempting this directly, however, gives rise to
two dilemmas. The first is that any reasonable notion of
graph matching subsumes the graph isomorphism problem,
for which no efficient algorithm is known to exist. The other
obstacle is that there may be several different ways to repre-
sent the same logical structure as a graph, all equally appli-
cable. Minor discrepancies could create the appearance that
two graphs are dissimilar when in fact they are functionally
equivalent from the standpoint of the intended application.

At the other end of the spectrum, we could embed the
recognition algorithm in a complete, end-to-end system and
measure the system's performance on a specific task from
the user's perspective: Does it provide the desired informa-
tion? This approach has its own shortcomings, however, as
it limits the generality of the results and makes it difficult to
identify the precise source of errors that arise when complex
processes interact.

We have developed a third methodology that lies midway
between these two. We work directly with the graph repre-
sentation. However, instead of trying to match the graphs
under a formal model, we probe their structure and content
by asking relatively simple queries that mimic, perhaps, the
sorts of operations that might arise in a real application.

Conceptually, the idea is to place each of the two graphs
under study inside a “black box” capable of evaluating a set
of graph-oriented operations (e.g., returning a list of all the
leaf nodes, or all nodes labeled in a certain way). We then
pose a series of probes and correlate the responses of the
two systems. A measure of their similarity is the number of
times their outputs agree, as depicted in Figure 1.
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Figure 1. Overview of graph probing.

As was observed earlier, the problem studied here is
clearly related to the problem of graph isomorphism, the
complexity of which remains open. Many heuristics for de-
termining isomorphism have relied on using vertex invari-
ants, where a vertex invariant consists of a value ������� as-
signed to each vertex � , so that under any isomorphism � ,
if ������������� then ������������������� . One such vertex invari-
ant is the degree of the vertex (or the in- and out-degrees,
if the graph is directed). In fact nauty, a successful soft-
ware package for determining graph isomorphism (see [4]),
relies on such vertex invariants.

This type of result motivates the idea of performing local
probes to try to determine if there exist differences in a pair
of graphs. However, we wish to solve more than this simple
“yes/no” problem; we are also interested in quantifying the
similarity between two graphs. While the probing paradigm
is open-ended, currently we have defined three categories
of probes that are applicable across all of the graphs in our
studies:

Class 0 These probes verify the occurrence of a given type
of node in the graph. A possible Class 0 probe might
be paraphrased as: Does the graph contain a node la-
beled “Line”?

Class 1 These probes combine content and label specifica-
tions. A typical probe might be: Does the graph have
a node labeled “Word” with content “pentagon”?

Class 2 These probes examine the node and edge structure
of the graph by checking in- and out-degrees. An ex-
ample is: Does the graph have a node with in-degree 2
and out-degree 2?

Additional power can be obtained by allowing the graph to
be marked-up in response to probing. For example, we can
confirm that a graph has at least  nodes labeled “Line”
by repeating the following probe  times: Does the graph
contain an unmarked node labeled “Line”? If so, mark it.

The generation of a probe set is based on one or the
other of the graphs in question (recall Figure 1). That graph

will obviously return the definitive responses for all of the
probes in the set, while the other graph will do more or less
well depending on how closely it matches the first. The pro-
cess is then repeated from the other direction, generating the
probe set from the second graph and tallying the responses
for both. The probes are synthesized automatically, work-
ing from the graphs output by the recognition and ground-
truthing processes.

We define a discriminating probe to be a probe that
demonstrates a difference between two graphs. Two funda-
mental questions are of interest: (1) For two graphs that are
different, does there exist at least one discriminating probe?
and (2) Over the entire set of probes, how many are discrim-
inating? The first of these reflects the graph isomorphism
problem. The second can serve as a measure of how similar
the two graphs are. To make this more explicit, we define
the agreement between two probe sets to be:

agreement !#"�$ %'& # of discriminating probes
total # of probes

(1)

Our aim is to equate “agreement” with the traditional con-
cept of “accuracy.”

Several criteria are desirable when designing a probing
strategy: probes should be invariant across graph isomor-
phism, they should be easy to evaluate and the responses
easy to compare, similar graphs should agree more often
than dissimilar graphs, and the probes in a set should be
independent.

An approach that is philosophically quite similar to
ours compares graphs based on their vertex degree his-
tograms [6]. We employ a range of invariants, however,
while that work uses only the one.

3 Experimental Results

To test the concept of graph probing, we designed a se-
ries of simulation studies as well as an experiment using
results from a well known page segmentation algorithm. As
indicated, we would like to be able to equate probing agree-
ment (i.e., Equation 1) with some general notion of accu-
racy. Unfortunately, there is no measure that is both univer-
sal and easy-to-compute which we can use for comparison
purposes (indeed, this point is a primary motivation of our
research). Hence, we have chosen to work “backwards” by
randomly generating a ground-truth graph, and then simu-
lating recognition “errors” by editing the graph in various
ways: adding and deleting nodes, altering labels and con-
tent, etc. The number of edits we perform is an approxima-
tion (an upper bound, in fact) of the true distance between
two DAG's.
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3.1 Entity Graph Model Simulation

The entity graph model reflects a standard document hi-
erarchy: nodes labeled as Page, Zone, Line, or Word. The
edge structure represents two relationships: contains and
next.

Our procedure begins by creating a graph for a page with
a random number of zones. For each zone, we then generate
a random number of lines, and for each line a random num-
ber of words. Content for Word nodes is chosen to be either:
(1) a word randomly selected from the Unix spell dictio-
nary, or (2) a random integer. The editing operations used
to simulate recognition errors are guaranteed to yield an-
other legal entity graph. These include altering the content
of a Word node, deleting an existing Word, Line, or Zone
node (and its associated edges), or inserting a new Word,
Line, or Zone node.

The entire simulation involved generating
� %�% “ground-

truth” entity graphs, performing a randomly selected num-
ber of edits on each, synthesizing and evaluating Class 0,
1, and 2 probes, and gathering relevant statistics. The study
required about � $ � hours to run.

The results for the entity graph experiment are presented
in Table 1 and Figure 2. As can be seen from the upper
table, there was a wide range in the size of the graphs un-
der consideration. On average, approximately three probes
were generated per node, and each pair of graphs required
about half a minute to compare via probing. Overall, the av-
erage probing agreement was % $ � "�" , and the maximum was% $ ����� (i.e., the probes always captured the fact that one of
the graphs contained errors).

The ability of the three probe classes to differentiate the
two graphs is shown in the lower part of Table 1. Class 1
probes never failed in this experiment. Note that Class 0
and Class 2 probes will always miss differences that involve
only content, but off-setting edits have the potential to con-
fuse any of the classes. The last column in this table indi-
cates that there were ��� graph-pairs that were distinguished
only by using Class 1 probes.

The number of discriminating probes as a function of
graph editing operations is displayed in Figure 2. The dat-
apoints show the average at each step along the x-axis,
while the vertical bars give the min/max range. Turning this
around, the size of the discriminating probe set provides a
reasonably dependable measure of the difference between
two graphs. It is likely that refining and/or weighting the
probe sets appropriately could lead to an improvement in
the “outliers,” a topic for future research.

3.2 Table Graph Model Simulation

Entity graphs encode document page structure in a very
general way. A more restricted type of graph is the table

Attribute Min Max Ave

Zones 1 8 4.6
Lines 1 51 20.8
Words 2 270 103.7
Total Nodes 5 330 130.2
Edits 1 63 14.9
Class 0 Probes 19 653 260.3
Class 0 Agreement 0.172 1.000 0.926
Class 1 Probes 12 546 208.6
Class 1 Agreement 0.093 0.998 0.897
Class 2 Probes 19 653 260.3
Class 2 Agreement 0.138 1.000 0.905
Overall Probes 50 1,852 729.2
Overall Agreement 0.138 0.999 0.911
Probes/Node 2.632 2.877 2.792
Probe Time (secs) 0.790 120.670 26.015
Secs/Probe 0.012 0.065 0.029

Probes Detected Missed Rate Unique

Class 0 455 45 91.0% 0
Class 1 500 0 100.0% 34
Class 2 466 34 93.2% 0
Overall 500 0 100.0% n/a

Table 1. Statistics for the entity graph simula-
tion.

graph, as defined in our past work on table recognition [1,
2]. Tables consist of lower-level cells, grouped in terms of
logical rows and columns. Hence, nodes in table graphs
can be labeled Cell, Row, and Column. Edges encode the
contains relationship. For the table graph model, we add a
fourth, more sophisticated class of probes:

Class 3 For a given target node, keys that uniquely deter-
mine its row and column are identified. These are used
to index into the graph, retrieving the content of the
node that lies at their intersection. An example is:
What is the content of the cell that lies at the intersec-
tion of the row indexed by “Overall Agreement” and
the column indexed by “Max”?
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Figure 2. Results for the entity graph simula-
tion.
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Along the same lines as the previous simulation, we be-
gin by generating a ground-truthgraph containing a random
number of rows and columns. Each column is randomly
designated as being either alphabetic or numeric. For the
former, table cells are selected to be a string of one or more
words, while for the latter the contents of cells are assigned
to be random integers. Cells in the first row and column
are always set to be alphabetic (to represent table headers).
Editing operations include changing the contents of a Cell
node, or deleting or inserting a Row or Column.

Table 2 and Figure 3 present the results for running
this simulation for 500 random tables. While these graphs
were smaller than those for the entity graph experiment,
the compute-time was somewhat higher owing to the new
probe class. As Table 2 indicates, the Class 1 and 3 probes
never failed. Overall, the average agreement was found to
be % $ � % � .

Attribute Min Max Ave

Rows 2 15 8.5
Cols 2 6 4.0
Total Nodes 8 111 46.8
Edits 1 22 9.3
Class 0 Probes 16 215 93.7
Class 0 Agreement 0.593 1.000 0.911
Class 1 Probes 8 210 76.3
Class 1 Agreement 0.000 0.988 0.838
Class 2 Probes 16 215 93.7
Class 2 Agreement 0.296 1.000 0.771
Class 3 Probes 6 174 67.7
Class 3 Agreement 0.000 0.974 0.662
Overall Probes 48 814 331.5
Overall Agreement 0.360 0.992 0.808
Probes/Node 3.000 3.850 3.460
Probe Time (secs) 0.840 162.860 30.951
Secs/Probe 0.016 0.207 0.067

Probes Detected Missed Rate Unique

Class 0 436 64 87.2% 0
Class 1 500 0 100.0% 0
Class 2 433 67 86.6% 0
Class 3 500 0 100.0% 0
Overall 500 0 100.0% n/a

Table 2. Statistics for the table graph simula-
tion.

The detection capabilities of the various probe classes
are listed in the lower part of Table 2. The Class 0 and 2
probes exhibit more misses than they did in Table 1. Note
that there was no instance where a class of probes found a
difference that escaped all of the other classes.

The range in discriminating probes as a function of edit-
ing operations is charted in Figure 3. As before, the number
of such probes appears to be a good predictor of the number
of edits used to simulate recognition errors, although the be-
havior of graph-pairs near the extremes of the ranges merits

closer examination.

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Graph Editing Operations

N
u

m
b

er
 o

f 
D

is
cr

im
in

at
in

g
 P

ro
b

es

Figure 3. Results for the table graph simula-
tion.

3.3 Page Segmentation Experiment

Our past experience using graph probing for perfor-
mance evaluation in small-scale experiments involving real
(as opposed to simulated) document analysis results has
been quite favorable (see [1, 2]). As is often the case, how-
ever, the considerable effort required to create the necessary
ground-truth presents a barrier to performing larger studies
featuring our table understanding work at the present time
(for a discussion of some of the associated issues, see [3]
elsewhere in these proceedings). Instead, we developed a
test using a well known page segmentation technique, Nagy
and Seth's X-Y cut algorithm [5]. This partitions a page im-
age recursively, representing the result as a tree. By inject-
ing a controlled amount of random “bit-flip” noise (turning
black pixels white as might arise in a light photocopy), we
can induce differences in the segmentation graph that hope-
fully will be reflected in the agreement computed during
probing.

The test collection consisted of " % pages taken from the
UW1 dataset: ��%���� , � %�%�� , � % "�" , � %���� , 	 % "
� , 	 % " � , �
��% � ,
� %�%�� , � %���� , and � %���� . We chose examples with relatively
complex layouts, so that the X-Y cut graphs would be in-
teresting. Each page was subjected to the bit-flip noise at
rates ranging from 5% to 75% in increments of 5%. We
then compared the segmentation graphs for the original and
noisy pages using our graph probing paradigm.

Basic statistics for the probing evaluation of the " � % test
pages are presented in Table 3. There were errors in ev-
ery one of the recognized pages, and this is reflected in the
maximum overall agreement which is % $ ����� . As in the sim-
ulations, a relatively small number of probes were generated
for each node in the graphs. The probing time averaged " ���
seconds per document page, which appears quite modest
considering the sizes of the graphs involved.
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Attribute Min Max Ave

X-Cuts 299 1,096 510.9
Y-Cuts 59 659 210.4
Text 247 993 480.5
Other 1 29 10.3
Total Nodes 641 2,480 1,212.1
Class 0 Probes 1,284 4,759 2,424.2
Class 0 Agreement 0.776 1.000 0.959
Class 1 Probes 539 2,009 1,001.7
Class 1 Agreement 0.057 0.976 0.565
Class 2 Probes 1,284 4,759 2,424.2
Class 2 Agreement 0.779 1.000 0.960
Overall Probes 3,107 11,527 5,850.1
Overall Agreement 0.661 0.996 0.892
Probes/Node 2.384 2.443 2.412
Probe Time (secs) 48.270 690.110 188.529
Secs/Probe 0.016 0.060 0.028

Probes Detected Missed Rate Unique

Class 0 146 4 97.3% 0
Class 1 150 0 100.0% 4
Class 2 146 4 97.3% 0
Overall 150 0 100.0% n/a

Table 3. Statistics for the page segmentation
experiment.

The lower portion of Table 3 shows that, in nearly ev-
ery case, all of the probe classes were capable of detect-
ing that there were differences between the segmentation
graphs for the original and degraded documents. Only in
four instances did the Class 1 probes outperform the other
two.

The remaining issue, then, is how well graph probing
correlates with the controlled amount of damage we in-
flicted on each page image. These results are plotted in Fig-
ure 4. Here we show a distinct style of datapoint for each
of the " % source documents in the test set. While the corre-
spondence is perhaps “rougher” than in the simulations, an
overall-monotonic behavior is still visible.
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Figure 4. Results for the page segmentation
experiment.

4 Conclusions

There are a number of ways in which this work could be
extended. The design of optimal probe sets and/or weight-
ing schemes is an open question. Beyond experimental
studies, it should be possible to develop formal assertions
about various classes of probes and their abilities to detect
certain kinds of errors with high probability. The probing
paradigm as we have defined it is an off-line procedure (i.e.,
all of the probes are computed in advance). Allowing the
probing to take place on-line, making it adaptive, might add
significant power.
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