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Abstract

Computer Assisted Visual Interactive Recognition,
or CAVIAR, has proven to be an effective method-
ology for integrating human and machine expertise
in addressing challenging pattern recognition tasks.
In this paper, we examine the application of the
CAVIAR paradigm to problems arising in real-time
document analysis in the field. We identify hurdles
we expect to encounter, propose potential solutions,
and describe an evaluation framework to help deter-
mine whether this is a fruitful line of research.

1 Introduction

Research aimed at fully automating the processing of
document images has received a tremendous amount
of attention over the past 40 years. As a quick pe-
rusal of any of the dozens of surveys to date will
reveal, however, progress in automatic recognition
and interpretation has been slower than predicted.
We expect that further improvement in accuracy in
domains such as cursive handwriting and degraded
documents will be even more protracted because
the challenges that remain are much harder. As in
speech recognition, bridging the gap between ma-
chine and human knowledge to allow the former to
draw even with the latter appears problematic. The
context brought by humans to any classification task
is much greater than what can be obtained from even
the largest collections of training samples available
to our community. Endowing fully automated sys-
tems with broad knowledge remains a far-off goal.

There exists, however, a significant body of appli-
cations where it is not necessary to fully automate
the task of document analysis. Rather, the focus
is on a relatively small number of high-value doc-
uments (perhaps just one) – say from a cache dis-
covered in the field as part of an ongoing criminal
justice, military, or intelligence operation – where
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the computer plays the role of an assistant to help
the user acquire information that would otherwise
remain inaccessible. While such documents could
be collected and returned to a central repository
for scanning and batch processing in the traditional
manner, there is often a significant advantage in be-
ing able to exploit the information in real-time, im-
mediately and in situ.

Recently, Nagy and Zou, et al. have begun ex-
ploring a concept known as CAVIAR: Computer As-
sisted Visual Interactive Recognition [3, 6, 24, 23].
Over the last few years this work has led to the de-
velopment of a successful interactive system for rec-
ognizing faces and flowers, both problems of a level
of difficulty (i.e., automated current accuracy) com-
parable in certain ways to document recognition in
the field. Experiments on sizable databases of faces
and flowers indicate that interactive recognition is
more than twice as fast as the unaided human, and
yields an error rate ten times lower than state-of-
the-art automated classifiers. The benefit margin of
interactive recognition increases with improved au-
tomated classification. Parsimonious human inter-
action throughout the interpretation process is much
better than operator intervention only at the begin-
ning and the end, e.g., framing the objects to be
recognized or dealing with rejects. Furthermore, this
interactive architecture has been shown to scale up:
it can start with only a single sample of each class,
and it improves as recognized samples are added to
the reference database.

The notions embodied in CAVIAR differ in fun-
damental ways from past efforts at mobile and/or
interactive recognition. Whether such an approach
can be equally effective in the domain of documents
as it is for flowers and faces is unproven. In this pa-
per, we discuss the application of this paradigm to
document analysis in the field, identify the hurdles
we expect to encounter, propose potential solutions,
and describe an evaluation framework to help deter-
mine whether this is a fruitful line of research.



2 Related Work

The questions we plan to examine arise from adapt-
ing CAVIAR to tasks from document analysis.
There are, however, other projects that share sim-
ilar goals and assumptions; below we briefly cite a
few of these. The Army Research Laboratory’s For-
ward Area Language Converter (FALCon) system
provides mobile optical character recognition (OCR)
and translation capabilities [10, 21], but, so far as
we know, employs a traditional user interface. A
growing amount of research is being conducted on
camera-based document acquisition (e.g., [7, 11]).
This work employs the camera as a new form of cap-
ture device, but, as with FALCon, treats the later
processing stages as though they will be fully auto-
mated

Camera-based systems for locating and recogniz-
ing text in traffic signs and providing translation ser-
vices for non-native visitors in foreign lands are per-
haps more similar to what we have in mind [8, 22].
Still, we have yet to encounter such a system with
an interaction paradigm as integral and as sophisti-
cated as CAVIAR’s. Reading services for the vision-
impaired are likewise focused on page-at-a-time pro-
cessing, but employ an auditory user interface as op-
posed to a visual one for obvious reasons [9, 19]. A
somewhat similar notion is recent work on develop-
ing tools to support forensic document analysis [20].
We note, however, that such systems are designed
to solve a different, much more specific problem, are
intended for off-line use by domain experts (as op-
posed to occasional users whose primary jobs lie else-
where), and have no need for mobility.

3 Rationale for a Human-Machine

Collaborative Approach to

Document Analysis

A divide-and-conquer strategy for visual recognition
should partition difficult domains into components
that are relatively easier for both human and ma-
chine. There are pronounced differences between hu-
man and machine cognitive abilities. Humans excel
in gestalt tasks, like object-background separation.
We apply to recognition a rich set of contextual con-
straints and superior noise-filtering abilities. Com-
puter vision systems, on the other hand, still have
difficulty in recognizing “obvious” differences and
generalizing from limited training sets. We can also
easily read degraded text (e.g., CAPTCHA’s [2]) on
which the best optical character recognition systems
produce only gibberish.

Computers, however, can perform many tasks
faster and more accurately. Computers can store
thousands of images and the associations between
them, and never forget a name or a label. They

can compute geometrical properties like higher-order
moments whereas a human is challenged to deter-
mine even the centroid of a complex figure. Spatial
frequency and other kernel transforms can be easily
computed to differentiate similar textures. Comput-
ers can count thousands of connected components
and sort them according to various criteria (size,
aspect ratio, convexity). They can quickly mea-
sure lengths and areas. They can flawlessly eval-
uate multivariate conditional probabilities, decision
functions, logic rules, and grammars. On the other
hand, the study of psychophysics revealed that hu-
mans have limited memory and poor absolute judg-
ment [16]. A detailed comparison of these differences
appears in Table 1.

4 Technological Issues

Here we briefly summarize some of the technological
issues that must be addressed in the implementa-
tion of a CAVIAR-like system to support document
analysis and exploitation:

1. The rapid development of high-quality, low-cost
digital cameras suitable for full-page imaging
in color or a broad range of grays. Smaller
versions of these cameras are now available as
plug-ins for Personal Digital Assistants (PDA’s)
and within a year sufficient resolution should
be available for camera phones. These devices
make document-acquisition in the field simpler
than with conventional page-width scanners.

2. Displays are approaching the resolution-limit of
the human eye (discounting head movement).
In addition to the small displays built into
PDA’s, cell phones, and helmets, larger flexible
displays that can be incorporated into a user’s
clothing are on the verge of becoming available.

3. Interaction with a direct-action device like a
stylus, and especially a thumb, is faster than
with a mouse. Touch-sensitive screens are just
now becoming available for cell phones.

4. The storage capacity of mobile devices is al-
ready sufficient for most DIA and OCR tasks.

5. Nagy, et al. have implemented interactive recog-
nition on both stand-alone and wireless net-
worked mobile platforms. Both are adequate
for PDA’s, but neither is yet acceptable for cell-
phone based systems because these do not have
enough computational resources for stand-alone
operation, and their bandwidth is too low for
acceptable interactive response time on image
computations. However, according to technol-
ogy forecasts, both of these shortcomings will
disappear in a year or two.



Table 1: Comparison of relative strengths of human vs. machine in visual pattern recognition.

Human Machine

• dichotomies • multi category classification

• figure-ground separation • nonlinear, high-dimensional classification
boundaries

• part-whole relationships • store and recall many labeled reference patterns

• salience • accurate estimation of statistical parameters

• extrapolation from limited training samples • application of Markovian properties

• broad context • estimation of decision functions from training
samples

• gauging relative size and intensity • evaluation of complex sets of rules

• detection of significant differences between
objects

• precise measurement of individual features

• colored noise, texture • enumeration

• non-linear feature dependence • computation of geometric moments

• global optima in low dimensions • orthogonal spatial transforms (e.g., wavelets)

• connected component analysis

• sorting and searching

• rank-ordering items according to a criterion

• additive white noise

• salt & pepper noise

• determination of local extrema in high-D spaces

6. The need for network connectivity depends
greatly on the targeted application domain:
civilian, military, or covert. While it is clearly
desirable for such a system to be operable com-
pletely autonomously, there may be substantial
value in networking document acquisition and
exploitation activities.

5 Data Entry on Hand-Held Devices

It is clear that an important constituent of mobile
interactive document analysis is manual text entry.
The alternatives seem to be restricted to virtual key-
board on a touch sensitive screen activated by a
handheld stylus, finger-operated keyboards incorpo-
rated in the operators clothing (on arm or thigh),
and automatic speech recognition. We believe that
the stylus is the most appropriate solution, because
in addition to text entry it can also mediate the
graphical communication essential in some aspects
of document image analysis.

The virtual keyboard appeared in the seventies to
accelerate the digitization of maps and line-drawings
by avoiding having the operator shift constantly be-
tween pointing device and keyboard. It consisted of
a picture of a keyboard on a piece of paper that could
be shifted to the area of the drawing being vector-
ized. The current virtual keyboard usually appears
in a fixed partition of the touch-sensitive screen of a
handheld device. The text being entered appears on

another partition. Edwards surveyed input interface
issues in mobile devices in 1997 [4]. Data input is
usually a local operation, so it makes little difference
whether the device is networked or not.

The key consideration for stylus data entry are
speed, (perceived) operator comfort, and ramp-up
time. The first two factors are influenced by the
amount of space allocated to the keyboard, to the
recognized or entered text, and to control functions.
The third factor depends heavily on the keyboard
layout. The QWERTY layout, developed to prevent
binding of type bars in mechanical typewriters, is
suboptimal even for typing, and even more so for
one-handed stylus entry.

There has been much work on evaluating alter-
native keyboards and word-completion algorithms
(for a recent overview, see [1]). An upper bound on
the speed of individual character entry is imposed
by Fitts’ Law, which is a nonlinear relationship be-
tween pointing time and the distance and size of the
target. The relevant distance is that between the
screen areas (“keys”) corresponding to consecutive
letters. The letter transition frequency is given by
a language model. As an example of the compro-
mises necessary in keyboard design, it is possible to
reduce the average distance by having several space
keys, but this decreases the size of the keys. Several
researchers have optimized keyboard designs accord-
ing to various language models [14, 13, 15, 12]. The



computed speeds hover about 40 words per minute,
but actual text entry is much slower.

The speed increase obtainable by word completion
also depends on the language model. Ancona [1]
demonstrates a keyboard with separate keys for the
ten most common words (with a cumulative word
frequency of 28%). After each tap on the screen,
the ten most likely words appear in the selection
area of the screen. If the correct word is included,
it can be selected with one additional tap. If not,
another letter is tapped, which brings up ten new
words. With a vocabulary of 13,000 words, the ex-
pected number of taps per word is claimed to be 3.3.
Some of the notions here are clearly similar to those
incorporated in CAVIAR.

The performance of word-completion systems de-
pends on how well the stored lexicon is matched to
the user input. Multiple lexicons – for different lan-
guages and applications – can be either stored on
board, or downloaded via a wireless connection.

Another important source of ideas is the technol-
ogy developed for vectorizing maps and engineering
drawings [17, 18]. Manual vectorization was first
conducted from hardcopy with a digitizing table or
tablet. The operator traced the lines with cross-hairs
under a magnifying glass with a MARK button. Af-
ter the advent of large-size roller-feed scanners and
bitmapped displays, all service bureaus and in-house
operations converted to on-screen vectorization from
scanned copy. One advantage was that already vec-
torized lines could be displayed with a different color,
and departures between manually entered lines and
original were clearly visible. The operator could
zoom in on dense portions of the drawing. How-
ever, the aspects of interest here are the algorithms
developed for semi-automated data entry.

For colored maps, different color layers were first
separated according to RGB values. Vectorizing al-
gorithms were manually initialized to a line segment
or curve, and then could automatically follow that
line at least to the next intersection point. The
systems would also attempt to automatically recog-
nize map and drawing symbols (for schools or re-
sistors). If it failed, the operator would override
it. The character recognition software recognized
cleanly lettered labels (elevations, part numbers, re-
sistor values), but left labels confused by overlaid
line art or poor lettering to the operator.

If most of the labels cannot be recognized by OCR
because of poor document quality or unusual char-
acter shapes, it is still possible to rapidly mark their
location and orientation, rotate them to horizontal,
and move them to a single area of the screen. This
accelerates manual label entry. A single E-sized
drawing may contain 3,000 alphanumeric symbols,
which is more than a densely printed page of text.

Most such data-entry systems are part of larger
GIS or CAD software, and are typically designed
for standard workstations. All graphical operator
interaction is therefore mediated by the mouse. As
demonstrated by Engelbart and colleagues at SRI
long ago, direct-action devices, like a touch-sensitive
stylus, allow faster and more accurate interaction [5].
Indeed, we found that to be the case in comparing
desk-top CAVIAR systems with handheld CAVIAR.

Like CAVIAR, these interactive systems exhibit
clear speed advantages over completely manual data
entry, and are robust enough (unlike automated sys-
tems) for operational application. Although some of
these systems are laboriously trainable, one key dif-
ference compared to CAVIAR is that no commercial
system that we are aware of incorporates adaptive
algorithms that take advantage of routine operator
input. Unlike CAVIAR, they also fail to provide vis-
ible models for the entry of complex 2-D patterns.

6 Test Data Collection

Any comparison of the proposed mobile interac-
tive document exploitation system with existing and
forthcoming automated and manual data entry sys-
tems requires a test database. It is, of course, desir-
able that the test database reflect the characteristics
of the documents that are to be processed. For the
purposes of this discussion, we assume that the do-
main of interest is handwritten Arabic documents;
however, it should be clear how the the same is-
sues and potential solutions generalize to other gen-
res and languages.

We believe that existing handwritten Arabic
databases cannot fulfill the objectives we have in
mind for CAVIAR research because they are too
small, they were designed specifically for testing a
particular class of recognition algorithms, and they
do not reflect the characteristics of the target data.
For the sake of concreteness, we make the following
assumptions:

1. The proposed system is to be applied to tran-
scription and further processing of documents
similar to those in a growing collection of hand-
written Arabic documents, referred to here as
the Target Database. Although we propose
a mobile, personal device operated by a non-
specialist, the test database will also be used
for evaluating batch-mode DIA and OCR sys-
tems.

2. The amount of data and corresponding meta-
data, including ground truth (GT), will be com-
parable to an existing database used for evalu-
ating typeset Arabic documents, i.e., 400,000
words. We take this as a fixed point for now.
Handwritten documents have fewer words than



printed text: say 100 words/document on av-
erage. The documents are not restricted to a
single page, but each document is created by a
single author.

3. Handwritten documents have statistically dif-
ferent textual content than typeset docu-
ments; therefore we cannot mirror the existing
database. Handwritten material is less likely to
form a grammatical narrative: it may have un-
usual abbreviations, short lists of phrases, un-
labeled strings of digits, underlines, corrections,
cross-outs and erasures, and unstylized layouts.

4. Character formation in free writing in any script
is markedly different from copying or taking dic-
tation from tape or a person. The conditions
under which the document is composed, includ-
ing the degree of stress or haste, will percepti-
bly alter even the same person’s writing. We
believe that this must be taken into considera-
tion to avoid disappointment when the system
is deployed.

5. The most important components of systematic
variability are (a) country of education, (b) level
of education (years of schooling), and (c) age of
the writer.

6. Digitization and character recognition are af-
fected by the medium: pen or pencil, n

th gen-
eration copy, fax, paper quality, and physical
conditions (writing on a desk is different from
writing in a hand-held notebook).

7. The chosen approach for (semi-)automated
transcription should depend on the distribution
of the amount of writing among individuals. If
there are many long passages or multiple doc-
uments by the same writer, the system ought
to take advantage of this. Language context
and writer/style adaptation are powerful aids
to recognition.

8. A service bureau with Arabic software can per-
form scanning and ground-truthing more effi-
ciently than students. Such a service bureau
could be located in a country with a significant
Arab-speaking population (US, Canada, UK),
or in a friendly Arab country (Jordan, Egypt)
with an advanced computer infrastructure.

In order to plan data collection, it would be de-
sirable to have the following information. The rel-
evant document statistics could either be estimated
(guessed) by a designated expert, or obtained from
the agency responsible for processing the target doc-
uments.

Ideally, a sizeable random sample of the original
documents (or very good copies) with translations
from the Target Database, with accompanying meta-
data, would be made available. Most of the neces-
sary information could be derived from such a sam-
ple. If, as is likely, such a sample cannot be released,
then specification of the following distributions (in
the form of histograms) would be useful:

• Number of words per document .

• Number of documents per writer and of words
per writer .

• Educational profile of the writer.

• Country of schooling of the writer.

• Vocabulary: a lexicon indexed by frequency
and, if possible, by writer.

• Media: pen, pencil, copy, fax, photo, etc.

In order to gauge feasibility, in Table 2 we pro-
vide a rough estimate (perhaps accurate to ±50%)
of the cost of deriving the required statistics from
a hardcopy database of documents. These costs do
not include the significant cost of collecting the doc-
uments, nor planning/management costs.

Table 2: Estimated costs of a hardcopy document
ground-truthing activity.

Category Cost

Scanning (200 or 300 dpi, 8-bit
grayscale), for 4,000 mostly single-
page documents, with quality con-
trol, at $1.00 per document

$4,000

Transcription, with verification and
correction, at $2.00 per document

$8,000

System acquisition or customization
for detailed (word-box level) zoning

$10,000

Interactive box location, verification
and correction

$8,000

Database creation (accession num-
bers, bitmaps, boxes, GT)

$12,000

Estimated total $42,000

The handwriting data could consist of either: ex-
isting originals (or high-quality copies thereof), or
handwritten documents generated for this purpose
by about 1,000 subjects.

Possible sources of existing data include schools
(assignments, term papers, course notes, adminis-



trative records), businesses (orders, reports, corre-
spondence), and government agencies (dead files of
forms and free-form correspondence). Privacy con-
cerns may preclude certain of these approaches, how-
ever.

If new data must be generated, a possible scenario
for distributed data collection is:

1. Prepare from five to eight printed single or
multi-page protocols on various topics, e.g., eco-
nomics, politics, technology, military, religion.
The topics should correspond to their propor-
tions in the target database. The protocols
should include questions that require a narra-
tive answer, including requests for summariza-
tion, organization, decision, rebuttal, comment
or memory-aids in the subjects’ own words. It is
essential to avoid having the subjects copy fixed
material, and to give rise to varied vocabulary,
syntax, spelling, and document length.

2. Recruit ∼1000 Arab-literate subjects according
to specified demographics, possibly in different
countries, and request each to respond to one
or more forms. In U.S. university settings, this
would require permission for the cognizant insti-
tutional review board on human factors experi-
mentation, and obtaining signed consent forms.

3. Provide each writer a writing surface, paper and
writing instrument according to the randomized
experimental design.

4. Collect the forms, possibly with the demo-
graphic data attached to each sheet. Scan the
image data and organize the metadata in a
widely readable format (ASCII perhaps). The
size of the database after digitization at 200 dpi
(8-bit depth) should be about 16 GB. Because
of the prevalence of white space, after compres-
sion it may fit on a single CD.

For DIA and OCR research and development, this
method would far superior to the customary collec-
tion of copies from prescribed forms. The latter,
however, would be less expensive because the hand-
written data need not be transcribed but only proof-
read to catch copying errors.

Part of the resulting database should be se-
questered for independent testing. The remainder
could be released to the research and development
community. Used in this manner, the proposed
database would have a relatively long shelf-life and
provide performance measures far more represen-
tative of operational systems than the customary
greenhouse test data.

7 Examples of Interactive Document

Image Analysis

We mention some DIA tasks where automated algo-
rithms work accurately only on exceptionally clean
documents, but where a little interaction can quickly
produce acceptable results.

Most OCR algorithms, especially for handwriting,
are designed for binarized images, because scripts
generally avoid discrimination based only on shades
of gray or color. Instead of using thresholding hard-
ware built into the scanner, today documents are
usually digitized to 8-bit gray scale or RGB, and sub-
sequently converted to binary images. Global bina-
rization algorithms work only if the foreground and
background reflectance are uniform throughout the
document, which may not be the case if, for example,
part of a folded documents suffers prolonged expo-
sure to sunlight, or if there are dark areas around
the edges of a photocopy. Local binarization algo-
rithms measure the distribution of reflectance in a
window translated through the page, and set the lo-
cal threshold between foreground and background
reflectance peaks according to the estimated disper-
sions of the components of the mixture distribution.
The window size and reflectance distribution esti-
mates invariably depend on explicit or implicit as-
sumptions about the relative density and configu-
ration (strokes) of the foreground (ink) and back-
ground. These assumptions generally hold only for
a narrow class of documents. Fortunately, the bina-
rization algorithms are simple, therefore an operator
can easy set the appropriate window size and fore-
ground density either for the whole document, or
for selected areas. This still allows local algorith-
mic thresholding, and therefore requires much less
interaction than setting the threshold manually ev-
erywhere, and is much more robust than fully auto-
mated local thresholding.

Line finding is another instance where interaction
may be effective. The first step is usually estimat-
ing global document skew, i.e., the angle of the writ-
ten lines with respect to the paper or digitizer axes.
While very accurate skew estimation and correction
algorithms have been developed for printed matter,
they do not work well on handwriting because the
orientation of individual lines varies, the margins are
not straight, there may be only a few words on a
page, and there may be several columns of words or
phrases at different angles. Humans can, however,
judge skew remarkably well, and convey this infor-
mation to the computer by a few well chosen stylus
taps or by rotating a superimposed grid. After the
computer-proposed skew correction and line finding
is corrected, the occasional merged pair of lines –
due to overlapping ascenders and descenders – can



be likewise rapidly separated.

Word segmentation is relatively easy for printed
text, except for extremely tightly-set, micro-justified
print. In handwriting, however, large spaces often
appear within words and, towards the end of a line,
words are often squeezed together. In Arabic and
other scripts, some inter-letter spaces are manda-
tory. Underlines that link word sequences can fur-
ther complicate the task. Again, humans can usually
spot missed word boundaries even in unfamiliar lan-
guages and scripts. If the writing lines are already
properly segmented, then a simple interface can be
designed to correct linked and broken words.

At the character recognition level, there are also
several opportunities for effective interaction. First,
humans can often tell where perfect accuracy is im-
portant, as in telephone numbers, email addresses,
and proper nouns. If the automated algorithms fails
on important words, phrases or numbers, they can
be either entered manually using the virtual key-
board, or selected by a stylus tap from the top recog-
nition candidates.

The human can provide global assistance to the
character recognition system. The operator may be
able to recognize the language or script of a docu-
ment even from a few words, perhaps by using com-
mon sense or contextual information related to the
source of the document (e.g., indicate that the doc-
ument probably contains a mixture of Korean and
German.) He or she can indicate the average slant,
and in Western scripts, the prevalent case (e.g., if a
writer uses only capital letters). The operator may
also decide which of the available lexicons would pro-
vide the best language model. (The lexicons will
be automatically updated with entries from the pro-
cessed documents that have been deemed correct.)

Most importantly, entering only part of a docu-
ment may provide enough training data – to a recog-
nition system designed with this in mind – for fine-
tuning the classification algorithms. The underly-
ing assumption is that if the remainder of the doc-
ument (and perhaps also additional documents) is
from the same source, the adjusted parameters will
yield more accurate recognition. If that is not the
case, the operator can easily separate the portions
of the document written by different individuals (as-
suming that the second writer was not attempting
to mimic the first). Of course, human handwritten
data entry in an unfamiliar language and script is
also problematic. However, it requires far less train-
ing than learning to speak, write and understand a
language. Off-shore data-entry is sometimes carried
out by operators who do not know English. Anec-
dotal evidence suggests that on printed matter at
least, non-speakers are more accurate, because they
must look at each letter.

8 Evaluation Plans and Issues

The requirements for evaluating a CAVIAR-like ap-
proach to document analysis differ from traditional,
fully-automated techniques. In the latter case, the
focus is entirely on classification accuracy, whereas
in the former, the system is comprised of a hu-
man user and a machine working in collaboration:
both time and accuracy are important measures. It
is unlikely the system will be more accurate than
a human working alone, it must be faster. Simi-
larly, it is unlikely the system will be faster than a
fully-automated algorithm, it must be more accu-
rate. Note also that such work naturally demands
the use of human test subjects, unlike most pattern
recognition research.

One of the most intriguing aspects of the earlier
CAVIAR work was its demonstration of an inherent
potential to incorporate adaptation, yielding a sys-
tem that improves with use. This also provides the
opportunity to study human learning: the operator
and the system learn together, a little like a blind
person and her Seeing Eye dog. As was done in the
case of CAVIAR for flowers, we plan to study this
effect.

It is also evident that one of the most plausible tar-
gets for a CAVIAR-like system involves documents
written in a language that the user is unable to read,
perhaps using a script that he/she does not recog-
nize. A typical end-to-end scenario, then, might in-
cluding the following processing stages:

1. Categorization: source, age, type of document,
size, quality, language, script.

2. Image-level preprocessing including various lev-
els of segmentation.

3. Word recognition.

4. Translation.

5. Information
importance assessment/transformation into ac-
tionable knowledge.

Our initial experiments will be conducted on
workstations with simulated mobile-device window
sizes.

Among other expected benefits, we believe that
the development cycle for interactive recognition
systems may be faster than for wholly automated
systems. One reason to suspect this will be true is
that it is no longer necessary to take care of rare
contingencies: they can be dealt with by the human
operator, who can always override every automated
option. This will allow deployment of a whole family
of support systems, specialized to different levels of



operator familiarity with the target language(s) and
script(s).

We intend to develop the interfaces necessary to
accomplish the above interactive tasks in parallel
with data collection. While this would have been
a monumental endeavor only a few years ago, today
excellent tools are available for the purpose. Perhaps
the most difficult part of the project is devising and
incorporating a customized logging system for tim-
ing and recording every interaction and its effect.
This must be done in sufficient detail to allow re-
playing the whole interactive document information
acquisition sequence in order to find out where and
what goes wrong.

The individual files log must be compiled and ag-
gregated for statistical analysis. This will also form
the basis for evaluating the interactive system and
for comparing it with entirely automated and en-
tirely manual data entry.

We emphasize that we do not address the ex-
traction of data from a large backlog of accumu-
lated documents. Unlike much of the academic re-
search on document analysis, our interest here is
not in archival documents, but in those whose value
decreases exponentially with time. We propose a
system that may prevent future backlogs of nearly
worthless documents by on-site, just-in-time infor-
mation extraction.
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