
A Text-to-Speech Platform for Variable Length Optimal Unit Searching Using
Perceptual Cost Functions

Minkyu Lee, Daniel P. Lopresti, Joseph P. Olive

Bell Labs, Lucent Technologies,
600 Mountain Avenue, Murray Hill, NJ 07974, USA����� ���	�	
	�
� ���	��� �������������������������! "!��� � #
�$�%"��� ���%�

Abstract
In concatenative Text-to-Speech, the size of the speech cor-

pus is closely related to synthetic speech quality. In this paper,
we describe our work on a new corpus-based Bell Labs' TTS
system. This encompasses large acoustic inventories with a rich
set of annotations, models and data structures for representing
and managing such inventories, and an optimal unit selection
algorithm that accommodates a broad range of possible cost cri-
teria. We also propose a new method for setting weights in the
cost functions based on a perceptual preference test. Our results
show that this approach can successfully predict human prefer-
ence patterns. Synthetic speech using weights determined in
this manner consistently demonstrates smoother transitions and
higher voice quality than speech using manually set weights.

1. Introduction
In concatenative Text-to-Speech, there is a trade-off between
corpus size and speech quality. Smaller corpus-based TTS sys-
tems, typically diphone-based, require more frequent unit con-
catenations, often resulting in speech quality degradation. For
applications with limited resources (e.g. hand-held devices),
TTS systems with a small set of diphone units are more ap-
propriate. Research in this field is focused on better speech pro-
duction models and signal processing methods to improve the
quality of synthetic speech from the limited set of units.

On the other hand, TTS applications based on personal
computers or larger computer systems can afford the large
corpus-based approach, which have more potential for higher
quality synthetic speech. In large corpus systems, units of any
size, from diphone, triphone, or longer, can be used for synthe-
sis. Longer units can better preserve the naturalness of the orig-
inal speech. Moreover, the same unit can have multiple entries
in the speech corpus, each entry recorded with different prosody
and in different contexts. By selecting a unit whose prosody is
already close to the target prosody, the burden of signal pro-
cessing for prosody modification can be alleviated. Fewer con-
catenations and less signal processing enable large corpus TTS
systems to produce smoother and more natural sounding syn-
thetic speech.

Recent research issues in this area include speech corpus
construction, appropriate unit-searching algorithms, etc. Naka-
jima and Hamada [1] suggested an automatic synthesis unit gen-
eration method using a statistical clustering technique. Allo-
phones are determined and automatically generated from a la-
beled speech corpus. Hunt and Black [2] proposed a phoneme-
based unit-searching algorithm, where the Viterbi searching al-
gorithm is applied to select the best units. Two cost functions,
target cost and concatenation cost, are defined. To determine

the weights of sub-cost functions, two methods were proposed:
weight space search and regression training. The algorithms
find a set of weights which minimize the difference between
the natural and synthetic speech. Donovan [3] constructed a
large speech corpus based on decision-tree state-clustered hid-
den Markov models. Dynamic programming search is carried
out to determine synthesis units, which will have prosody (du-
ration, energy and pitch) such that the amount of quality degra-
dation introduced by the signal processing module that follows
(TD-PSOLA) is minimized. Breen and Jackson [4] dynamically
generated a sequence of units based on a global cost. The costs
are based on purely phonologically motivated criteria without
reference to any acoustic features. The unit selection process
makes no direct use of acoustic information.

In general, given the target specification from the front-end
of the TTS system, a unit selection algorithm searches through
the speech corpus to find a set of units that (1) connect well,
(2) are from similar context, (3) are close to the target prosody
specification, and (4) are as long as possible. However, the cal-
culation of costs, especially determining the weights of the sub-
costs, is a very complicated issue.

In this paper, we describe our recent work on a new corpus-
based Bell Labs' TTS system. Key features of this research plat-
form include support for large acoustic inventories with a rich
set of annotations, models and data structures for representing
and managing such inventories, an optimal unit selection algo-
rithm that accommodates a broad range of possible cost criteria,
and an interactive tool to provide visualizations and encourage
exploration.

We also propose a new method for unit-searching based
on a perceptual preference test. The proposed algorithm is de-
signed to find the weights in the cost functions in more system-
atic and meaningful way. The algorithm searches for a set of
weights that can produce a ranking of renditions that is close to
the perceptual test results. The downhill simplex method is used
for the multi-dimensional search of the weights. A dissimilarity
measure is proposed to evaluate the closeness of two rankings.
In about 83 percent of the cases, the unit selection algorithm
using the optimal set of weights chooses the same rendition
that human listeners prefer. These results show that the pro-
posed weight optimization algorithm can successfully predict
the human preference pattern. Synthetic speech using the opti-
mal weights consistently shows smoother transitions and higher
voice quality than speech using manually determined weights.

In Section 2, we present an overview of the system. The op-
timal unit selection algorithm is described in Section 3. Our cost
functions, which include acoustic and concatenation compo-
nents, are explained in Section 4. The downhill simplex method
is briefly introduced in Section 5. A dissimilarity measure is

described in Section 6. Finally, we present simulation results in
Section 7 and our concluding remarks in Section 8.

2. System Overview
The current system is a research prototype consisting of:

1. A flexible, unifying data structure, the annotated string.

2. Efficient representation of acoustic inventories and target
utterances in terms of annotated strings.

3. Software routines for manipulating annotated strings to
support building and maintaining acoustic inventories.

4. C language implementation of the Viterbi dynamic pro-
gramming algorithm for performing optimal unit selec-
tion.

5. An interactive system for exploring the results of unit
selection from a large corpus, including visualizations
for the search graph and a wide range of useful statistics.

Facilitating the management of acoustic inventories is a pri-
mary goal of our work. Previously such inventories were as-
sembled and carefully tuned by hand. The shift to very large
corpora, though, as well as a desire to support quickly retar-
getable, application-specific synthesis systems precludes such a
time-consuming, labor-intensive process. Rather, we have de-
veloped a way of automating the construction of new invento-
ries once the basic corpus has been annotated.

This paradigm centers around the annotated string data
structure, which encodes the phonetic identity of each unit as
well as an open-ended set of features extracted from the speech
samples. An example of an annotated string fragment is shown
in Figure 1. This data structure is complete in the sense that
it includes everything we need to perform optimal unit selec-
tion for synthesis. Acoustic inventories, then, are simply collec-
tions of annotated strings. We have created a programming en-
vironment, embedded in a general-purpose scripting language,
that allows for the manipulation of such inventories program-
matically. Functions provided include converting between var-
ious formats, assembling and filtering collections of annotated
strings, and cutting strings into smaller units based on rules that
may invoke regular expression pattern matching, acoustic crite-
ria, or a combination of both.

t U m i l y & n

end=0.1671 • cl=0.1078

end=0.2871 • m
id=0.2339 • stress=" • pbound=#1

end=0.3656 • m
id=0.3271 • pbound=#2

end=0.4322 • m
id=0.3981 • stress="

end=0.5018 • m
id=0.4662

end=0.6211 • m
id=0.559

end=0.69 • m
id=0.653

end=0.7859 • m
id=0.7304 • pbound=#1

*
end=0.1076

Figure 1: An annotated string fragment.

As a result, it becomes possible to write simple programs
that build and modify inventories, so that generating a new in-
ventory now requires minutes of CPU time instead of days or

weeks of manual effort. The output of this process is also de-
signed to be compact and efficient; several hours of recorded
speech yields an inventory requiring only a few megabytes of
storage, and unit selection achieves real-time throughput. In
this way, speech synthesis can be easily and inexpensively spe-
cialized to the application of interest.

Optimal unit selection is accomplished via Viterbi search.
The problem is formulated as finding a minimum-cost path
through a graph consisting of all possible ways of concatenat-
ing inventory units of any length to realize the target utterance.
Since the inventories in question may be large, the graphs can
easily consist of ten thousand or more nodes. While the current
implementation is a research prototype and not yet optimized
for speed, its performance is still quite reasonable, measuring
on the order of seconds for an average input sentence. Beyond
returning a minimum-cost synthesis path, the search code is also
capable of outputting the complete computation graph, includ-
ing all of the nodes and their associated costs, as well as all al-
ternate optimal paths (often there is more than one). These can
be explored by the user (e.g. a TTS researcher, or a field engi-
neer designing an acoustic inventory for a specific application)
using a graphical interactive system we have developed.

Figure 2: Screen snapshot of the graphical tool for visualizing
TTS unit selection results.

Figure 2 shows a screen snapshot of our tool for viewing
and manipulating synthesis results. The lower portion of the
screen shows the search graph. Each node corresponds to a
specific diphone from the current inventory (diphones are the
shortest fundamental unit in our system, but units of any length
may arise in general); as can be seen, there are 45 instances of
the “st” diphone in the corpus in question (a small inventory
was used to generate this particular example to keep the figure
legible – the full-size corpus we normally use has 254 instances
of “st”). The default optimal path is represented by the dark
edges, with the thicker edges (e.g. “*Dis”) representing con-
tiguous units from the inventory (i.e. no concatenation is nec-
essary). Two alternate optimal paths are shown by the lighter

colored edges beneath the default path. The upper portion of
the screen shows the target utterance and the accumulated cost
proceeding from left to right. The tool itself is coded in Tcl/Tk,
a well-known scripting language designed for building user in-
terfaces.

3. Unit Selection
After the target phone sequence and its prosody are determined
by the text analysis module, the entire speech corpus is searched
to find the optimal units for synthesis. The basic strategy is
to select the longest possible candidate at each step, provided
its acoustic features and phonetic environment match well with
those of the target. The former include mean F0, slope of F0,
duration, and accentuation, while the latter refers to the types of
the surrounding phones. An acoustic cost is calculated to evalu-
ate the compatibility between the candidate unit and the target.
If two units from different contexts need to be concatenated,
the location of the best connection is determined by searching
for a point where the spectral distance is minimal. The spec-
tral distance at this point is used to assess a concatenation cost
between the two units. Finally, using these cost functions and
Viterbi search, an optimal sequence of units realizing the target
utterance is selected.

Our implementation of the dynamic programming algo-
rithm makes use of a number of sophisticated data structures so
that large search graphs can be handled efficiently. This process
runs as a server; inventories and target utterances are loaded
dynamically. The two cost functions have access to all of the
attributes encoded in the annotated string data structure, and in-
corporating new costs is straightforward. Figure 3 charts the
computation times on an SGI O2 workstation (200 MHz MIPS
R5000 CPU, 64 MB RAM) for a run that processed 1,104 utter-
ances from the transcript of a recent U.S. Supreme Court case.
The corpus consisted of 1,587 recorded sentences drawn from
an unrelated source. Despite the fact that these search graphs
can be quite large (averaging over 8,500 nodes) and neither the
inventory nor the code is optimized yet, the average time for
unit selection is less than 10 seconds.���

��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��

0

5

10

15

20

25

30

35

40

45

50

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

Nodes in Unit Selection Graph

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
ec

.)

Figure 3: Computation time as a function of the number of
nodes in the unit selection graph.

While listening tests are, of course, the most important sub-
jective criterion, one simple quantitative measure of the effec-
tiveness of unit selection is its ability to choose units of differ-
ing lengths (and, in particular, longer units where appropriate).
The histogram in Figure 4 shows the number of times units of
a given length were used in the synthesis experiment just de-

scribed. Somewhat more than half of the units were longer than
the minimum, 2, which corresponds to the basic diphone. Over
500 units were length 7 or longer, with the average being 2.9.
Since the test utterances were derived from a different “genre”
than the acoustic inventory, it seems likely that even better re-
sults could be obtained using a corpus targeted to a specific ap-
plication of interest.���

��
��
��
��
��
��
��
�

���
��
��
��
��
��
��
�

14,974

12,224

4,604

1,342

640
295 77 49 52 10 2

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

2 3 4 5 6 7 8 9 10 11 12

Unit Length

C
o

u
n

t
Figure 4: Histogram showing the number of times units of a
given length were used (length 2 corresponds to diphones).

There is no doubt that proper unit selection has a critical
impact on the quality of the resulting synthetic speech. Since
the cost functions are weighted sums of sub-costs, the weights
control the individual contributions of the various sub-costs to
the total. They should also reflect the relative sensitivity of a
feature to quality degradation when signal processing is applied
to modify the feature. Hence, determining an appropriate set of
weights for the cost functions is a fundamental problem.

4. Cost Functions
We denote the target specification provided by the front-end of
a TTS system as 	 =

� 	�

�������
��� � � for an input sentence
of P phonemes. Each target phoneme 	�
 is further annotated
with ��
 features, i.e., 	�
 = ���
 ������������� ��
 � . Candidates
from the speech corpus are also annotated with M features, i.e.,
 = �"!
 �
�#�$�%�&�'� ��
 � .

The cost functions consist of an acoustic cost and a con-
catenation cost. The acoustic cost is a measure of the compat-
ibility between a candidate unit and its target specification. A
small acoustic cost means that the candidate has features that
are close to the target specification. The acoustic cost between	�
 and a candidate

 can be calculated as

(
)� *
+,-
.�/�021

-
�"3 1
-'4 �

-
5 !

-76
8 (1)

The functions 3 1
-
5$9 �:�;�����#��
 , are sub-cost functions for

the acoustic feature elements, and each sub-cost function is
weighted by 0 1

-
. The concatenation cost is a measure of the

compatibility between two consecutive units. Similarly, a small
concatenation cost will result in smooth concatenation. The
connection cost between the

4
��<=�

6?>A@
unit and �

>A@
unit is

B
C� *
+,-
.�/�02D

-
�"3 D
-74 !FE
AG /IH

-
5 !

-'6
8 (2)

The functions 3 D
- 5;9 � � �����#��
 , are sub-cost functions for the

feature elements, which will be explained in Section 4.1. Each
sub-cost function is weighted by 0 D

-
. Total cost is the sum of

the acoustic cost and the connection cost:

B � �,

 .�/
4 (
 � B

6
(3)

A set of candidate units that minimize the total cost for an input
sentence can be found by Viterbi searching algorithm.

The weights, 0 1
-

and 0 D
-
, control the individual contribu-

tion of the sub-costs to the total cost. If the weight for pitch
mismatch is larger than the other weights, the unit-searching al-
gorithm will try to find a set of units whose pitch is close to
the target pitch, neglecting other features. The weights also de-
termine the relative sensitivity of a feature to the quality degra-
dation when signal processing is applied to modify the feature.
For example, if the ratio of the weight for pitch mismatch to the
weight for stress mismatch is

/��� , it implies that pitch modifica-
tion by 50 Hz is equivalent (in terms of the quality degradation)
to synthesizing a stressed vowel using a non-stressed unit.

Unfortunately, determining the weights is not a simple task.
The proposed algorithm is designed to find the weights in more
systematic and meaningful way.

4.1. Sub-cost functions

For the calculation of the sub-costs, 3 1
-

and 3 D
- 5 9 � �;�����#��
 ,

we use acoustic features as well as phonetic features of units.
Acoustical features include pitch, duration, RMS energy, and
the first three formants frequencies. Phonological features used
are accent and phonemic context.

Most signal processing algorithms including PSOLA suffer
degradation of the original speech quality as the pitch is mod-
ified. The larger the modification factor, the more severe the
degradation which will be introduced into the synthetic speech.
Concatenating two units that have different pitch frequencies
generates a distortion due to the pitch mismatch [6]. Thus, a
sub-cost function for pitch frequency is defined as the absolute
pitch difference between units. The quality degradation due to
duration and energy modification is relatively minor but are not
negligible. Thus, we also define sub-cost functions for duration
and energy in similar forms as that of pitch function. Spectral
discontinuity between concatenating units is measured by a nor-
malized Euclidean distance of the first three formants as:

3 D ���	� D
>

 1
�
4
� / 5 ��

6
� �,

 .�/ � �

/
 <��

 �
0
 5 (4)

where 0 / =50, 0
 =100, and 0 � =180. The first three formant
frequencies are estimated by the phone dependent formant esti-
mation method described in [7].

Another sources of quality degradation are the mismatch
of stress and phonetic environment. Using a stressed unit
for synthesizing an unstressed vowel, or vice versa, does not
produce very good speech quality. The acoustic cues for
stressed/unstressed vowel is not yet fully understood. We use
a binary cost function, i.e., when both the target and candidate
are stressed or unstressed, the sub-cost value is zero. Otherwise,
the value is set to one. Similarly, if the surrounding phonemes of
the candidate are in the same class as the surrounding phonemes
of the target, the sub-cost is zero. Otherwise, the sub-cost value
is set to one. The phoneme classes are categorized by the place
of articulation and manner of each phoneme.

An additional sub-cost function is the continuity sub-cost
function. The weight for continuity sub-cost function is usually
very big in order to encourage the algorithm to find longer units.

5. Weight Optimization – Downhill Simplex
Method

A schematic diagram of the proposed system is shown in Fig-
ure 5. The goal is to optimize the sub-cost weights such that the
unit-searching algorithm behaves as human listeners do.

The test words consists of a set of single-syllable words,�
=
� �
 �7� � �2�F� � �

, where � is the number of words. For
each word

�
 , multiple renditions �
 = �	�
 ���"�C� �2�F� ��
 � are
synthesized using various candidate units, which have different
prosody and are from different context. The number of ren-
ditions ��
 depends on the number of candidates in the speech
corpus.

Dissimilarity

Optimization

Test Ranking (TR) Reference Ranking (RR)

Test

Update Perceptual
Preference

Measure (DSM)

Renditions (R)

Test words

Speech

Corpus
Synthesis

WeightsGet rankings

Calculate Total costs
and

Figure 5: A schematic diagram of the proposed algorithm.

Listening tests are performed on the set of renditions. Lis-
teners are asked to rank their preference of the renditions �

 for
each word

�
 . The ranking will be referred as the reference
ranking. The total reference rankings ��� =

� ���

;�"� � �&�'� � �
represent the perceptual preference of human listeners.

Meanwhile, using a set of heuristically chosen initial
weights, the total cost of each of the ��
 renditions in �
 are
calculated (see Section 4). Then, the renditions are ranked ac-
cording to the total costs. It is referred to as the test ranking. The
total test rankings for all the words, 	�� =

� 	��

2�7�&� �2�F� � �
are delivered to the next block, where a dissimilarity measure
of the two rankings, ��� and 	�� , is calculated.

The dissimilarity measure is the average distance between
the test and reference rankings for all � words (see Section 6).
Then, the downhill simplex method [5] is used to adjust the
weights to minimize the dissimilarity measure. When the dis-
similarity measure is minimized, the weights produce a ranking
that is similar to the reference ranking.

The optimization of weights is performed by the downhill
simplex method. The downhill simplex method is a multidi-
mensional minimization algorithm [5]. It is simple and pro-
vides quick solutions that minimize a function because it re-
quires only the function evaluation, not the calculation of the
derivatives.

A simplex is the geometric figure in N dimension, where N

is the number of independent variables to be optimized. It con-
sists of N+1 points, all the line segments connecting the points,
and the polygonal faces. In 2-dimensions a simplex is a triangle.
In 3-dimensions, it is a tetrahedron. Figure 6(a) shows a tetra-
hedron. The downhill simplex optimization algorithm evaluates
the function at N+1 points in order to find a point where the
function value is maximum (highest cost) and minimum (lowest
point). Then, the algorithm moves the highest cost point to the
opposite side of the simplex (Figure 6(b)), scale (Figure 6(c),
or contract it (Figure 6(d)). It may do a multiple contraction
(Figure 6(e)) along all dimensions toward the low point. The
procedure repeats until a termination condition is satisfied.

(e)

(c)

(d)

(a)

(b)

Figure 6: A simplex(a) and its possible variations for a step in
the downhill simplex method. (b) reflection, (c) reflection and
expansion, (d) contraction along one dimension from the high
point, and (e) multiple contraction.

6. Dissimilarity Measure of Rankings
The downhill simplex method evaluates a function of N dimen-
sional inputs in order to find the inputs that minimize the func-
tion. The inputs to the function are the weights of the sub-cost
functions. The function value is calculated by the following
procedures:

1. Given the weights, the total cost is calculated for each
rendition for a test word.

2. The ranking of the renditions can be obtained by sorting
the total costs in ascending order.

3. Calculate the dissimilarity measure between the ranking
obtained from the previous step and the reference rank-
ing from the perceptual test.

4. Repeat the above steps for all test words.

5. Get the average of the dissimilarity measures of all test
words.

The average dissimilarity measure is the value of the function.
A set of sub-cost weights that minimize the average dissimilar-
ity measure will most likely lead to a unit-searching algorithm
that behaves as the human listeners participating in the percep-
tual test do.

The dissimilarity measure between any two rankings should
satisfy the following conditions:

Condition 1: The dissimilarity measure is a function of any two
rankings, D(r1, r2), where r1 is a reference ranking and r2 is a
ranking whose dissimilarity to the reference ranking is to be cal-
culated. The value should be proportional to the total distance
(or notches) that every element in r2 have to move in order to
position itself at the same rank in r1.
For example, let's assume that there are 4 elements (denoted as
A, B, C and D) in the rankings. The distance between a ref-
erence ranking “ABCD” and a test ranking “BCAD” is 1(one
notch down for B) + 1(one notch down for C) + 2(two notches
up for A) + 0(no movement for D) = 4. Of course, if the two
rankings are identical, the distance is zero. Since the dissimilar-
ity measure is relative to the reference ranking r1, the measure
is not symmetric, i.e., D(r1,r2)

�� D(r2,r1).
The above condition, however, may lead to an ambiguous

situation, where different rankings have the same distance. For
example, d(“ABCD”,“BCAD”) and d(“ABCD”,“ACDB”) are
both 4, although the latter is more meaningful in the sense that
it has the right element at the first place. When there is a tie,
we must give a lower dissimilarity measure to a ranking that
matches higher ranked elements correctly. In the example,
“ACDB” should have a lower dissimilarity measure than
“BCAD”. We need an additional condition for the clarification.
Condition 2: When two rankings are tied, the ranking that
matches higher ranked elements should get a lower dissimilar-
ity measure.

A distance metric that satisfies the conditions can be calcu-
lated by binary tree searching. The pseudocode for the proce-
dure of calculating the dissimilarity measure is:

initialize distance to zero
foreach entry in array T

find the location of entry in array R
set locR equal to the index of entry in array R
set locT equal to the index of entry in array T
compute a localdistance by locR � fact(n-locT-1)
add localdistance to distance
remove entry from R

end
normalize the distance by multiplying by 100/(fact(n)-1)

R and T are arrays of the reference and test rankings, respec-
tively. The number of entries of the ranking is n. The index
of the first entry in an array is zero and the function fact(x) =�
���;���"�F��� . The distance value is from 0 to fact(n)-1. Since
the maximum distance depends on the number of entries of
the rankings, the distance is normalized by fact(n)-1. The nor-
malized distance is the dissimilarity measure, which ranges be-
tween 0 (the best match) to 100 (the worst match)

7. Experimental Results
The test database consists of six single-syllable words as in Ta-
ble 1. Only single-syllable words were used so that listeners
can pay attention to the single concatenation in the middle of a
vowel.

Each word has a different number of renditions, which de-
pends on the number of available candidates in the speech cor-
pus. To synthesize a word “bob”, four diphones, i.e., � *-b � , � b-
o � , � o-b � , and � b-* � are required. In the speech corpus, two can-
didates of � b-o � diphones, two of � o-b � diphones, and a � b-o-b �
triphone were available. Therefore, a total of 5 different com-

Table 1: Optimization Results.
word # renditions reference result Dis.Msr.

bob 5 AEDCB ACDBE 12.5
big 7 ABCEDFG ABFECGD 1.57
bag 5 ABECD ADEBC 16.67

bought 7 AGEFDBC ABCGFED 11.46
bed 7 GBAEFCD AEDBCGF 35.43

book 7 ACGBEDF AFDGCBE 13.92

mean 15.26

binations of the available units were synthesized
/
. The 5 ren-

ditions have the same phonemic sequence “bob”, but different
units were used for each rendition. Residual PSOLA algorithm
was used for synthesis. The original pitch and duration were
modified according to the target prosody. However, the spec-
tral envelope was not smoothed at the concatenation point. The
number of renditions for each word is shown in Table 1.

The reference rankings of the renditions were obtained by
perceptual preference test. The test was one-interval, two-
alternative forced-choice experiment. Two randomly chosen
renditions were presented to listeners. The listeners were asked
to choose one that sounds better. For a test word with �
 differ-
ent renditions, there are

� +��E � + G
 H � �
 � possible pairs of renditions.
All the pairs are presented to the listeners in random order. The
results are collected to get the final rankings for all of the test
words. The reference rankings for all the test words are shown
in the third column of Table 1.

Finally, the downhill simplex optimization was performed
and the resulting weights were used for calculation of the to-
tal cost. Roughly 83 percent of the cases (5 out of 6 words),
the unit selection algorithm chose the same rendition that hu-
man listeners preferred. The average dissimilarity measure was
15.26 on the scale of 0 to 100. The final rankings are shown in
the fourth column of the Table 1. The results showed that the
weight optimization process was able to find a set of weights
that could successfully predict the human preference pattern.

We used the optimal weights for selecting units for longer
sentences. Synthetic speech using weights determined in
this manner consistently demonstrates smoother transitions and
higher voice quality than speech using manually set weights.

8. Conclusions
In this paper, we have presented an overview of the new corpus-
based Bell Labs' TTS system. Centered around a unifying data
structure, the annotated string, and making use of the Viterbi
dynamic programming algorithm for optimal unit selection un-
der open-ended cost criteria, our goal for this work has been to
achieve both the generality needed to support research inves-
tigations as well as the ability to target the system to specific
applications. Our experiments show that unit selection is fast
enough to be practical even when using a large corpus, and that
longer units arise often enough to make a significant difference
in the quality of the synthesized speech.

We have also proposed a new method for unit-searching
based on a perceptual preference test. The proposed algorithm
is designed to find the weights in a more systematic and mean-
ingful way. The algorithm searches a set of weights that can/

Concatenation of
�
*-b

�
and one of the following combinations �

A:
�
b-o

� / +
�
o-b

� / , B:
�
b-o

�
 +
�
o-b

� / , C:
�
b-o

� / +
�
o-b

�
 , D:
�
b-o

�
 +
�
o-

b
�
 , E:

�
b-o-b

� /�� followed by
�
b-*

�
.

produce rankings of renditions that are close to the perceptual
test results. The downhill simplex method is used for the multi-
dimensional search of the weights. A dissimilarity measure is
proposed to evaluate the closeness of two rankings, one from
the perceptual test and the other from the algorithm.

In about 83 percent of the cases, the unit selection algo-
rithm using the optimal set of weights chose the same rendition
that human listeners preferred. These results show that the op-
timization of weights combined with the dissimilarity measure
can successfully predict the human preference pattern.

9. References
[1] Shinya Nakajima and Hiroshi Hamada, “Automatic gener-

ation of synthesis units based on context oriented cluster-
ing,” in Proceedings of the IEEE International Conference
on Acoustics and Speech Signal Processing-88, New York,
NY, 1988, IEEE.

[2] Andrew J. Hunt and Alan W. Black, “Unit selection in a
concatenative speech synthesis system using a large speech
database,” in Proceedings of the IEEE International Con-
ference on Acoustics and Speech Signal Processing-96,
Munich, 1996, IEEE, vol. 1, pp. 373–376.

[3] Robert Edward Donovan, Trainable speech synthesis,
Ph.D. thesis, University of Cambridge, Cambridge, UK,
1996.

[4] A. P. Breen and P. Jackson, “Non-uniform unit selection
and the similarity metric within bt's laureate tts system,” in
Proceedings of the Third ESCA Workshop on Speech Syn-
thesis, Jenolan Caves, Australia, 1998, ESCA/IEEE.

[5] William H. Press, Saul A. Teukolsky, William T. Vetterling,
and Brian P. Flannery, Numerical Recipes in C - The Art of
Scientific Computing, Cambridge University Press, 1992.

[6] Thierry Dutoit, An introduction to text-to-speech synthesis,
Kluwer Academic, Dordrecht; Boston; London, 1997.

[7] Minkyu Lee, Jan van Santen, Bernd Möbius, and Joseph
Olive, “Formant tracking using segmental phonemic infor-
mation,” in Proceedings of the European Conference on
Speech Communication and Technology (Eurospeech), Bu-
dapest, Hungary, 1999, ESCA.

