Evaluating the Performance of Table Processing Algorithms

Jianying Hu Ramanujan Kashi Daniel Lopresti Gordon Wilfong

Bell Laboratories
Lucent Technologies, Inc.
600 Mountain Avenue

Murray Hill, NJ 07974

{jianhu,ramanuja,dpl,gtw}@research.bell-labs.com

Abstract

While techniques for evaluating the performance of lower-level document analysis
tasks such as optical character recognition have gained acceptance in the literature,
attempts to formalize the problem for higher-level algorithms, while receiving a fair
amount of attention in terms of theory, have generally been less successful in prac-
tice, perhaps owing to their complexity. In this paper, we introduce intuitive, easy-
to-implement evaluation schemes for the related problems of table detection and table
structure recognition. We also present the results of several small experiments, demon-
strating how well the methodologies work and the useful sorts of feedback they provide.

We first consider the table detection problem. Here algorithms can yield various
classes of errors, including non-table regions improperly labeled as tables (insertion
errors), tables missed completely (deletion errors), larger tables broken into a number
of smaller ones (splitting errors), and groups of smaller tables combined to form larger
ones (merging errors). This leads naturally to the use of an edit distance approach for
assessing the results of table detection.

Next we address the problem of evaluating table structure recognition. Our model is
based on a directed acyclic attribute graph, or table DAG. We describe a new paradigm,
“random graph probing,” for comparing the results returned by the recognition system
and the representation created during ground-truthing. Probing is in fact a general
concept that could be applied to other document recognition tasks as well.

Keywords: table detection, table recognition, document layout analysis, document under-
standing, edit distance, graph matching, performance evaluation.

1 Introduction

As the sophistication of document analysis systems grows, it becomes increasingly important
to be able to evaluate and compare their performance. With a few notable exceptions,
however, little has been achieved along these lines beyond the informal sorts of assertions
that accompany most work published in the literature. A thoughtful overview of the subject

of automated performance evaluation can be found in [11]. In this paper, we present general
methods for evaluating a class of higher-level document analysis algorithms as embodied by
the table understanding problem.

Many document recognition tasks can be viewed as comprising two basic steps: detecting
a particular type of region on the page (e.g., tables, figures, photographs, text blocks), and
interpreting the structure within a detected region (e.g., rows and columns within a table).
We describe separate approaches for each of these cases.

We first consider the problem of evaluating algorithms for detecting tables in scanned
pages and ASCII text documents. While a number of researchers have studied table detec-
tion, evaluation is often accomplished via a low-level, “local” measure of correctness based
on whether individual text lines are labeled as belonging to a table or not (e.g., [14]). Note,
though, that this approach fails to discern important kinds of errors, including splitting and
merging of adjacent tables. On the other hand, another, more conservative view holds that
a result is correct if and only if the table has been perfectly delimited (i.e., if no lines of the
table are missed, and no extraneous lines are included). However, one disadvantage of this
policy is that it over-penalizes small mistakes (e.g., adding an extra blank line to the end of
the table). In this paper, we propose an edit distance measure that captures the full range
of errors that might be made by a table detection algorithm. Unlike existing approaches for
the seemingly similar problem of page segmentation that also employ distance-type mea-
sures, our approach is based on logical structure, not on pixel-level comparisons [8, 20] or
matching the text characters output from OCR [1, 8].

For the problem of evaluating structure recognition, there is already a fair amount
of theory (see, e.g., [6, 10, 15, 16, 18]). Nevertheless, the empirical literature has largely
ignored this work, perhaps owing to its complexity, and usually defaults to a simple, manual
approach to evaluation: counting by hand the number of structures that have been missed
or added (e.g., [13]).

In this paper, we offer a first step towards an intuitive, easy-to-implement evaluation
methodology for table structure recognition that may be extensible to other applications as
well. Asis common in the theory world, our approach is based on a directed attribute graph
representation, which we call a table DAG. One way to evaluate such results would be to
compare the DAG returned by the recognition system with the DAG produced by ground-
truthing via some sort of edit distance criterion. There are two obvious drawbacks to this
scheme, however. First, it is quite possible that the representation for a given table will not
be unique; different-looking DAG’s may be functionally equivalent. Secondly, any procedure
for solving this problem could also be used to solve the directed graph isomorphism problem,
which is widely regarded to be hard [2]; hence, it seems unlikely that an efficient optimal
algorithm exists. Another possibility would be to evaluate table recognition by measuring
the overall performance of an application in which it is embedded [17]. The difficulty here
is that errors in other subsystems (e.g., layout analysis, OCR, user interface) will affect the
results and make it impossible to distinguish which errors are due to which subsystem.

The method we propose can be tailored to lie anywhere between these two extremes.
Our approach uses “random probes” of a DAG to assess the agreement of the result re-
turned by the recognition system and the representation created during ground-truthing.
Since different types of probes are possible, ranging from very low- to very high-level, this

paradigm can be viewed as subsuming existing techniques that try to measure the structural
similarity of the graph representations on the one hand, and the effectiveness of recognition
results when incorporated in a particular application on the other. While random probing
is presented as a means of evaluating the performance of table recognition systems, it is in
fact a more general concept that could be applied to other tasks employing representations
for which probes can be generated and their responses compared.

We begin by considering the problem of evaluating table detection results in Section 2.
After describing our methodology, we apply it in Section 3 to a system we have designed
for locating tables in scanned and ASCII text documents, showing how well it captures and
explains the performance of the detection algorithm. We then turn to the table structure
recognition problem and its evaluation. Section 4 presents our model for random graph
probing, which we exercise in Section 5 using an algorithm for parsing table structure we
have developed. Finally, we offer our conclusions and topics for future research in Section 6.

2 A Methodology for Evaluating Table Detection Results

In this section we describe a method for evaluating the performance of table detection
algorithms building on the well-known concept of edit distance [3]. For the purposes of
this evaluation, we assume the input is in single column format. A table T is considered
to be a region consisting of one or more contiguous text lines ranging from line ¢ to line j
inclusive, T' = [¢,7]. A document contains some number of non-overlapping (but possibly
adjacent) tables listed consecutively in order of occurrence. Let R = THT ... TE be the
recognized document and G = TETS ... T be the ground truth. Note that m need not
equal n in general, and that TZR need not necessarily be the table corresponding to TZ»G for
any particular z.

In considering the output from table detection, it becomes evident that certain classes of
errors may arise as depicted in Figure 1. These include non-table regions improperly labeled
as tables (insertion errors), tables missed completely (deletion errors), larger tables broken
into a number of smaller ones (splitting errors), and groups of smaller tables combined to
form larger ones (merging errors). This leads naturally to the use of an edit distance model
for assessing the results of table detection.

Recognition Result Ground Truth

insertion

1:3 substitution (split)

Table regions

1:1 substitution (match)

2:1 substitution (merge)

deletion

- e —— ——

[S

Figure 1: Various possible errors in table detection.

We define teval (for table evaluation) recursively, where teval; ; is the distance computed
between the first ¢ tables of R and the first j tables of G. The costs functions are: cge(),
the cost of deleting a particular table; ¢;,s(), the cost of inserting a particular table; and
Csuby, (), @ generalized substitution cost that maps a series of k tables from one document
to [tables from the other. The initial conditions are:

tevalpg = 0
teval; o = teval;_10+ cael(TF) 1<i<m (1)
tevaly ; = tevalpj_1 + cms(TjG) 1<5<n

and the main dynamic programming recurrence is:

tevali_m + Cdel(TZ'R)
. teval; ;1 + cms(TjG)
teval; ; = min (2)
min teval;_p ;—1 + CSUbk:l(Ti]Ek—I—l .. .TZR, T]G_H_1 .. .T]G)]
1<h<i, 1<1<5

for 1 <:<m,1<j <n. Once the computation has completed, teval,, , is a measure of
the similarity of the two documents in terms of their table structure. The smaller the value,
the more closely the recognition result matches the ground truth. Moreover, by tracing back
the sequence of optimal decisions made when evaluating the recurrence, it becomes possible
to recover a detailed interpretation of the errors that were determined to have arisen.

Note that the cost functions in the above formulation are completely general. For the
tests that follow, we calculate a cost by aligning the tables in question on a line-by-line basis
and tallying the number of lines that match. These are charged —1, while mismatches are
charged 1. Although quite simple, this scheme appears to work well in practice. This value is
then normalized to the target interval [—1, 1], where —1 represents an exact correspondence
(i.e., perfect recognition relative to the ground truth) and 1 represents the opposite:

(3)

where min_teval and max_teval are, respectively, the minimum and maximum possible dis-
tances for the comparison in question.

normteval — 9 (teval,, , — min_teval) B

maz_teval — min_teval

3 Application of Table Detection Evaluation

In this section, we apply the evaluation methodology described in the previous section to the
problem of detecting tables. We begin by briefly reviewing an algorithm we have developed
for locating tables in ASCII and scanned documents [3]. We then present the results of
several small experiments, demonstrating how well the methodology works and the useful
kinds of feedback it provides.

3.1 A Table Detection Algorithm

The goal of table detection is to detect the presence of one or more tables in a document
and delineate their boundaries. We assume that the input is a single column document

segmentable into individual, non-overlapping text lines (referred to simply as “lines” hence-
forth).

While it may be tempting to assume some form of delimiter (e.g., that tables will always
be separated from the rest of the text by at least one blank line or some minimum amount
of white space), to preserve generality we do not want to make any a priori assumptions
about where table(s) might begin or end in the input. Instead, we compute a value for all
possible starting and ending positions and then choose the best possible way to partition
the input into some number of tables.

Say there are a total of n lines in the input, and let tab[i, j] be a measure of our confidence
when lines ¢ through j are interpreted as a single table. Let merit, (7,141, j]) be the merit
of prepending line ¢ to the table extending from line ¢+ 1 to line j, and merit,,,([7, j— 1],)
be the merit of appending line j to the table extending from line ¢ to line 7 — 1. We
have chosen white space correlation and vertical connected component analysis to model
specific functions for merit,,. and merit,,, [3]. As a rule they return larger values for more
compatible combinations and can be tuned for specific applications and/or the input media.
Then we define: tab[i,i] =10, 1 <i<nand

C o merity (i, [14+ 1,j]) + tabli+ 1, 7] .
tablij1= max{ tablinj — 1] + meritap(fij—1,4) L= <Ism)

This computation builds an upper triangular matrix holding the values for all possible table
starting and ending positions.

We then formulate the partitioning of the input into tables as an optimization problem.
Let score[i, j] correspond to the best way to interpret lines ¢ through j as some number of
(i.e., zero or more) tables. The computation is defined as follows: scoreli, i] = tab[i,i], 1 <
1 < mn and

scoreli, j] = max{ tabli, j]

’ maX;<p<; {scoreli, k] + score[k +1,j]}
One way to interpret Equation 5 is that the best way to partition lines ¢ through j into some
number of tables is to: (1) treat lines ¢ through j as coming from a single table, or (2) break
the region into two subregions between lines k£ and k£ + 1 and consider each separately.
Note that if region [i,j] contains exactly one table (or a portion thereof), case (1) will
apply. Otherwise, there must surely exist a k such that the region can be broken into two
independent subregions (without splitting a table) and then case (2) applies. The precise
decomposition can be obtained by backtracking the sequence of decisions made in evaluating
Equation 5. Any region on the optimal path whose tab value is higher than a predetermined
threshold is considered a table region. The final output of the table detection stage are the
boundaries of the detected tables.

3.2 Experimental Results

In this section, we present experimental results that demonstrate the usefulness of our
methodology for evaluating table detection algorithms. The test database was composed of

26 Wall Street Journal articles in text format (WSJ database) and 25 email messages. The
WSJ database represented a more homogeneous collection of documents with a few classes
of table structures. In sharp contrast, the email documents were a heterogeneous collection
with varied layouts. Fach test sample was in a single column format and contained one or
more tables.

We used the edit distance model based evaluation measure described in Section 2 to
study the performance of the table detection algorithm. A one-to-one matching was done
on the test sample and its corresponding ground truth. The ground truth was generated by
manually delineating the boundaries of the tables using a graphical tool we have developed,
to be described in a later section (Section 4.2). One useful feature of this evaluation scheme
is that it performs error analysis by quantifying the type of detection errors. To illustrate
this point, the sum of the errors due to insertion, deletion, substitution, merges and splits
for the documents of each class was plotted against the threshold. The threshold refers to
the value above which a region in a document is considered a table. This is shown for both
the WSJ and email documents in Figure 2. As seen in Figure 2, for both sets of documents,
errors at lower threshold values (left portions of the individual plots) are likely to be caused
by insertion errors, which reduce as the threshold is increased. On the other hand, at
higher threshold values, deletion errors increase significantly. Substitution errors are errors
in tables which have been detected but not accurately delineated. This is partly due to the
header lines which have been missed by the table detection algorithm. The drop-offs in the
substitution errors in both the classes of documents at higher thresholds are due to the fact
that entire tables were missed at these thresholds and such errors were classified as deletion

errors.
20 T 30 T
WSJ Documents EMAIL Documents
181 \
\ -
161 251 \ Deletion
\ — — Insertion
14} \ —%— Merge
Deletion 201 —- Split o
g 12} — — Insertion E \ L —— Subsitution
3 —— Merge g
© 10 — - split 215
2 —— Substitution g
w 8r [}
101
6r—-~
a4t) \
\ _ 5
2t !
\
(S PP)
0 0 1 MZ 3 0 0 1 MZ 3
10 10 10 10 10 10 10 10
Threshold Threshold

Figure 2: Count of detection errors for WSJ and ASCII documents.

The evaluation schemed developed for detection, apart from providing error analysis
is also helpful in improving and tuning the underlying algorithm. This is illustrated for
both WSJ and email documents in Figure 3. The plot shows the average, over the number
of documents in their respective class, of the structural similarity measure, norm_teval,
described in Equation 3, across a range of threshold values. There is a fairly large variance

exhibited in the test set of documents and we have examined the individual plots (they
are not presented here for space reasons). This plot helps us choose a range of threshold
values to obtain acceptable values of detection performance. The ordinates which represent
the structural similarity measure, norm_teval, range from —1 to 1 with —1 being a perfect
match between the test sample and its corresponding ground truth and 1 being the worst
possible match.

-0.45 -0.4
-0.5 WSJ Documents -0.45 EMAIL Documents
: 0
& -055 3 ~05
) @
D= %
28 06 > §055
I Q = >
=" 52
EE =
n 5-0.65 EE-06
sE 28]
g TS
§ -0.7 g -0.65
G g
-0.75 ? 07
-0.8 -0.75
0 20 40 60 80 100 0 20 40 60 80 100
Threshold Threshold

Figure 3: Table detection evaluation measure as function of threshold for WSJ and email
documents.

In order to evaluate the edit-distance methodology, we conducted an informal experi-
ment with three subjects (different from the authors) who were not involved in the design
of the underlying algorithms. The subjects were given six test documents along with their
associated ground-truths. The test documents had the tables delineated by the detection
algorithm. The ground-truth which had the tables clearly delineated was manually gener-
ated by one of the authors. The task was to rank order the set of six documents (labeled
A to F for email and a to f for WSJ) with rank 1 corresponding to the best match be-
tween the test and its associated ground-truth in the group of 6. The ranking was based
on the subjects’ interpretation as how good a job the algorithm did at detecting the table
regions, as defined by the ground-truth. The subjects were free to choose any means to
obtain an overall similarity measure. These rankings were then compared to the rankings
obtained by our edit-distance evaluation method. The rankings from the three subjects
are shown in Table 1 for the email dataset and in Table 2 for the WSJ dataset. The fifth
column represents the average ranking obtained from the three subjects. The last column
in each of the tables represents the ranking obtained by using our edit-distance evaluation
methodology. Comparing both the individual rankings and the average rankings reveals
a close match to the ranking obtained using the edit-distance evaluation. As part of the
experiment, we also tried to determine the relative difficulty of performing this task. The
subjects felt it easier to rank order the email documents rather than the WSJ documents.
We believe that is due to the non-homogeneous nature of the email database which results
in a larger range of performance variation. Based on the experimental results it is believed
that similar strategies were employed by the three observers to obtain an overall similarity
measure. This was corroborated by the verbal feedback given by the subjects. As seen in

Table 1, all the subjects assign rank four to the test document F. The same document F
was assigned a rank six (poorest match) by the edit-distance scheme. On closer observation
of document F, it was found to be missing a table (when compared with its corresponding
ground-truth) and the subjects weighted a missing table (deletion error) much higher than
other errors. The edit-distance scheme on the other hand weighted all the errors equally.
It must be noted here that the weights can be tuned to suit any particular application.

Doc Rankings from subjects Average Ranking based on
Index Obs 1 Obs 2 Obs 3 Ranking Edit-distance

A 1 1 1 1 1

B 2 2 2 2 2

C 3 3 3 3 3

D 5 6 5 5 4

E 6 5 6 6 5

F 4 4 4 4 6

Table 1: Ranking from the subjects and our evaluation procedure for the email dataset

Doc Rankings from subjects Average Ranking based on
Index Obs 1 Obs 2 Obs 3 Ranking Edit-distance

a 2 1 1 1 1

b 3 4 2 2 2

c 1 2 4 3 3

d 4 3 3 4 4

e 5 5 5 5 5

f 6 6 6 6 6

Table 2: Ranking from the subjects and our evaluation procedure for the WSJ dataset

An important issue in performance evaluation is obtaining the ground-truth. Not only
is the manual process of ground-truthing laborious and time consuming, it can also be non-
unique. We conducted a simple experiment by using our edit-distance evaluation scheme to
compare the ground truth results amongst the four authors. All possible pairwise combina-
tion of four individuals gives six such correlations. Figure 4 shows the plot of the average
correlation for 25 documents (email dataset). This data shows that while there is fairly
close agreement in most cases, several of the documents in our test set cause difficulties
even for human interpreters (deciding what counts as tables and location of their bound-
aries), evidence of the challenging nature of the problem both in detection and evaluation.

4 A Methodology for Evaluating Table Structure Recogni-
tion Results

In this section we present our approach to evaluating algorithms that extract structure from
tables [5]. We describe in turn the graph model we have adopted, a system we have created
for ground-truthing table structure, and our procedure for comparing the output from table
recognition to the corresponding truth. The paradigm we have developed is a general one,
and could be applied to other algorithms that attempt to extract structure from documents.

4.1 Attribute Graph Model

The goal of the recognition step is to determine the structure of a given table and identify
functional elements such as columns, rows, headers, etc. Defining a table model is itself a

-0.1
“02f EMAIL Documents

—03F

-0.4Fr

)

-05F
oo

o

06

(norm_teval

-0.71

Structural Similarity Measure

-0.8

09k

Document

Figure 4: Ground truth variations in email documents.

difficult issue, since both logical and layout conventions vary depending on the document
type, the subject domain, and the medium (see [9]). Clearly, no one model will be able to
represent all possible tables. We chose to base our model on Wang’s formalism [19] because
it provides a clean separation of content (logical model) from form (physical/presentational
model), and offers a rigorous mathematical representation as the logical model.

Figure 5 illustrates the terminology we use for table structure. At the lowest level, a
table contains two types of cells: Dcells for data cells and Acells for access cells. These cells
are organized into columns and rows. The column headers are grouped into a region named
the box, and the row headers are grouped into a region called the stub. The header for the
box/stub is called the box head or stub head. The collection of all the Dcells comprises the
body. The body is the only required region of a table; Acells and all header regions are
optional.

While it is traditional to regard document analysis results, and segmentation results
in particular, as tree-structured, we have adopted a slightly more general representation, a
directed acyclic attribute graph (DAG) as in [16]. This flexibility is important both because
there are real-life tables that fall outside the Wang model, and because the output from an
imperfect recognition process may not necessarily correspond to a legal instance of a table.

There are two basic classes of nodes in our table DAG: leaf nodes which have no children
and which contain content corresponding to a specific region on the page (i.e., one or
more text strings), and composite nodes which are simply unordered collections (sets) of
previously-defined leaf and composite nodes. Fvery node has an optional label. There
is, however, no rigid policy enforcing how nodes must be labeled relative to one another.
Instead, conventions can be developed on a per-application basis. Indeed, our plan is to
apply this same general formalism to other document analysis tasks in the future.

For the graph corresponding to the table depicted in Figure 6, there are 28 leaf nodes
labeled Dcell and 14 leaf nodes labeled A Cell, while Row and Column are composite nodes.
Note that the lower rightmost DCell (with content “—2 3/8”) is a child both of a node
labeled Row (headed by “PINK LTD”) and of another node labeled Column (headed by

Title

Stub/Box head

TODAY'S
_____ w EN_ __CHANGE
12 +11/8 74

Row 22 | 1/4 +5/16 21
ELLOW LTD 10|| 33/8 —113/16 10
AURPLE INC 27 25/8 27
6 +11/16 66
NKLTD 13 L 07/16+11/16 13

Acéll LT____ _________ a___

Stub Dcell

Figure 5: Table terminology (adapted from Wang’s Ph.D. thesis [19]).

“YESTERDAY’S CHANGE”); hence, this graph is not a tree.

4.2 Ground-Truthing

To enable the viewing of document analysis results and to support the ground-truthing
process, we have developed an interactive tool we call Daffy for browsing and editing table
DAG’s. The user interface portions of Daffy are written in Tecl/Tk, a powerful and well-
known scripting language developed by Ousterhout [12].

Daffy makes it possible to:

1. display and edit graphical mark-up

2. define new mark-up types

3. examine hierarchical structure

4. print and save PostScript page images

5. run algorithm animation scripts for visualizing the effects of document analysis

Input is accepted in both image (TIF) and text (ASCII) formats.

Figure 7 presents a screen snapshot of Daffy running on an SGI O2 workstation. The
main window, on the right, shows the same sample table document as shown in Figure 5.
Several layers of mark-up are visible — on-screen these are displayed in color and are much
more legible. Structure corresponding to the leftmost table column which the user has
selected is displayed in the child window on the left in the snapshot.

Daffy supports the full generality of the graph model described in the preceding section.
In particular, it manages and updates the table DAG across operations that include adding
and deleting leaf nodes, grouping and ungrouping to create composite nodes, moving and

10

COMPANY ‘ ‘ TODAY"S YESTERDAY*"S
ACell ACell ACell
ACell
OPEN CHANGE OPEN CHANGE
ACell ACell ACell ACell \
BLUE INC 75 1/2 + 1 1/8 74 9/16 - 4 1/4
ACell DCell DCell DCell DCell
GREEN. COM 89 1/4 + 2 88 5/8 - 2 13/16
ACell DCell DCell DCell DCell
RED I NC 22 1/4 + 5/ 16 21 13/16 - 3/8
ACell DCell DCell DCell DCell
YELLOW LTD 103 3/8 ||- 1 13/16 101 - Table Structure
ACell DCell DCell DCell DCell
PURPLE | NC 27 11/ 16 - 25/8 27 5/8 -11/8
AcCell DCell DCell DCell DCell
< Column & Row Structure>
BROWN. COM 68 + 11/16 66 11/16 - 15/8 -

%

AcCell DCell DCell DCell DCell

PINK LTD
AcCell

130 7/ 16
DCell

+11/16
DCell

130
DCell

- 23/8

DCell Composite Cells

< Leaf Nodes >

Figure 6: Graph representation for table recognition results.

resizing nodes, copy-and-pasting, editing type definitions, etc. Consistency of the graph is

maintained automatically without placing arbitrary constraints on the user.

4.3 Random Graph Probing

Given the table DAG’s for a recognition result and its corresponding ground truth, it is
natural to consider comparing the two as a way of determining how well the algorithm has
done. Attempting to compare the graphs directly, however, gives rise to two dilemmas. The
first is that a solution would imply a solution to the graph isomorphism problem which is
not likely to have an efficient algorithm [2]. While heuristics exist that are sometimes fast,
their worst-case behavior is still exponential (see, e.g., [10]). Hence, the problem remains a

difficult one.
The other obstacle is that there may be several different ways to represent the same

table as a graph, all equally applicable. Minor discrepancies in labeling and/or structure
could create the appearance that two graphs are dissimilar when in fact they are functionally
equivalent from the standpoint of the intended application. Forcing one graph to correspond
to the other through a series of rigidly defined editing operations obscures this important

point.
At the other end of the spectrum, we could embed our table recognition algorithm in a

query-based table processing system (e.g., [4]) and measure the performance of the complete
system on a specific task from a user’s perspective: Does it provide the desired information?
(this is “goal-directed evaluation” as discussed by Nagy in [11]). This approach has its own
shortcomings, however, as it limits the generality of the results and makes it difficult to

identify the precise source of errors that arise when complex processes interact.
We have developed a third methodology that lies midway between these two. We work

11

File Edit

Info Mark-Up Display Zoom Animate

STOCE REPORT
]
*** column (616)
COMPRNY
ELUE INC EEEN. COM
GREEN. COM RED LN
RED INC ELLOW L TL
YELLCW LTD FURFLE TNC
FURPLE INC BROWH . COM|
BEOWH . COM LTD
PINE LTD
****** Acell (502)
BELUE TNC
XXXXXX Acell (512) |
GREEN. COM
XXXXXX Acell (522)

= T

W Color W Content Close | |]

Figure 7: Daffy screen snapshot.

directly with the graph representation. However, instead of trying to match the graphs un-
der a formal editing model, we probe their structure and content by asking relatively simple
queries that mimic, perhaps, the sorts of operations that might arise in a real application.

Conceptually, the idea is to place each of the two graphs under study inside a “black
box” capable of evaluating a set of graph-oriented operations (e.g., returning a list of all
the leaf nodes, or all nodes labeled in a certain way). We then pose a series of probes and
correlate the responses of the two systems. A measure of their similarity is the number
of times their outputs agree. Note that it is essential the probes themselves have simple
answers that are easily compared. They might return, for example, a count of the number
of nodes satisfying a certain property (e.g., possessing a particular label), or the content of
a designated leaf node. The probing becomes recursive if the target of a probe is a graph
itself (i.e., a composite node). The intention is that this probing process abstracts the
access of content away from the specific details of the graph’s structural representation.

While the paradigm is open-ended, currently we have defined three categories of probes
for the table recognition problem:

Class 0 These probes count the number of occurrences of a given type of node in the graph.
Referring again to Figure 6, a typical Class 0 probe might be paraphrased as: “How
many nodes labeled ‘Column’ does the graph have?” The answer in this case is “5.”

Class 1 These probes combine content and label specifications. Currently they apply only
to leaf nodes. A representative Class 1 probe might be: “How many leaf nodes labeled
‘Acell” with content ‘OPEN’ does the graph have?” The reply here is “2.”

Class 2 These are the most sophisticated probes we have implemented to date. Class 2
probes mimic simple database-type queries, although phrased entirely in terms of
graph manipulations. For a given target node, keys that uniquely determine its row
and column are identified. These are used to index into the graph, retrieving the
content of the node (if any) that lies at their intersection. An example of a Class 2

12

probe for the graph in Figure 6 is: “What is the value of “TODAY’S OPEN’ for ‘RED
INC’?” The response would be “221/4.”

The generation of a probe set is based on one or the other of the graphs in question.
That graph will obviously return the definitive responses for all of the probes in the set,
while the other graph will do more or less well depending on how closely it matches the
first. We then repeat the process from the other direction, generating the probe set from the
second graph and tallying the responses for both. The probes are synthesized automatically,
working from the table DAG output from the recognition and ground-truthing processes.
For specifying probes, we have implemented a graph-oriented query language embedded in
a general-purpose programming language; this offers a great deal of power and flexibility.

Our experience so far, although brief, suggests that this could be an effective paradigm
for evaluating table processing results (and perhaps even document analysis algorithms
in general). Still, there are many open questions related to the notion of random graph
probing. These include developing new classes of probes, and correlating this measure with
a user’s perception of the quality of the recognition results.

5 Application of Table Structure Recognition Evaluation

In this section, we apply the evaluation methodology described in the previous section to
the problem of recognizing table structure. We begin by briefly describing an algorithm we
have developed for parsing tables [5]. We then present experimental results that illustrate
how the methodology works in practice.

5.1 A Table Structure Recognition Algorithm

The goal of the recognition step is to determine the structure of a given table and identify
functional elements such as columns, rows, headers, etc.

5.1.1 Column Segmentation

The input to the column segmentation step is the boundaries of a detected table region.
It is assumed that this region contains all or nearly all the lines occupied by the body of
the table. Depending on the layout of the particular table, it could also contain lines from
column headers. If the table has row headers, they are considered included in the region as
well. At this point, no distinction is made between the column of row headers (stub) and a
“normal” column.

Hierarchical clustering is applied to all words in this region to identify their likely group-
ings. Such groupings are represented as a binary tree, where the leaves represent words,
the root represents the whole body, and the intermediate nodes represent nested group-
ings at different levels. This cluster tree is constructed in a bottom-up manner [7] — first
the leaf level clusters are generated where each word belongs to a unique cluster, then the
two clusters with the minimum inter-cluster distance are merged into a new cluster. The
merging process is repeated recursively until there is only one cluster left. In this clustering

13

process, the distance between two words is defined to be the Euclidean distance applied to
the horizontal coordinates of the beginning and the end of the words; the distance between
two clusters is defined to be the maximum inter-cluster word distance.

The cluster tree generated in the above manner represents the hierarchical structure of
the table body in terms of vertical grouping of words. Fach cut across the tree provides
one way of clustering these words. We need to find the cut such that each resulting cluster
corresponds to a column. Such a cut is called the column cut. The column cut is found
using a breadth-first traversal of the cluster tree starting from the root, and by applying
heuristics such as the spacing between columns tends to be evenly distributed within a
table.

Note that even though the distance between words is currently defined only in terms
of horizontal distance, the nature of the hierarchical clustering algorithm insures that the
column segmentation algorithm proposed can handle imperfect vertical alignment very well.
This ability is demonstrated in Figure 8 with a table containing ragged columns as well as
columns with a small gap inside. As shown in the figure, all columns are clustered properly.

STOCK REPORT

COMPANY TODAY’S YESTERDAY'S

_oPp ___ _ CHANGE OP _ EN___CHANGE __
BLUEINC 75 11/8 74 4 1/4
GREEN.COM 89 2 88 - 213/16
RAD INC 22 516 21

YHLLOW LTD 10
PURPLE INC 27
BROWN.COM 68
PINKLTD 13

113/16 10
25/8 27 -11/8
+11/16 66
11/16 13 -23/8

Detected table regi on

Figure 8: A detected table region and its column segmentation using hierarchical clustering.

5.1.2 Header Detection and Row Segmentation

As mentioned before, headers including box (containing column headers), stub (containing
row headers) and stub/box head are all considered optional. The potential headers are
identified using a lexical distance measure and assuming typical layout rules for headers
used in most tables. To capture the potential hierarchical structure, headers are represented
by a tree structure which is initialized with the root representing the box, and k leaf
nodes corresponding to the k columns. We define the joint span of a list of n spans p; =
(si,€i),0=1...n as p1.,, = [min(s;, ¢t = 1...n),maz(e;,1 = 1...n)]. Once a higher level
header is found, the corresponding intermediary node is generated, and the joint span of
its subsidiary nodes is used to analyze the next line. Figure 9 shows the box of the table in
Figure 5 represented as a tree. This tree is then traversed to assign headers to each columns
(higher lever headers are shared by more than one column).

14

ROOT

BLUE INC 75 1/2 +11/8 74 9/16 -41/4
GREEN.CON 89 1/4 +2 88 5/8 -213/16

Figure 9: The tree representation of the box of the table in Figure 5.

Row segmentation is carried out after header detection. The difficulty here is that some
or all of the cells in a table row could contain more than one line and there is often no obvious
separator between rows. The following heuristics have been adopted by our algorithm: 1) A
blank line is always a row separator; 2) If a line contains non-empty strings for the stub (if
it exists) and at least one other column, or if it contains non-empty strings for a majority
of columns, then it is considered a core line, otherwise it is considered a partial line. Each
table row contains one and only one core line and a partial line is always grouped with
the core line above it. Occasionally there are tables where partial lines are grouped with
the core line below. Such cases could be detected using statistical syntax analysis, such as
N-grams.

5.2 Experimental Evaluation

In this section, we present experimental results that demonstrate the usefulness of our
method for evaluating table recognition algorithms. As before, the test database was com-
posed of 26 Wall Street Journal articles in text format (WSJ database) and 25 email mes-
sages.

We applied the random graph probing based evaluation method to study the perfor-
mance of the table recognition algorithm. Tables along with the detected boundaries were
input to the table recognition algorithm. Tables split or merged as a result of our table
spotting stage were removed for the recognition evaluation. A DAG representation was used
for functional elements like headers, rows and columns obtained by table recognition. The
test documents used for table recognition were ground-truthed manually using the Daffy
interface (Section 4.2). Tables 3 and 5 describe the counts of leaf nodes (Acells and Decells),
Acells, Dcells, rows and columns for each table in the WSJ and email documents respec-
tively. Also shown in the tables are the counts for the manually labeled ground truth and
the recognition results.

As explained in Section 4, probing was done bidirectionally, i.e., the recognition result
was probed based on its corresponding ground truth and vice-versa. This involved gener-
ating a set of queries to probe the various nodes of the graph which represent the table

15

Doc Ground Truth Recognition Result

Index Leaf node Acell Decell Row Col Leaf node Acell Decell Row Col
1 24 3 21 8 3 24 10 14 8 3
2 17 8 9 4 4 17 8 9 4 4
3 16 12 4 2 4 16 13 3 2 4
4 33 15 18 7 4 36 16 20 8 4
5 67 43 24 14 3 64 40 24 13 3
6 75 36 39 22 3 77 38 39 22 3
7 44 12 32 16 3 32 16 16 16 2
8 33 15 18 10 3 33 15 18 10 3
9 45 15 30 11 4 45 15 30 11 4
10 85 61 24 24 2 58 34 24 24 2
11 80 26 54 10 7 74 26 48 9 7
12 6 3 3 3 2 6 3 3 3 2
13 56 39 17 17 2 44 26 18 18 2
14 56 28 28 28 2 58 31 27 27 2
15 16 12 4 2 4 16 13 3 2 4
16 33 15 18 7 4 37 17 20 8 4
17 45 15 30 11 4 45 15 30 11 4
18 38 22 16 9 3 32 16 16 9 3
19 14 6 8 5 3 14 6 8 5 3
20 19 7 12 4 5 19 7 12 4 5
21 45 15 30 11 4 45 15 30 11 4
22 39 19 20 11 3 39 17 22 11 4
23 72 42 30 16 3 61 31 30 16 3
24 15 5 10 6 2 16 12 4 5 2
25 22 6 16 5 5 22 6 16 5 5
26 44 18 26 14 3 43 17 26 14 3

Table 3: Node counts for the WSJ database.

structure. Three classes of queries were generated in the probing experiment. The total
number of queries generated for each document is tabulated for both the WSJ and email
documents in Tables 4 and 6. The accuracies of the probes for each of the three classes is
plotted in Figure 10 for the WSJ documents and Figure 11 for the email documents. Also
superimposed on the plot, is the total accuracy (combining all the classes).

100

(o) o

80—

70~

60—

50—

40+

Class Accuracy

30

20—

—— Combined

10 Il Class 0 |

[Class 1

ol Il Class 2

0 5 10 15
Document Index

Figure 10: Class accuracies for documents in the WSJ database.

As seen from Figure 10, the class accuracies are highest for documents 8 and 9. Looking
at the corresponding rows in Table 3, it can be seen that the recognition results match
well with the corresponding ground truth in terms of the number of nodes, Acells, Dcells,
rows and columns. On the other hand document 7 has one of the lowest scores in this data

16

Doc Ground Truth Recognition Result
Index Class 0 Class 1 Class 2 Class 0 Class 1 Class2
1 10 25 24 8 25 24
2 10 19 14 10 20 14
3 10 13 0 8 13 0
4 9 34 27 9 32 24
5 18 70 12 19 75 10
6 16 86 54 15 83 54
7 8 33 25 8 45 37
8 8 31 27 8 31 27
9 9 46 42 9 46 42
10 12 65 32 8 56 0
11 8 68 56 12 82 62
12 8 7 6 8 7 6
13 12 49 26 8 40 0
14 10 61 38 8 57 44
15 10 13 0 8 13 0
16 9 35 27 9 32 24
17 9 46 42 9 46 42
18 9 31 23 8 29 16
19 9 15 14 9 15 14
20 9 20 19 9 21 19
21 9 46 42 9 46 42
22 8 37 32 8 35 30
23 12 63 41 22 84 30
24 9 14 8 9 18 10
25 9 23 22 9 23 22
26 9 44 31 10 45 33

Table 4: Query counts for the WSJ database.

Doc Ground Truth Recognition Result

Index Leaf Node Acell Dcell Row Col Leaf node Acell Dcell Row Col
1 64 4 60 13 5 64 16 48 13 5

2 14 0 14 7 2 23 7 16 7 4

3 50 0 50 10 5 50 10 40 10 5

4 70 15 55 12 6 88 14 74 11 8

5 54 0 54 6 9 24 6 18 6 4

6 20 0 20 10 2 20 10 10 10 2

7 24 3 21 7 3 21 9 12 7 3

8 25 5 20 5 5 21 6 15 6 4

9 45 18 27 10 4 45 18 27 10 4

10 70 0 70 7 10 70 7 63 7 10
11 27 0 27 7 5 27 7 20 7 5

12 14 2 12 2 7 14 2 12 2 7

13 49 13 36 7 7 49 13 36 7 7

14 36 0 36 9 4 36 9 27 9 4

15 50 0 50 5 10 52 5 47 5 10
16 27 12 15 6 4 25 8 17 7 4

Table 5: Node counts for the email database.

set. The corresponding document is shown in Figure 12. One plausible interpretation of
the table shows that it has three columns, with the leftmost column indicating the rank,
the center column corresponding to names and the third column corresponding to the vote
count. The table is complicated by the fact that a few names share the same rank (the
8th, 11th and 14th). This can be deduced only from a semantic analysis of the text. The
recognized result, however, has merged the first two columns as indicated in Table 3, and
Figure 12 shows only two columns. This difference in the layout structure between the
recognition result and the ground truth leads to its poor performance. It must be noted
that several plausible interpretations of a single table (ground truths) can be made and this
makes the evaluation task extremely challenging.

Figures 10 and 11 contain documents which have either zero or no Class 2 scores. One
reason was that the table in such documents had only two rows (a row containing headers
and a row containing data) and no Class 2 queries were generated. Another reason was
that currently, our algorithm does not capture hierarchical row headers and this leads to

17

Doc Ground Truth Recognition Result
Index Class 0 Class 1 Class 2 Class 0 Class 1 Class2
1 9 64 49 7 64 49
2 8 24 23 5 14 14
3 7 50 10 6 51 10
4 14 94 70 9 71 60
5 7 24 18 5 54 54
6 7 20 12 5 20 12
7 9 21 21 7 24 21
8 9 22 20 7 25 25
9 9 43 36 9 43 36
10 7 70 35 6 71 35
11 8 28 25 5 27 25
12 7 14 6 8 15 6
13 9 49 47 10 51 47
14 7 36 19 5 36 19
15 7 51 13 5 50 20
16 8 25 25 11 29 22
Table 6: Query counts for the EMAIL database.
100 T T T & T T
90— -
80— —
70+ —
)
& 60 -
=
Q
£ 501 -
1)
2 ol]
(s}
30— [-
20~ —— Combined |
Hl Class 0
10 [Class 1
Il Class 2
0 e
0 2 4 6 8 10 12 14 16

Document Index

Figure 11: Class accuracies for documents in the email database.

incorrect recognition of table structure in such tables.

As a first step towards correlating our evaluation method based on graph probing with
a user’s perception of the quality of the recognition results, we conducted an informal
experiment. This was similar to the experiment described in Section 3.2. The experiment
was conducted with three subjects (different from the authors) who were not involved in the
design of the underlying algorithms. The subjects were shown six test documents (labeled
A through F for email documents and a through f for WSJ documents) along with their
associated ground-truths using the Daffy interface. Six test documents were chosen from
each of the datasets and were shown with the table structure marked-up by the recognition
algorithm. The corresponding ground-truth was essentially the same document with the
table structure marked-up by one of the authors. The task was to rank order the six
documents based on how good a job the recognition algorithm performed at recognizing
the table structure regions, as defined by the ground-truth with rank one corresponding to
the best match in the group of six. The subjects were asked only to look at row structure,
column structure, Acells and Dcells. The subjects were free to choose any methodology

18

Heroes of the CEOs
The Wall Btreet Journal survey on executive style asked
CEOs to name their business heroes. Those named most often
and number of wvotes:
Lee TACOCCA] v v v v v v m v v o s s s n o oo s s m oo on s snnnnnss
Thomas Watson SF .| oot it s e e e e e e et e e e aen
Hentry Fordl @ it e e i i st s st vttt tme st nnnes
Alfred Bloan|o e e e e e e e
| S == T = o
Walter Wriston|ttt e e e e e e e e e ene e
Thomas Edisonttt i e e e et e e e
ANAdYrew CaFrnegdle] v v i i et s st vttt st m st en e
N = . (o 1=
Dawvid Packard| it e e e e
Peter Drucker| ... it i it e e et s e e e e a e ae e en
Feginald Jones| v ettt i e i e i i ettt e e e s
Paul Volcker| .o i it i i e e i e
My Tather| @i i i it e s i e e e e e e e e
John D. Rockefeller| i i,
Charles Wilaor| @ .. it e e e s e e e e e e e ee e e

s S By S g B

==y
=

=
=t

Figure 12: Daffy screen snapshot of a document (index 7) in the WSJ database.

to obtain an overall similarity measure. The ranking from the three subjects are shown in
Table 7 for the email dataset and in Table 8 for the Wall Street dataset. The fourth column
represents the computed average ranking obtained by the three subjects. Also shown in
the last columns for both the tables are the rankings obtained by using our random graph
probing technique to compare the results from the recognition algorithm to the ground-
truth. As seen from the tables, the average ranking compares well with that obtained by
our evaluation measure. Individual differences in ranking among subjects are due to the
different strategies adopted by each individual to obtain an overall similarity measure. The
larger inconsistency among subjects (when compared to that obtained in table detection)
suggests that it is more difficult to judge recognition performance.

Doc Rankings from subjects Average Ranking based on
Index Obs 1 Obs 2 Obs 3 Ranking Random Graph Probing
1

TEOQW >
SN CRTNN
RO
RN O
GOy W o N
SN NINIEN)

Table 7: Ranking from the subjects and our evaluation procedure for the email dataset

6 Conclusions

This paper has presented evaluation methods for both table detection and recognition tasks.
The detection task was evaluated based on the concept of edit-distance. Random graph
probing was introduced as a new paradigm for evaluating the performance of the table

19

Doc Rankings from subjects Average Ranking based on
Index Obs 1 Obs 2 Obs 3 Ranking Random Graph Probing
1

-0 0 T
GOl O W e
W T O e
SN NSRRI
O Ut W e
[NN

Table 8: Ranking from the subjects and our evaluation procedure for the WSJ dataset

recognition system.

In the area of evaluation, there remain many directions for future work. For example,
there is a need for more rigorous studies of the correlation of our evaluation measure with
a user’s perception of the quality of the recognition results. Another direction for further
study is concerned with the generation of more sophisticated probes for evaluation of table
structure and for extending this paradigm to evaluate any algorithm that attempts to extract
structure from documents.

Another line of future work is concerned with the problem of determining the ground-
truth used for performance evaluation. One of the difficulties encountered in dealing with
complex table layouts was that human experts were not always in agreement over what
constituted ground-truth. Thus it is not always clear that a single “ground-truth” exists
and this has significant impact on the evaluation of algorithms since each performance
measure can be interpreted only with respect to the one particular version of the ground-
truth that was chosen.

7 Acknowledgments

The authors would like to thank Hengbin Luo, April Rasala, and Ann Vilasuso for their
help in evaluating the techniques described in this paper.

References

[1] S. Agne, M. Rogger, and J. Rohrschneider. Benchmarking of document page seg-
mentation. In Proceedings of Document Recognition and Retrieval VII (ISET/SPIE
Flectronic Imaging), volume 3967, pages 165-171, San Jose, CA, January 2000.

[2] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, San Francisco, CA, 1979.

[3] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Medium-independent table detection.
In Proceedings of Document Recognition and Retrieval VII (ISET/SPIE Electronic
Imaging), pages 291-302, San Jose, CA, January 2000.

[4] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. A system for understanding and refor-
mulating tables. Submitted for publication, 2000.

[5] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Table structure recognition and its
evaluation. Submitted for publication, 2000.

20

[6] Y. Ishitani. Model matching based on association graph for form image understand-
ing. In Proceedings of the Third International Conference on Document Analysis and
Recognition, pages 287-292, Montréal, Canada, August 1995.

[7] A. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.

[8] J. Kanai. Automated performance evaluation of document image analysis systems:
Issues and practice. International Journal of Imaging Science and Technology, 7:363—
369, 1996.

[9] D. Lopresti and G. Nagy. Automated table processing: An (opinionated) survey. In
Proceedings of the Third IAPR International Workshop on Graphics Recognition, pages
109-134, Jaipur, India, September 1999.

[10] B. T. Messmer and H. Bunke. Efficient error-tolerant subgraph isomorphism detection.
In D. Dori and A. Bruckstein, editors, Shape, Structure and Pattern Recognition, pages
231-240. World Scientific, Singapore, 1995.

[11] G. Nagy. Document image analysis: Automated performance evaluation. In A. L. Spitz
and A. Dengel, editors, Document Analysis Systems, pages 137-156. World Scientific,
Singapore, 1995.

[12] J. K. Ousterhout. Tel and the Tk Toolkit. Addison-Wesley, Reading, MA, 1994.

[13] C. Peterman, C. H. Chang, and H. Alam. A system for table understanding. In
Proceedings of the Symposium on Document Image Understanding Technology, pages
55-62, Annapolis, MD, 1997.

[14] P. Pyreddy and W. B. Croft. TINTIN: A system for retrieval in text tables. Technical
Report UM-CS-1997-002, University of Massachusetts, Amherst, January 1997.

[15] A. Sanfeliu and K.-S. Fu. A distance measure between attributed relational graphs
for pattern recognition. IFEF Transactions on Systems, Man, and Cybernetics, SMC-
13(3):353-362, May/June 1983.

[16] R. J. Schalkoff. Pattern Recognition: Statistical, Structural and Neural Approaches,
chapter 8. John Wiley & Sons, New York, NY, 1992.

[17] J. H. Shamalian, H. S. Baird, and T. L. Wood. A retargetable table reader. In
Proceedings of 4th International Conference on Document Analysis and Recognition,
pages 158163, Ulm, Germany, August 1997.

[18] L. Shapiro and R. M. Haralick. A metric for comparing relational descriptions. [EEFE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-7(1):90-94, January
1985.

[19] X. Wang. Tabular abstraction, editing, and formatting. PhD thesis, University of
Waterloo, 1996.

21

20] B. A. Yanikoglu and L. Vincent. Ground-truthing and benchmarking document page
g g g g
segmentation. In Proceedings of the Third International Conference on Document Anal-
ysis and Recognition, pages 601-604, Montréal, Canada, August 1995.

22

