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Abstract

While techniques for evaluating the performance
of lower-level document analysis tasks such as op-
tical character recognition have gained acceptance
m the field, attempts to formalize the problem for
higher-level algorithms that incorporate more com-
In this
paper, we describe an intuitive, easy-to-implement

plex structure have been less successful.

scheme for the problem of performance evaluation
when document recognition results are represented in
the form of a directed acyclic graph.

The paradigm, which we call “graph probing,” has
a sound basts in past work on heuristics for solv-
g the graph isomorphism problem. However, our
goal extends beyond simply testing for equivalence;
we also wish to be able to quantify the similarity be-
tween two graphs. The technique described in this
paper provides such a measure. We present re-
sults from three simulation studies based on differ-
ent graph models and one experiment using real OCR
data to demonstrate the applicability of the approach.

1 Introduction

As document analysis systems grow more and more
sophisticated, 1t becomes increasingly important to
be able to evaluate and compare their performance.
With a few notable exceptions, however, little has
been achieved along these lines beyond the infor-
mal assertions that often accompany work published
in the field. A thoughtful overview of the subject
of automated performance evaluation can be found
in [19].

While the directed acyclic graph, or DAG, is a
nearly universal representation across recognition al-
gorithms, the graph structure is typically discarded
when it comes time for evaluation. In the case of
page segmentation, for example, several practical
approaches have been proposed based on distance-
type measures, but these make little or no use of the
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whole graph, and instead focus on pixel-level com-
parisons [13, 26] or matching the text characters out-

put from OCR [2, 13].

There is already a substantial amount of theory
for the problem of evaluating logical structure recog-
nition (see, e.g., [12, 18, 22-24]). Nevertheless, the
empirical literature has largely ignored this work,
perhaps owing to its complexity, and usually resorts
to a simple, manual approach to evaluation: count-
ing by hand the number of components that have

been missed or added (e.g., [21]).

In this paper, we examine in detail a paradigm
we first put forth in the context of our work on ta-
ble recognition [10, 11]. This methodology, known
as “graph probing,” offers an intuitive, easy-to-
implement scheme for the general problem of eval-
uating document recognition when the results are
represented in the form of a DAG, and may be ex-
tensible to other applications as well. Qur approach
uses a probing process to assess the agreement be-
tween the DAG returned by a recognition system
and the DAG created during ground-truthing. Since
different classes of probes are possible, ranging from
very low- to very high-level, from concrete to ab-
stract, this paradigm can be viewed as subsuming
existing techniques that try to measure the struc-
tural similarity of the graph representations on the
one hand, and the effectiveness of recognition results
when incorporated in a particular application on the
other.

We begin by describing the concept of graph prob-
ing in Section 2. After this overview, we present
three different graph models in Section 3 that will
be used in examining how well graph probing might
work in practice. In Section 4, we discuss the results
from three simulation studies and one experiment
using real OCR, data to demonstrate the applicabil-
ity of the approach. Finally, we offer our conclusions
and topics for future research in Section 5.



2 Graph Probing

Given the DAG for a recognition result and the DAG
for its corresponding ground-truth, it is natural to
consider comparing the two as a way of determining
how well an algorithm has done. Attempting this
directly, however, gives rise to two dilemmas. The
first is that any reasonable notion of graph matching
subsumes the graph isomorphism problem, the com-
plexity of which is open, as well as possibly the sub-
graph isomorphism problem, which is known to be
NP-complete [9]. Hence, it seems unlikely that there
exists an efficient, guaranteed-optimal algorithm for
comparing two DAG’s in the general case. While
heuristics have been developed that are sometimes
fast, their worst-case behavior is still exponential
(see, e.g., [18]).

The other obstacle is that there may be several dif-
ferent ways to represent the same logical structure
as a graph, all equally applicable. Minor discrepan-
cies could create the appearance that two graphs are
dissimilar when in fact they are functionally equiv-
alent from the standpoint of the intended applica-
tion. Forcing one graph to correspond to the other
through a rigidly defined matching procedure ob-
scures this important point.

At the other end of the spectrum, we could embed
the recognition algorithm in a complete, end-to-end
system and measure the system’s performance on a
specific task from the user’s perspective: Does it pro-
vide the desired information? (this is “goal-directed
evaluation” as discussed in [19]). This approach has
its own shortcomings, however, as it limits the gen-
erality of the results and makes it difficult to identify
the precise source of errors that arise when complex
processes interact.

We have developed a third methodology that lies
midway between these two. We work directly with
the graph representation. However, instead of trying
to match the graphs under a formal model, we probe
their structure and content by asking relatively sim-
ple queries that mimic, perhaps, the sorts of opera-
tions that might arise in a real application.

Conceptually, the idea is to place each of the two
graphs under study inside a “black box” capable of
evaluating a set of graph-oriented operations (e.g.,
returning a list of all the leaf nodes, or all nodes la-
beled in a certain way). We then pose a series of
probes and correlate the responses of the two sys-
tems. A measure of their similarity is the number
of times their outputs agree. This process is de-
picted in Fig. 1. Note that it is essential the probes
themselves have simple answers that are easily com-
pared. They might return, for example, a count of
the number of nodes satisfying a certain property
(e.g., possessing a particular label), or the content
of a designated leaf node. The probing becomes re-

cursive if the target of a probe is a graph itself. The
intention is that this probing process abstracts the
access of content away from the specific details of
the graph’s structural representation.

Result DAG Ground Truth DAG
Probe
‘ Evaluation ¢

Probe A4 \4 Probe
Synthesis $ Synthesis
‘ / Probe Set ¢
ﬁ NN YN
Responses [Responses.
[T T 2

Figure 1: Overview of graph probing.

As noted earlier, the problem studied here 1s
clearly related to the problem of graph isomor-
phism. The complexity of graph isomorphism re-
mains open and, unfortunately, all known determin-
istic algorithms have worst-case exponential running
times [8]. Many heuristics for determining isomor-
phism have relied on using vertez invariants, where
a vertex invariant consists of a value f(v) assigned
to each vertex v, so that under any isomorphism
I, if I(v) = o' then f(v) = f(v'). One such ver-
tex invariant is the degree of the vertex (or the in-
and out-degrees, if the graph is directed). There
are numerous applications where graph isomorphism
arises; such as mathematical chemistry [25], knowl-
edge retrieval [6], robotics [5] and object recogni-
tion [1], and in these cases vertex invariants are of-
ten used to try to determine isomorphism. In fact,
nauty, a successful software package for determin-
ing graph isomorphism (see [16, 17]), relies on vertex
invariants.

There has been some analysis showing that such
heuristics for determining graph isomorphism can
fail in a catastrophic manner [4]. On the other hand,
it has been proven that for random graphs, there is
a very simple linear time test for checking if two
graphs are isomorphic that is based on the degree of
the nodes of the graphs, and this test succeeds with
high probability [3]. This type of result motivates
the idea of performing local probes to try to deter-
mine if there exist differences in a pair of graphs. In
fact, these local probes will likely provide us with
sufficient evidence to determine whether or not the
two graphs are isomorphic. However, we wish to
solve more than this simple “yes/no” problem; we
are interested in quantifying the similarity between
two different graphs.




Three specific directed acyclic graph models will
be described in the next section. As is common in
the literature, all incorporate nodes that are labeled
as to type. In addition, some nodes also contain con-
tent. The set of types is relatively small and fixed in
advanced, while content is unconstrained and open-
ended. Edges, possibly labeled, express relationships
between nodes.

While the probing paradigm is open-ended, cur-
rently we have defined three categories of probes for
the graphs in our studies:

Class 0 These probes count the number of occur-
rences of a given type of node in the graph. A
typical Class 0 probe might be paraphrased as:
How many nodes labeled “Line” does the graph
have?

Class 1 These probes combine content and label
specifications. A representative Class 1 probe
might be: How many nodes labeled “Word” with
content “pentagon” does the graph have?

Class 2 These probes examine the node and edge
structure of the graph by counting in- and out-
degrees. An example of a Class 2 probe is: How
many nodes have in-degree 2 and out-degree 22

The generation of a probe set is based on one or
the other of the graphs in question (recall Fig. 1).
That graph will obviously return the definitive re-
sponses for all of the probes in the set, while the
other graph will do more or less well depending on
how closely it matches the first. We then repeat
the process from the other direction, generating the
probe set from the second graph and tallying the re-
sponses for both. The probes are synthesized auto-
matically, working from the DAG’s that are output
by the recognition and ground-truthing processes.
For specifying probes, we have implemented a graph-
oriented query language embedded in a general-
purpose programming language, Tcl/Tk [20]; this
offers a great deal of flexibility.

We define a discriminating probe to be a probe
that demonstrates a difference between two graphs.
Two fundamental questions are of interest: (1) For
two graphs that are different, does there exist at
least one discriminating probe?, and (2) Over the
entire set of probes, how many are discriminating?
The first of these reflects the graph isomorphism
problem. The second can serve as a measure of how
similar the two graphs are. To make this more ex-
plicit, we define the agreement between two probe
sets to be:

# of discriminating probes
total # of probes

agreement = 1.0 —

If the agreement is 1.0, then the two graphs are indis-
tinguishable with respect to the probe set in ques-
tion. Values less than 1.0 indicate some degree of
similarity falling short of a perfect match. Our aim
is to equate “agreement” with the traditional con-
cept of “accuracy.”

3 Graph Models

In this section, we describe the three graph mod-
els we use in our experiments. As will be discussed
later, we have written programs to randomly gener-
ate instances of graphs of a given type, as well as to
edit graphs in ways reminiscent of recognition errors.

3.1 Entity Graph Model

The entity graph model reflects a standard docu-
ment hierarchy: nodes labeled as Page, Zone, Line,
or Word [14]." The edge structure represents two re-
lationships: contains and next. An example of one
such entity graph is shown in Fig. 2, corresponding
to the nonsense document fragment given below:

satisfactory extrinsic inexpert frankfurter

abutting tarantula
grillwork pentagon attribution bilharziasis

contains

Word
satisfactory

contains contains

Word
tarantula

contains

Word
frankfurter

Word
attribution

Word
bilharziasis

Figure 2: An instance of an entity graph.

1The entity model as it appears in [14] also includes Char
as another level below Word. We ignore that refinement here
for efficiency reasons.




3.2 Table Graph Model

Entity graphs encode document page structure in a
very general way. A more restricted type of graph is
the table graph, as defined in our past work on ta-
ble recognition [10, 11]. Tables consist of lower-level
cells; grouped in terms of logical rows and columns.
Hence, nodes in table graphs can be labeled Cell,
Row, and Column. Edges encode the contains re-
lationship. An example of a table graph as de-
rived from the following randomly generated table
is shown in Fig. 3:

regression radiant gusset prick sima Nostrand

clubroom incubi 593134723 ant Sussex
ascribe gam 1813217419 opulent
shovel registrable 615003753  astride Peru

connected to any other node irrespective of its label,
which is assigned randomly. Fig. 4 shows an example
of a random graph generated by our procedure.

.
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Figure 3: An instance of a table graph.

For the table graph model, we add a fourth, more
sophisticated class of probes:

Class 3 These probes mimic simple database-style
queries, although phrased entirely in terms of
graph manipulations. For a given target node,
keys that uniquely determine its row and col-
umn are identified. These are used to index into
the graph, retrieving the content of the node (if
any) that lies at their intersection. An example
of a Class 3 probe for the graph in Fig. 3 is:
What s the content of the cell that lies at the
intersection of the row indexed by “ascribe gam”
and the column indezed by “astride Peru”? The
response would be: opulent.

Class 3 probes are particularly interesting in that
they lie at a higher level of abstraction than the
other, simpler kinds of probes. Indeed, if the appli-
cation in question was to build an interactive table
look-up system, it could be argued that the results
of Class 3 probing are more important than, say,
counting the number of nodes labeled a certain way.
Two graphs could be structurally quite different, but
still respond similarly to Class 3 probes; to the user,
they would be functionally the same.

3.3 Random Graph Model

The final model we consider in our experiments, the
random graph model, is a completely random di-
rected acyclic graph. As with the previous two mod-
els, nodes are labeled with a type and optional con-
tent. There is only one kind of edge, so these are
not labeled. However, unlike the entity and table
graphs, there are no restrictions on what constitutes
a “legal” instance of the model; any node can be
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Figure 4: An instance of a random graph.

4 Experimental Results

To test the concept of graph probing, we designed a
series of simulation studies as well as an experiment
using real results from a commercial OCR system.
As indicated, we would like to be able to equate
probing agreement (i.e., Eq. (1)) with some gen-
eral notion of accuracy. Unfortunately, there is no
measure that is both universal and easy-to-compute
which we can use for comparison purposes (indeed,
this point is a primary motivation of our research).
Hence, we have chosen to work “backwards” by ran-
domly generating a ground-truth graph, and then
simulating recognition “errors” by editing the graph
in various ways: adding and deleting nodes, altering
labels and content, etc. The number of edits we per-
form is an approximation (an upper bound, in fact)
of the true distance between two DAG’s. In the case
of the OCR experiment where there does already ex-
ist a practical, accepted methodology for computing
accuracy, string edit distance, we correlate probing
agreement with normalized edit distance.

In the studies that follow, it is important to keep
in mind that the probes are always generated au-
tomatically, working directly from the recognition
result and the ground-truth. Once the probe classes
have been defined (which need only be done once),
graph probing is a completely autonomous evalua-
tion paradigm.




4.1 Simulation Results for the
Entity Graph Model

Our procedure begins by creating a graph for a page
with a random number of zones (all random quan-
tities in our simulations are chosen uniformly from
within a specified range). For each zone, we then
generate a random number of lines, and for each line
a random number of words. Content for Word nodes
is chosen to be either: (1) a word randomly selected
from the Unix spell dictionary, or (2) a random inte-
ger. The editing operations used to simulate recog-
nition errors are guaranteed to yield another legal
entity graph. These include altering the content of
a Word node, deleting an existing Word, Line, or
Zone node (and its associated edges), or inserting a
new Word, Line, or Zone node.

The entire simulation involved generating 500
“ground-truth” entity graphs, performing a ran-
domly selected number of edits on each, synthesizing
and evaluating Class 0, Class 1 and Class 2 probes,
and gathering relevant statistics. The study required
about 4.5 hours to run on an SGI O2 workstation.

The results for the entity graph experiment are
presented in Tables 1 and 2 and in Fig. 5. As can
be seen from the first table, there was a wide range
in the size of the graphs under consideration. In
terms of probes, those from Class 1 were by far the
most prevalent (the other two classes sum the re-
sults for all nodes in certain broad categories: hav-
ing the same label or the same in-/out-degree). On
average, approximately one probe was generated for
each node, and each pair of graphs required about
half a minute to compare via probing.? Overall, the
average probing agreement was 0.853, and the maxi-
mum was 0.996 (i.e., the probes always captured the
fact that one of the graphs contained errors).

The ability of the three probe classes to differen-
tiate the two graphs is shown in Table 2. Class 1
probes never failed in this experiment. Note that,
by definition, Class 0 and Class 2 probes will always
miss differences that involve only content, but vari-
ous offsetting combinations of edits have the poten-
tial to confuse any of the classes. The last column in
Table 2 indicates that there were 34 graph-pairs that
were distinguished only by using Class 1 probes.

The number of discriminating probes as a func-
tion of the number of graph editing operations is
shown in the chart in Fig. 5. The datapoints show
the average at each step along the x-axis, while the
vertical bars give the min/max range. Turning this
around, it can be seen that the size of the discrim-
inating probe set provides a reasonably dependable

2 As noted earlier, our probes are written in an extension
of Tcl/Tk, an interpreted scripting language. In a “produc-
tion” environment, a more efficient implementation could be
achieved using a compiled language.

Table 1: Statistics for the entity graph experiment
(500 random graphs).

| Attribute || Man | Maz | Ave |
Zones 1 8 4.9
Lines 1 54 21.7
Words 2 278 108.4
Nodes 5 341 136.0
Edits 1 57 13.3
Class 0 Probes 8 8 8.0
Class 0 Agreement 0.250 1.000 0.530
Class 1 Probes 9 522 216.9
Class 1 Agreement 0.000 0.998 0.912
Class 2 Probes 10 39 29.4
Class 2 Agreement 0.000 1.000 0.576
Overall Probes 28 561 254.3
Overall Agreement || 0.177 0.996 0.853
Probes/Node 0.866 1.750 0.985
Probe Time (secs) 0.780 | 145.010 | 32.791
Secs/Probe 0.025 0.258 0.107

Table 2: Performance by probe class for the entity
graph experiment (500 random graphs).

Probes || Detected | Missed | % Detected | Unique |

Class 0 450 50 90.0% 0
Class 1 500 0 100.0% 34
Class 2 466 34 93.2% 0
Overall 500 0 100.0% n/a

measure of the difference between two graphs. It
seemns likely that refining and/or weighting the probe
sets appropriately could lead to an improvement in
the “outliers;” this is a topic for future research.
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Figure 5: Discriminating probes as a function of
edits for the entity graph experiment (500 random

graphs).

4.2 Simulation Results for the Table
Graph Model

Like the previous simulation, we begin by generating
a ground-truth graph containing a random number
of rows and columns. Each column is randomly des-
ignated as being either alphabetic or numeric. For
the former, table cells are selected to be a string of
one or more words chosen from the spell dictionary,



Table 3: Statistics for the table graph experiment
(500 random graphs).

| Attribute [ Min | Maz | Ave |
Rows 2 15 8.5
Cols 2 6 4.0
Nodes 8 111 46.7
Edits 1 24 9.8
Class 0 Probes [ [ 6.0
Class 0 Agreement 0.000 1.000 0.362
Class 1 Probes 8 174 68.3
Class 1 Agreement 0.154 0.986 0.811
Class 2 Probes 4 6 5.9
Class 2 Agreement 0.000 1.000 0.122
Class 3 Probes 8 174 67.5
Class 3 Agreement 0.000 0.943 0.641
Overall Probes 26 360 147.7
Overall Agreement || 0.056 0.966 0.686
Probes/Node 1.231 1.674 1.561
Probe Time (secs) 0.870 | 178.610 | 32.793
Secs/Probe 0.032 0.496 0.164

Table 4: Performance by probe class for the table
graph experiment (500 random graphs).

Probes || Detected | Missed | % Detected | Unique |

Class 0 447 53 0.894 0
Class 1 500 0 1.000 0
Class 2 440 60 0.880 0
Class 3 500 0 1.000 0
Overall 500 0 1.000 n/a

while for the latter the contents of cells are assigned
to be random integers. Cells in the first row and
column are always set to be alphabetic (to represent
table headers). Editing operations include chang-
ing the contents of a Cell node, deleting a Row or
Column node (along with all of its associated Cell
nodes), or inserting a new Row or Column. In ad-
dition to the Class 0, 1, and 2 probes of the first
study, we also include the Class 3 probes described
in subsection 3.2.

Tables 3 and 4 and Fig. 6 present the results
for running this simulation for 500 random tables.
While these graphs were smaller than those for
the entity graph experiment, the compute-time was
nearly identical owing to the new probe class. As
Table 3 indicates, the Class 1 and 3 probes never
failed. Overall, the average agreement was found to

be 0.686.

The detection capabilities of the various probe
classes are listed in Table 4. That the Class 0 and 1
probes exhibit roughly the same number of misses as
they did in Table 2 is coincidental (this depends on
the distributions of the random edits used). Note
that there was no instance where a single class of
probes found a difference that escaped all of the
other classes.

The range in discriminating probes as a function
of editing operations is charted in Fig. 6. As before,
the number of such probes appears to be a good

predictor of the number of edits used to simulate
recognition errors, although the behavior of graph-
pairs near the extremes of the ranges merits closer
examination.
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Figure 6: Discriminating probes as a function of
edits for the table graph experiment (500 random

graphs).

4.3 Simulation Results for the
Random Graph Model

The previous two studies were restricted in terms
of the initial graphs and the permissible edits that
could be performed on them; the graphs always had
to be legal instances of an entity or table graph. In
this final simulation, the generated graphs are com-
pletely unconstrained random DAG’s. Node labels
are chosen from among the 26 upper case letters A-
Z. Certain nodes are designated as leaf nodes; these
are assigned random content (words or integers).
The remainder of the nodes are attached to vary-
ing numbers of children. As was depicted in Fig. 4,
the graphs need not be fully connected. The set
of possible editing operations consists of changing
node labels or content, deleting or inserting nodes,
and deleting or inserting edges.

Results for 500 random graphs are given in Ta-
bles 5 and 6 and Fig. 7. There were, on average,
251 nodes and 328 edges in the graphs in this study.
As Table 5 shows, the average overall agreement was
0.872, while the maximum agreement was 0.966 (i.e.,
the fact that two graphs were different was detected
without fail when all probe classes were taken into
account).

The ability of each class to detect the differences
is shown in Table 6. The best-performing class
(Class 2) contained at least one discriminating probe
97% of the time, while the worst (Class 1) was suc-
cessful 89% of the time. Perhaps the most important
conclusion to be drawn from this table is that none
of the classes was redundant; each of them detected
at least one case that the other two classes missed.

The plot of discriminating probes versus graph



Table b: Statistics for the random graph experiment

(500 random graphs).

| Attribute [ Min | Maz | Ave |
Nodes 73 251 164.4
Edges 58 328 180.9
Edits 1 25 11.5
Class 0 Probes 46 52 51.6
Class 0 Agreement 0.520 1.000 0.841
Class 1 Probes 50 322 165.2
Class 1 Agreement 0.783 1.000 0.962
Class 2 Probes 28 56 42.3
Class 2 Agreement 0.171 1.000 0.570
Overall Probes 140 413 259.1
Overall Agreement || 0.620 0.993 0.872
Probes/Node 0.577 1.142 0.816
Probe Time (secs) 3.070 | 249.940 | 17.926
Secs/Probe 0.019 1.032 0.069

Table 6: Performance by probe class for the random
graph experiment (500 random graphs).

| Probes || Detected | Missed | % Detected | Unique |

Class 0 474 26 0.948 1
Class 1 447 53 0.894 8
Class 2 486 14 0.972 6
Overall 500 0 1.000 n/a

editing operations shown in Fig. 7 bears a strong re-
semblance to those for the previous two simulations
(Figs. 5 and 6). This provides support for our belief
that graph probing is a general evaluation paradigm
that can be applied across a range of applications
that employ graph representations.
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Figure 7: Discriminating probes as a function of ed-
its for the random graph experiment (500 random

graphs).

4.4 Experimental Results for Output
from an OCR System

Our past experience using graph probing for perfor-
mance evaluation in small-scale experiments involv-
ing real (as opposed to simulated) document anal-
ysis results has been quite favorable (see [10, 11]).
As 1s often the case, however, the considerable ef-
fort required to create the necessary ground-truth

Table 7: Accuracies for the OCR experiment (60
document pages).

OCR Accuracy

Document Type Muin | Maz | Ave

Printed 93.9% [ 96.7% [ 95.8%
Faxed 60.7% | 88.4% | 73.7%
3rd Generation 63.4% | 93.2% | 80.7%
Light 78.8% | 89.8% | 84.6%
Dark 92.6% | 96.6% | 95.5%
Annotated 56.3% | 83.3% | 74.9%

presents a barrier to performing larger studies fea-
turing our table understanding work at the present
time. Instead, we designed an experiment making
use of the output from a commercial OCR system,
post-processed in the obvious way to yield a graph
employing the lower two levels of the entity graph
model (i.e., Line and Word nodes). Since string
edit distance is an accepted methodology for evalu-
ating OCR results [7], we have access to a standard
to which to compare graph probing.

The test collection consisted of 10 professionally
written news articles gathered from Usenet, ranging
in length from 91 to 379 words. For each document,
six different versions were created, each formatted
in 11-point Times font with a 13-point line spacing
under Microsoft Word. One copy of each page was
printed and then scanned at 300 dpi using a UMAX
Astra 1200S scanner. The remaining five versions of
the page were subjected to one of five different degra-
dations before scanning: faxing, noticeably light or
dark or third generation photocopying, or handwrit-
ten annotation (“redacting”) that obscured a ran-
domly chosen 20% of the lines on the page. All of
the page images were then OCR’ed using Caere Om-
niPage Limited Edition.

Normalized string edit distance was used to com-
pute the OCR accuracies [7]. The minimum, max-
imum, and average accuracies for the 10 pages of a
given type are listed in Table 7. As can be seen, some
of the documents experienced severe damage, yield-
ing a wide range of accuracies (dropping from 96.7%
down to 56.3%). In addition to the many expected
character misrecognitions (which induce word-level
errors in the entity graph representation), this par-
ticular OCR system attempts to concatenate text
lines that it believes fall logically within the same
paragraph. This policy leads to the potential for
disagreements at the Line level in the entity graph
model as well.

Basic statistics for the probing evaluation of the
60 test pages are presented in Table 8. There were
errors in every one of the recognized pages, and this
is reflected in the maximum overall agreement which
1s 0.963. As in the simulations, approximately one
probe was generated for each node in the graphs
(under the current definitions of the probe sets, this



Table 8: Statistics for the OCR experiment (60 doc-
ument pages).

| Attribute || Man | Maz | Ave |
Zones 1 1 1.0
Lines 2 43 16.1
Words 42 379 195.4
Nodes 48 424 213.5
Class 0 Probes 8 8 8.0
Class 0 Agreement 0.500 1.000 0.604
Class 1 Probes 107 758 390.8
Class 1 Agreement 0.371 0.998 0.754
Class 2 Probes 17 40 27.5
Class 2 Agreement 0.051 1.000 0.173
Overall Probes 134 804 426.3
Overall Agreement || 0.359 0.963 0.709
Probes/Node 0.965 1.107 1.011
Probe Time (secs) 7.210 | 269.600 | 90.585
Secs/Probe 0.054 0.337 0.177

Table 9: Performance by probe class for the OCR
experiment (60 document pages).

| Probes || Detected | Missed | % Detected | Unique |

Class 0 59 1 0.983 0
Class 1 60 0 1.000 1
Class 2 59 1 0.983 0
Overall 60 0 1.000 n/a

quantity is tied strongly to the number of words in
the two documents in question). The probing time
averaged 90 seconds per document page. While this
is significantly longer than the time needed to com-
pute simple string edit distance, one must remember
that graph probing is a more general measure, capa-
ble of detecting errors in logical structure as well as
in content.

Table 9 shows that all of the probe classes were
capable of detecting that there were differences be-
tween the ground-truth and recognized documents
in nearly every case (recall that the OCR accuracies
ranged as high as 96.7%). Only in one instance did
the Class 1 probes outperform the other two.

The remaining issue, then, 1s seeing how well
graph probing correlates with traditional string edit
distance. These results are plotted in Fig. 8. Here
we show a distinct style of datapoint for each of the
six kinds of copies in the test set. This sort of eval-
uation is not a particularly fair test for graph prob-
ing as the entity graph model we are currently us-
ing is word- and not character-based (the model can
only distinguish between “zero” and “one or more”
errors in a word — it cannot count errors). Even
so, while the correspondence between the two mea-
sures 1s somewhat hazier than in the simulations, an
overall-monotonic behavior is still visible.

5 Conclusions

This paper has described an intuitive, easy-to-
implement scheme for the problem of performance
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Figure 8: Graph probing agreement as a function of
edit distance for the OCR experiment (60 document

pages).

evaluation when document recognition results are
represented in the form of a directed acyclic graph.
Graph probing can be seen as having its roots in past
work on heuristics for solving the graph isomorphism
problem, however its utility extends beyond simply
testing graphs for equivalence; it also allows us to
quantify the similarity between two graphs. We pre-
sented results from three simulation studies using
different graph models and an experiment employ-
ing real OCR data to demonstrate the applicability
of the approach.

There are a number of ways in which this work
could be extended. The design of optimal probe
sets and/or weighting schemes is an open question.
Beyond experimental studies, it should be possible
to develop formal assertions about various classes of
probes and their abilities to detect certain kinds of
errors with high probability. The probing paradigm
as we defined it in Section 2 is an off-line procedure
(i.e., all of the probes are computed in advance, be-
fore the first probe is evaluated). Allowing the prob-
ing to take place on-line, making it adaptive, might
add significant power.

Lastly, other applications could make use of this
technique for graph comparison. In information re-
trieval, for example, queries and target documents
can sometimes be represented in terms of graphs
(e.g., HTML parse trees).
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