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Forgery Quality and its Implications for
Behavioral Biometric Security
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Abstract— Biometric security is a topic of rapidly growing
importance in the areas of user authentication and cryptographic
key generation. In this paper, we describe our steps toward
developing evaluation methodologies for behavioral biometrics
that take into account threat models which have been largely
ignored. We argue that the pervasive assumption that forgers are
minimally motivated (or, even worse, näıve) is too optimistic and
even dangerous. Taking handwriting as a case in point, we show
through a series of experiments that some users are significantly
better forgers than others, that such forgers can be trained in a
relatively straightforward fashion to pose an even greater threat,
that certain users are easy targets for forgers, and that most
humans are a relatively poor judge of handwriting authenticity
and hence their unaided instincts cannot be trusted. Additionally,
to overcome current labor-intensive hurdles in performing more
accurate assessments of system security, we present agenerative
attack model based on concatenative synthesis that can provide a
rapid indication of the security afforded by the system. We show
that our generative attacks match or exceed the effectiveness of
forgeries rendered by the skilled humans we have encountered.

I. I NTRODUCTION

The security of many systems relies on obtaining human
input that is assumed to be not readily reproducible by
an attacker. Passwords are a common example, though the
assumption that these are not reproducible is suspect. Indeed,
memorable passwords are generally easy for an adversary to
guess [5]. Biometrics is an alternative form of input that is
believed to address the contention between memorability and
security. This belief has led to the incorporation of biometrics
into security applications such as authentication [24] and
cryptographic key generation [23], [32].

Biometrics may be divided into two broad categories.Phys-
iological biometrics measure biological traits, for instance,
characteristics of a fingerprint or iris.Behavioral biometrics
measure how users perform certain actions, such as speaking
or writing. Although physiological biometrics have enjoyed
more attention than behavioral biometrics, and have conse-
quently become more integrated into commercial products,
behavioral biometrics exhibit several qualities that make them
attractive for security applications. For instance, whereas an
adversary can passively extract physiological biometrics (i.e.,
by lifting a fingerprint from a keyboard), behavioral biometrics
do not lend themselves as easily to surreptitious capture as they
require a user to consciously perform an action (i.e., speaking
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a specific phrase). Additionally, while physiological biometrics
cannot change, behavioral biometrics naturally change with the
action that is performed. This property is useful for security
applications such as key generation, where key compromise
necessitates the creation of a new key.

Regardless of the type of biometric, designers generally
perform empirical evaluations to justify the assumption that a
system will withstand attacks. The evaluation usually follows
a standard model: enroll some number of users by collecting
training samples. At a later time, test the rate at which users’
attempts to recreate the biometric to within a predetermined
tolerance fail. This failure rate is denoted as the False Reject
Rate (FRR). Additionally, evaluation involves assessing the
rate at which one user’s input (i.e., an impostor) is able to
fool the system when presented as coming from another user
(i.e., the target). This yields the False Accept Rate (FAR) for
the system under consideration. Typically, one uses the equal
error rate (EER), or the point at which theFRRand theFARare
equal, to describe the accuracy of a biometric system.

Clearly theFAR and EERare a function of the quality of
the collected forgeries. For an evaluation to be meaningful,
the forgeries must be representative of those that the system
would expect to see during actual operation. For physiological
biometrics—which are not based on human actions—a reason-
able approach is to use samples from one user as forgeries for
another. As an example, one might try to match one user’s
fingerprint to another’s template.

Providing a reasonable forgery for behavioral biometrics
is not as straightforward. Researchers predominantly use two
forgery styles to estimate theFAR of a behavioral biometric
system. “Näıve” (also called “random,” “zero-effort,” or “ac-
cidental”) forgeries are created by using one user’s samples
as forgeries for another user. Naı̈ve forgery has roots in
forgeries of physiological biometric systems (where its use
is less suspect) and is easy to perform as it requires only
enrollment samples. However, naı̈ve forgeries may not provide
an adequate estimate of security; in some instances, they
are not even based on writing, speaking, or typing the same
passphrase as the target user.

“Skilled” forgeries are created by users who use information
about the targeted input to create a replica. Skilled forgeries
are generally preferred to naı̈ve forgeries as they provide a
more realistic view of security. However, in this work, we
provide what we believe to be the first analysis that concretely
demonstrates that even so-called skilled forgeries arenot
indicative of realistic threats faced by biometric systems.
Thus, the evaluation of behavioral biometrics under such weak
security assumptions can be misleading.
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Misunderstanding forger capability is especially dangerous
when behavioral biometrics are adopted for sensitive applica-
tions such as authentication or cryptographic key generation.
Underestimating the ability of an adversary to bypass an
authentication mechanism could lead users to feel a dispro-
portionally high level of trust, and consequently to forgo extra
steps that they may have otherwise taken to secure sensitive
information. This problem is amplified when biometrics are
used to create cryptographic keys, which might be used to
encrypt sensitive data over extended periods of time. The
long term nature of the encryption introduces the possibility
for adversaries to search for the target key. For instance,
adversaries could forge the biometric input to within some
tolerance, and then perturb the resulting key to enumerate
likely possibilities. In such a situation, any overestimate of
forger capability could be devastating. Thus, it is essential for
researchers to truly understand the effort that an adversary
must exert to forge a behavioral biometric.

In what follows, we provide an in-depth study that em-
phasizes the disconnect between standard evaluation practices
and realistic adversaries. While our belief is that our results
are generally applicable, and our ideas may be extended to
any behavioral biometric, the detail required by our study
necessitates an comprehensive analysis of a specific modality.
As a case in point, we focus on handwriting. Through a series
of experiments, we show that some users are significantly
better forgers than others (so-called “wolves” in the jargon for
a hypothetical menagerie of users [2]), that such forgers can be
trained in a relatively straightforward fashion to pose an even
greater threat, that certain users are easy targets for forgers
(i.e., “lambs”), and that most humans are a relatively poor
judge of handwriting authenticity (hence assertions that “our
forgers looked like they were doing a good job” are suspect).
We conclude with our proposal for a new evaluation paradigm
for biometric security based on the concept of generative
models for the behavior in question.

II. H ANDWRITING BIOMETRICS

Research on user authentication via handwriting has had
a long, rich history, with hundreds of papers written on the
topic. The majority of this work to date has focused on the
problem of signature verification [28]. Signatures have some
well known advantages: they are a natural and familiar way of
confirming identity, have already achieved acceptance for legal
purposes, and their capture is less invasive than most other
biometric schemes [4]. While each individual has only one
true signature—a notable limitation—handwriting in general
contains numerous idiosyncrasies that might allow a writer to
be identified.

In considering the mathematical features that can be ex-
tracted from the incoming signal to perform authentication, it
is important to distinguish between two different classes of
inputs. Data captured by sampling the position of a stylus tip
over time on a digitizing tablet or pen computer are referred to
as online handwriting, whereas inputs presented in the form
of a 2-D bitmap (e.g., scanned off of a piece of paper) are
referred to asofflinehandwriting. To avoid confusion with the

traditional attack models in the security community, later on
in this paper we shall eschew that terminology and refer to
the former as covering both temporal and spatial information,
whereas the latter only covers spatial information. Features
extracted from offline handwriting samples include bounding
boxes and aspect ratios, stroke densities in a particular region,
curvature measurements, etc. In the online case, these features
are also available and, in addition, timing and stroke order
information that allows the computation of pen-tip velocities,
accelerations, etc. Studies on signature verification and the
related topic of handwriting recognition often make use of
50 or more features and, indeed, feature selection is itself a
topic for research. The features we use in our own work are
representative of those commonly reported in the field [7],
[16], [21], [34].

In the literature, performance figures (i.e.,EER) typically
range from 2% to 10% (or higher), but are difficult to compare
directly as the sample sizes are often small and test conditions
dissimilar [3]. Unfortunately, forgers are rarely employed in
such studies and, when they are, there is usually no indication
of their proficiency. Attempts to model attackers with a mini-
mal degree of knowledge have involved showing a static image
of the target signature and asking the impostor to try to recreate
the dynamics [25]. The only concerted attempt we are aware
of, previous to our own, to provide a tool for training forgers
to explore the limits of their abilities is the work by Zoebisch
and Vielhauer [33]. In a small preliminary study involving four
users, they found that showing an image of the target signature
increased false accepts, and showing a dynamic replay doubled
the susceptibility to forgeries yet again. However, since the
verification algorithm used was simplistic and they do not
report false reject rates, it is difficult to draw more general
conclusions.

To overcome the “one-signature-per-user” (and hence, one
key) restriction, we employ more general passphrases in our
research. While signatures are likely to be more user-specific
than arbitrary handwriting, results from the field of forensic
analysis demonstrate that writer identification from a relatively
small sample set is feasible [9]. Indeed, since this field
focuses on handwriting extracted from scanned page images,
the problem we face is less challenging in some sense since
we have access to dynamic features in addition to static.
Another concern, user habituation [3], is addressed by giving
each test subject enough time to become comfortable with
the experimental set-up and requiring practice writing before
the real samples are collected. Still, this is an issue and the
repeatability of non-signature passphrases is a topic for future
research.

III. E XPERIMENTAL DESIGN

We collected data over a two month period to analyze six
different forgery styles. We consider three standard evaluation
metrics:näıve, static, anddynamicforgeries1 [10], [15], [30],
as well as three metrics that will provide a more realistic

1Although the biometric literature often refers to static or dynamic forgeries
as skilled forgeries, here we make a distinction. In fact, only a subset of
forgers who are presented with static or dynamic information may indeed be
“skilled”.
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definition of security:näıve*, trained, and generative. Näıve
forgeries are not really forgeries in the traditional sense; they
are measured by authenticating one user’s natural writing
samples of a passphrase against another user’s template for
the same passphrase. Static forgeries are created by humans
after seeing static renderings of a target user’s passphrase.
Dynamic forgeries are created by humans after seeing real-
time renderings of a target user’s passphrase. Naı̈ve* forgeries
are similar to näıve forgeries except that only writings from
users of a similar style are authenticated against a target
user’s template. Trained forgeries are generated by humans
under certain conditions, which will be described in greater
detail later. Lastly, generative forgeries exploit information
about a target user to algorithmically create forgeries. Such
information may include samples of the user’s writing from a
different context or general population statistics.

A. Data Collection

Our results are based on 9,026 handwriting samples col-
lected on digitized pen tablet computers from 47 users during
several rounds. We grouped users into three categories accord-
ing to their writing style: “block” writers tend to lift their pen
between letters, “cursive” writers tend to connect every letter,
and “mixed” writers connected some letters, but not others.
The determination of whether or not users connected letters
was made by the authors based on static writing samples. Our
data set contains 10 block writers, 17 mixed writers, and 20
cursive writers.

We used NEC VersaLite Pad and HP Compaq TC1100
tablets as our writing platforms. To ensure that the participants
were well motivated and provided writing samples reflective
of their natural writing (as well as forgery attempts indicative
of their innate abilities), several incentives were awarded for
the most consistent writers, the best/most dedicated forgers,
etc. Additionally, before any data collection, users were asked
to write several phrases to become comfortable with the
writing device [3]. To create a strong underlying representative
system, users were given instructions to write as naturally (and
consistently) as possible.

During enrollment users provided twenty renderings of five
different phrases consisting of two-word oxymorons (“crisis
management,” “graphic language,” “least favorite,” “perfect
misfit,” and “solo concert”). We chose these phrases as they
were easy to remember (and therefore, can be written natu-
rally) and could be considered of reasonable length. Signatures
were not used due to privacy concerns and strict restrictions on
research involving human subjects. More importantly, in the
context of key generation, signatures are not a good choice for
a handwriting biometric as the compromise of keying material
could prevent a user from using the system thereafter. This
data was collected across two rounds,round II starting
approximately two weeks afterround I (see Table I for a
breakdown of the number of enrollment and forgery samples
collected in each round). Enrollment samples were used to
create templates for authentication, as well as naı̈ve and näıve*
forgeries.

In round I users also provided 65 additional writing
samples to create our “parallel corpus,” which would later

be used to create generative forgeries. This set was restricted
so that it did not contain any of the five phrases from the
enrollment data set, yet provided coverage of the phrases at
the bigram level. Users were asked to write one instance of
each phrase as naturally as possible.

We collected static and dynamic forgeries inround II .
Users were asked to forge representative samples (based on
writing style, handedness of the original writer, and gender)
from round I to create two sets of 17 forgeries. First,
users were required to forge samples after seeingonly a
static representation. Users were then asked to forge the same
phrases again, after seeing a real-time rendering. Users were
instructed to use the real-time presentation to improve their
rendering of the spatial features (for example, to distinguish
between one continuous stroke versus two overlapping strokes)
and to replicate the temporal features of the writing.

Lastly, in round III we selected nine users fromround
II to provide our trained forgeries. These users exhibited a
natural tendency to produce better forgeries than the average
user in our study (although we did not include all of the
best forgers). This group consisted of three “skilled” (but
untrained) forgers for each writing style, when evaluated using
the authentication system to be described in Section III-C
and Section III-D. Each skilled forger was asked to forge
writing from the style which they exhibited an innate ability
to replicate and was provided with a general overview and
examples of the types of features that handwriting systems
typically capture. As we were trying to examine (and develop)
truly skilled adversaries, our forgers were asked to forge 15
writing samples from their specified writing style, with60%
of the samples coming from the weakest 10 targets, and the
other 40% chosen at random. (Interestingly, the accuracy of
our trained forgers against this mix of targets and against the
entire population differed only a statistically insignificantly
amount.) From this point on, these forgers will be referred to as
“trained” forgers. See Figure 1 for example trained forgeries.
We believe that the selection of the naturally skilled forgers,
the additional training, and the selection of specific targets
produced adversaries who reflect realistic threats to biometric
security.

The experimental setup for trained forgers was as follows.
First, a real-time reproduction of the target sample is displayed
(at the top half of the tablet) and the forger is allowed to
attempt forgeries (on the bottom half) with the option of saving
the attempts she liked. She can also select and replay her
forgeries and compare them to the target. In this way, she
is able to fine-tune her attempts by comparing the two writing
samples. Next, she selects the forgery she believes to be her
best attempt, and proceeds to the next target.

B. Accounting for Hardware Variability

Extra care was taken when preparing our tools for data
collection. In particular, we encountered two difficulties: (1)
the two platforms sampled stylus inputs at different rates and
(2) replay of real-time forgeries could be inconsistent and slow.
The first issue is problematic as it leads to extra errors if
evaluation samples are not collected on the same tablet as
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Enrollment Parallel Corpus Näıve Näıve* Static Dynamic Trained
round I /II round I round I /II round II round III

Block 1000 650 4600 180 122 122 47
Mixed 1700 1105 4600 360 218 219 46
Cursive 2000 1300 4600 380 227 227 43

TABLE I

NUMBER OF SAMPLES COLLECTED FOR ENROLLMENT, THE PARALLEL CORPUS, AND FORGERIES.

Fig. 1. Examples of block, mixed, and cursive forgeries provided by our trained forgers.

the enrollment samples. The second issue is problematic as
forgers cannot be expected to accurately replicate temporal
features if they are not presented with realistic representations
of the handwriting. We address these two issues as follows.

Whereas the NEC tablet sampled 66.5% of the stylus inputs
at a rate of 5-8 ms, the HP tablet sampled 88.5% of the input
at 3-5 ms or 10-12 ms. To account for this variability, we
re-sampled each sample at a rate of 8 ms before computing
any feature. Our re-sampling approach is straightforward and
closely related to widely accepted techniques [29]. The results
presented in Section V indicate that the forging accuracy for
inter-tablet experiments versus intra-tablet experiments were
statistically insignificant.

We attributed slow playback of handwriting samples to un-
derlying activities in the operating system. These unpredictable
and bursty overheads increased the delays that naturally occur
between rendering each point in the handwriting. To account
for this, we designed a simple error correcting algorithm.
Assume that the system has rendered pointpi and should wait
di ms before renderingpi+1. Let ti be the amount of time
that should have elapsed while renderingpi−2, pi−1, andpi

and t′i be the actual elapsed time. Ift′i > 2ti, we reduce
the next delay tomax(0, di − (t′i − ti)). The success of our
forgers in replicating temporal features (see Section V) shows
that discrepancies that appeared in the rendering were indeed
insignificant.

C. Authentication Algorithm

We loosely adapted the system presented in [34] for gen-
eration of “biometric hashes” to measure theFAR for each
of the six forgery styles. We selected this technique as the
basis for our evaluation since it does not use any additional
cryptographic components (e.g., [14]), that might pose an
additional hurdle to forgers. To create an accurate forgery for
a biometric hash, one must only replicate the features, which
were selected to be representative of the state of the art [7],
[16], [21], [34].

For completeness, we briefly describe relevant aspects of
the system; for a more detailed description see [34]. A user

writes a passphrase on an electronic tablet to input a sample
to the system. The tablet extracts a set of signals from the
handwriting. The discrete signalsx(t) and y(t) specify the
location of the pen on the writing surface at timet, and the
binary signalp(t) specifies whether the pen is up or down at
time t. The tablet then computes a set ofn statistical features
(f1, . . . , fn) over these signals. These features comprise the
actual input to the biometric hash algorithm.

During an enrollment phase, each legitimate user writes
a passphrase a pre-specified number (m) of times. Let
fi,1, . . . , fi,n denote the feature values for samplei. Using
the feature values from each user and passphrase, the system
computes a global set of tolerance values (T = {ε1, . . . , εn})
to be used to account for natural human variation [34]. Once
the m readings have been captured, a biometric template is
generated for each user and passphrase as follows: Let`′j =
mini∈[1,m] fi,j , h′j = maxi∈[1,m] fi,j , and∆j = h′j − `′j + 1.
Set`j = `′j−∆jεj , andhj = h′j+∆jεj . The resulting template
is ann× 2 matrix of values{{`1, h1}, . . . , {`n, hn}}.

Later, when a user provides a sample with feature values
f1, . . . , fn, the system checks whetherfj ∈ [`j , hj ] for
each featurefj . Each fj 6∈ [`j , hj ] is deemed an error,
and depending on the threshold of errors tolerated by the
system, the attempt is either accepted or denied. We note
that as defined here, templates are insecure because they leak
information about a user’s feature values. We omit discussion
of securely representing biometric templates as this is not a
primary concern of this research.

D. Feature Analysis

The security of any biometric system is directly related
to the quality of the underlying features. A detailed analysis
of proposed features for handwriting verification is presented
in [34], although we argue that the security model of that
work sufficiently differs from our own and so a new feature-
evaluation metric was required for our examinations. In that
work, the quality of a feature was measured by the deviation
of the feature and entropy of the feature across the population.
For our purposes, these evaluation metrics are not ideal: we
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Feature (f ) Q(f) Feature (f ) Q(f) Feature (f ) Q(f)

Spatial Features
Pen-down distance [7] 0.81 Writing height [7], [34] 0.65 Lower zone [21] 0.62
Medianθ [21] 0.71 Pen-up distance 0.64 X-Area [34] 0.62
Vert. end dist. [16] 0.67 # of strokes [34] 0.63 Loop area [7] 0.61
Y-Area [34] 0.65 # of extrema [34] 0.62 Upper zone [21] 0.61
Writing width [7], [34] 0.65 Loop y centroid [7] 0.62 Horiz. end dist [16] 0.60

Temporal Features
Writing time [16] 0.87 Time of maxvx [16] 0.78 Pen up/down ratio [16] 0.71
# of timesvx = 0 [16] 0.86 Inv. Mom. 21 [7] 0.76 Time of maxθ 0.70
# of timesvy = 0 [16] 0.85 Inv. Mom. 12 [7] 0.75 Durationvy < 0 [16] 0.70
Inv. Mom. 00 [7] 0.85 Median pen velocity [16] 0.74 Durationvx < 0 [16] 0.69
Inv. Mom. 10 [7] 0.82 Durationvy > 0 [16] 0.73 Time of min vx [16] 0.69
Inv. Mom. 01 [7] 0.79 Durationvx > 0 [16] 0.72 Time of min vy [16] 0.68
Inv. Mom. 11 [7] 0.78 Time of max vel. [16] 0.72 Time of maxvy [16] 0.68

TABLE II

FEATURES USED TO EVALUATE FORGERS. θ IS THE ANGLE BETWEEN POINTS, v, vx , vy ARE OVERALL, HORIZONTAL, AND VERTICAL VELOCITIES.

are not only concerned with the entropy of each feature, but
rather how difficult the feature is toforge2.

As our main goal is to highlight limitations in current
practices, it is imperative that we evaluate a robust and
usable system based on a strong feature set. To this end, we
implemented 144 state of the art features [7], [16], [26], [34]
and evaluated each with a quality function. For each feature
f , let rf and af be the proportion of times that legitimate
users and forgers with access to dynamic information fail to
replicatef . Then, our quality function is defined asQ(f) =
(af − rf + 1)/2, and so the range ofQ is [0, 1]. Intuitively,
features with a quality score of0 are completely useless—
they areneverreliably reproduced by original users (rf = 1)
and arealwaysreproduced by forgers (af = 0). On the other
hand, features with scores closer to1 are highly desirable when
implementing biometric authentication systems.

For our evaluation, we divided our feature set into two
groups covering the temporal and spatial features, and ordered
each according to the quality score. We then chose the top
40 from each group, and disregarded any with aFRRgreater
than 10%. Finally, we discounted any features that could be
inferred from others. This analysis resulted in what we deem
the 36 best features—15 spatial and 21 temporal—described
in Table II.

IV. EVALUATION METHODOLOGY

This section presents the results for the five evaluation
metrics that use forgeries generated by humans. Before com-
puting the FRR and FAR, we removed outliers from the
enrollment samples as follows. We assume that each feature
is independently distributed. For each user, we removed all
samples that have more thanδ = 3 features that fell outside
k = 2 standard deviations from that user’s mean feature value.
The parametersδ andk were empirically derived; increasing
δ or k beyond this point did not significantly affect which
samples were classified as outliers. We also excluded users
(the so-called “Goats” [2]) for which we removed more than
25% of the samples as outliers and classified such users as

2It is interesting to note that despite the different metrics, there was a high
correlation between our stronger features and those in [34].

“Failing to Enroll” [20]. The FTE rate was≈ 8.7%. After
combining this with outlier removal, we still had access to
79.2% of the original data set.

To compute theFRRandFARwe use the system described
in Section III-C with the 36 best features from Section III-
D. TheFRR is computed as follows: we repeatedly randomly
partition a user’sm samples into two groups and use the first
group (of size3m

4 ) to build a template and authenticate the
samples in the second group (of sizem

4 ) against the template.
Depending on how many outliers were removed for each user,
15 ≤ m ≤ 20. To compute theFAR we use all of the
user’s samples to generate a template and then authenticate
the forgeries against this template.

V. HUMAN EVALUATION

Our experiments were designed to illustrate the discrepancy
in perceived security when considering traditional forgery
paradigms and a more stringent, but more realistic, security
model. In particular, we assume that at the very minimum, the
adversary (1) tries to impersonate users who have a writing
style that the forger has a natural ability to replicate, (2) has
knowledge of how biometric authentication systems operate,
and (3) has a vested interest in accessing the system, and
therefore is willing to devote significant effort towards these
ends.

Figure 2 presents ROC curves for forgeries from imperson-
ators with varying levels of knowledge. The plot denotedFAR-
näıve depicts results for the traditional case of naı̈ve forgeries
widely used in the literature [10], [15], [30]. Therefore, in
addition to ignoring the target writer’s attributes, this classifi-
cation makes no differentiation based on the forger’s or vic-
tim’s style of writing, and so may include, for example, block
writers “forging” cursive writers. Arguably, such forgeries may
be inferior to a less standard (but more reasonable) type of
näıve classification (FAR-näıve*) where one only attempts to
authenticate samples from writers of similar styles.

The FAR-static plot shows the success rate of forgers who
receive access to only a static rendering of the passphrase.
By contrast,FAR-dynamic forgeries are produced by humans
after seeing (possibly many) real-time renderings of the target
phrase. One can easily consider this a realistic threat if we
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Fig. 2. ROC curves for human forgers. Naı̈ve* and dynamic forgeries exhibit
similar patterns, but both are inferior to trained forgeries.
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Fig. 3. ROC curves for mixed writers. This group appeared the easiest to
forge by the users in our study.

assume that a motivated adversary may capture the writing
on camera, or more likely, may have access to data written
electronically in another context. Lastly,FAR-trained presents
the resulting success rate of forgeries derived under our forgery
model which captures a more worthy opponent—one who has
natural skill and who has undergone some level of training.
When classified by writing style, these trained forgers were
very successful against block and mixed writers (see Figure 3),
and had the most difficulty with cursive writers (Figure 4).

Intuitively, one would expect that forgers with access to dy-
namic and/or static representations of the target writing should
be able to outperform naı̈ve* forgeries. This is not necessarily
the case, as we see in Figure 2 that at some points, the naı̈ve*
forgeries do better than the forgeries generated by forgers
who have access to static and/or dynamic information. This is
primarily due to the fact that the naı̈ve* classification reflects
users’ normal writing (as there is really no forgery attempt
here). The natural tendencies exhibited in such writings appear
to produce better “forgeries” than that of static or dynamic
forgers (beyond some point), who may suffer from unnatural
writing characteristics as a result of focusing on the act of
forging.

One of the most striking results depicted in the figures is the
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Fig. 4. ROC curves for cursive writers. This group appeared the most difficult
to forge by users in our study.

significant discrepancy in theFARbetween standard evaluation
methodologies and that of the trained forgers captured under
our strengthened model. For instance, theEERfor this system
under FAR-trained forgeries is approximately20.6% at four
error corrections (see Table III)3. However, for the more
traditional dynamic, static and naı̈ve forgeries, one would
arrive at EERs of 7.9%, 6.0%, and 5.5%. These results are
indeed inline with the current state of the art [10], [15], [30].
Even worse, under the most widely used form of adversary
considered in the literature (i.e., naı̈ve) we see almost a four-
fold over-estimate of equal error rate.

Näıve* Static Dynamic Trained

Block 7.6 7.2 8.5 21.3
Mixed 5.6 8.2 9.0 33.1
Cursive 8.3 3.6 5.5 13.5
Overall 7.4 6.0 7.9 20.6

TABLE III

EQUAL ERRORRATES FOR DIFFERENT FORGERY STYLES.

Figure 5 provides assurance that the increase in forgery
quality is not simply a function of selecting naturally skilled
individuals from our dynamic forgers to act as trained forgers.
The graph shows the improvement ofFAR for these forgers
across roundsII and III . Improvement is significant, es-
pecially for those who focused on mixed and block writers.
Notice that at theEER(at seven errors) induced by forgers with
access to dynamic information fromround II (Figure 2),
our trained cursive, block, and mixed forgers improved their
FARby 0.18, 0.34, and 0.47, respectively. This change results
from less than two hours of training and effort, which is likely
much less than what would be exerted by a dedicated forger.

While it is interesting to note the drastic increase in forger
improvement, the manner in which the forgers improved is
also intriguing. While the trained forgers were able to better

3It is important to note that the trained forgers faced a different distribution
of “easy” targets in RoundII and in RoundIII . We did this to analyze
the system at its weakest link. However, after normalizing the results so that
both rounds had the same makeup of “easy” targets, theEERonly changes
marginally from 20.6% to 20.0% at four errors corrected.
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replicate each feature, the improvement of a particular subset
(see Table IV) was especially noteworthy.

With the exception of writing width and pen-down distance,
each of the features are intuitively related to being able to
consistently replicate pen-tip velocity across the entire writing
sample. A closer analysis of these features also provides
insight as to why mixed forgers improved more dramatically
than block or cursive forgers. For instance, the success of
the mixed forgers in capturing Invariant Moments 12 and 21,
writing width, and the number of times thatvx = 0, improved
by an average of78.3%. By contrast, cursive forgers only
improved by an average of45.0%.

A disturbing characteristic of these features is that they were
ranked among the highest by our quality metric (see Table II).
This correlation could be due to the fact that these were the
features that were originally the most difficult to forge and
therefore had the most room for improvement. Nonetheless, a
closer examination of this impact is warranted, but is left for
future work.

Feature (f ) af (rnd II ) af (rnd III ) % Improvement

# of timesvx = 0 .823 .284 65.4
Writing width .386 .147 61.8
Inv. Mom. 21 .612 .240 60.8
Inv. Mom. 12 .596 .246 58.7
Time of min vy .437 .190 56.5
Inv. Mom. 11 .659 .289 56.1
Pen-down distance .713 .314 56.0
# of extrema .318 .149 53.2
Inv. Mom. 10 .744 .359 53.1

TABLE IV

FEATURES FOR WHICHFARWAS MOST INCREASED BY TRAINING. af IS

THE PROPORTION OF TIMES FEATUREf IS MISSED BY FORGERS.

VI. A N ALTERNATIVE PERSPECTIVE: FORGERY

DETECTION BY HUMANS

The results from Section V demonstrate that our methodolo-
gies did indeed improve the talents of our forgers with respect
to an authentication algorithm. To provide additional evidence
that forgers can improve their performance through training in
a more intuitive sense, we conducted an alternative evaluation

Authenticity Training Style % of Samples

Forgery Trained Dynamic 25
Forgery Trained Static 0
Forgery Untrained Dynamic 12.5
Forgery Untrained Static 12.5
Authentic NA Dynamic 25
Authentic NA Static 25

TABLE V

BREAKDOWN OF THE SAMPLES CLASSIFIED BY OUR HUMAN JUDGES.

aimed at understanding the proficiency of laypersons in our
study (herein referred to ashuman judges) at detecting forg-
eries. To the best of our knowledge, there were no professional
document examiners in our preliminary study.

We caution the reader that the proficiency of professional
document examiners compared to that of laypersons in de-
tection forgeries remains a controversial topic (see for exam-
ple, [6], [31]). Indeed, while recent studies [11], [12] seem to
indicate that a well-trained subset of the population can per-
form significantly better than chance at this task, these results
are still being openly debated. For that reason, we primarily
use our analysis of human judges as yet another indication of
the importance of using strong forgers for evaluation purposes.

To measure the impact of forger training on a layperson’s
ability to distinguish forgeries, we performed the following
experiment. In a given round, judges were presented with
three writing samples of the same passphrase: the first two
originated from the same user, and the third was selected as a
forgery with 50% probability. The judge’s task was to decide
whether or not all of the samples originated from the same
user. In all,24 judges were asked to determine the authenticity
of 20 samples. The tests were not timed.

Half of the forgeries originated from untrained forgers and
half originated from trained forgers. For each round, the judge
saw either static or dynamic renderings. If the forger was only
presented with static information, then the judge saw a static
rendering of the samples as well; otherwise, the judge saw
dynamic renderings which she could replay at will. Thus,
forgeries generated by trained forgers were always rendered
in real-time. See Table V for the precise distribution of the
samples classified by our human judges.

We note that since judges saw only two samples from the
target writer we cannot directly compare the judges’ accuracy
to that of the authentication algorithm, which was trained
on 15-20 samples. However, we can rely on these results as
an indication of forger improvement, and as a preliminary
indication of whether humans are good at detecting forgeries.

Figure 6 shows the overall accuracy of the judges. The error
rate is simply the proportion of times a judge misclassifies a
sample, whether it be a false accept or false reject. At first
glance, it appears that different types of forgeries have little
impact on the error rates of judges. However, as we show
shortly, when we separate the errors as false rejects (Figure 7)
and false accepts (Figure 8), this is not necessarily the case.
The primary observation from Figure 6 is that untrained human
judges seem to perform poorly at detecting forgeries. For
instance, for each of the forgery styles, approximately50%
of the judges had a classification rate of less than75%.
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The averageFRR (Figure 7) was35.5% and 35.4% when
observing static and real-time renderings, respectively. Inter-
estingly, this seems to imply that, for the most part, the addi-
tion of dynamic information did not improve a judge’s ability
to accurately identify true samples. However, the increase
in the FAR for normal versus trained forgers is significant
(Figure 8); the false-accept rate of the trained forgeries rose
above 0 for almost75% of the judges. By contrast, theFARof
the untrained forgers only was greater than 0 for20% of the
judges. Additionally,50% of the judges exhibited aFAR >
20% against the trained forgers, whereas only17% of these
judges had similar rates against untrained forgers. Clearly,
our trained forgers were not only more talented in replicating
the features from Section III-D, but in also replicating the
idiosyncrasies that a normal human might use to differentiate
writing from different users. Note that there is an anomaly in
Figure 8 in that outliers at the tails of the distributions suggest
that there were regular forgers who fooled judges more often
than trained forgers. In particular, one judge was fooled by
80% of the untrained forgeries.

VII. G ENERATIVE EVALUATION

Finding and training “skilled” forgers is a time, and re-
source, consuming endeavor. To confront the obstacles posed
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Fig. 8. Proportion of judges with aFAR greater thanx%.

by wide-scale data collection and training of good imper-
sonators, we explore an automated approach using generative
models as a supplementary technique for evaluating behavioral
biometrics. We investigate whether an automated approach,
using limited writing samples from the target, could match
the false accept rates of our trained forgers in Section V.

Our proposed algorithm isgenerative in nature; it uses
limited information from the target user, as well as general
population statistics, and intuitive rules of thumb to create
a best-effort guess at a target user’s biometric. As such,
it is designed to replicate only a target user’s passphrase.
However, as our results will demonstrate, this simple approach
is surprisingly effective and underscores the importance of
considering generative algorithms both as useful techniques
to evaluate the security of a system, as well as a new threat
model that researchers should consider when designing their
systems.

For the remaining discussion we explore a set of threats
that stem from generative attacks which assume knowledge
that spans the following spectrum:

I. General population statistics: Gleaned, for example, via
the open sharing of test data sets by the research com-
munity, or by recruiting colleagues to provide samples.

II. Statistics specific to a demographic of the targeted user:
In the case of handwriting, we assume the attacker can
extract statistics from a corpus collected from other users
of a similar writing style.

III. Data gathered from the targeted user: Excluding direct
capture of the secret itself, one can imagine the attacker
capturing copies of a user’s handwriting, either through
discarded documents or by stealing a PDA.

To make this approach feasible, we also explore the impact
of these varying threats. A key issue that we consider is the
amount of recordings one needs to make these scenarios viable
attack vectors. As we show later, the amount of data required
may be surprisingly small for the case of authentication
systems based on handwriting dynamics.

To synthesize handwriting we assemble a collection of
basic units (n-grams) that can be combined in a concatenative
fashion to mimic authentic handwriting. We do not make use
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Fig. 9. Example generative forgeries against block, mixed and cursive writers. For each box, the second rendering is a human-generated forgery of the first,
and the third is created by our generative algorithm.

of an underlying model of human physiology, rather, creation
of the writing sample is accomplished by choosing appropriate
n-grams from an inventory that may cover writing from
the target user (scenario III above) as well as representative
writings by other members of the population at large (scenarios
I and II). Our technique expands upon earlier rudimentary
work [19], and is similar in flavor to approaches taken to
generate synthesized speech [23] and for text-to-handwriting
conversion [8].

The first step of the forging process is to obtain a small
set of samples from the user (the parallel corpus), and a set
of samples from other writers of the same writing style (to
derive population statistics). As is the case with traditional
computations ofEER, we assume that passphrases are known
by the forger. Additionally, we assume that both corpora
contain letters in the target user’s passphrase. Given these
corpora, our algorithm takes a set ofn-grams (g1, . . . , gz) from
a target user and replicates a passphrase. In particular, it shifts,
transposes, and concatenates thet, x(t), y(t) andp(t) signals
of eachn-gram to create a master set of signals that represents
a forgery. This process can be classified into three high-level
stages: (1) adjusting the spatial positions of eachn-gram, (2)
adjusting the ordering of strokes across eachn-gram, and (3)
adjusting the overall time signal.

Adjusting the spatial location of each point is relatively
straightforward. We first shift eachn-gram such that the base-
lines align on the same horizontal axis. We then use population
statistics to determine the horizontal distance between eachn-
gram. In particular, given the last character of the firstn-gram,
and the first character of the second, we distance the twon-
grams by the median distance between these two characters
as they appear in the population (if these two letters generally
overlap, then this value could be negative, which would cause
a shift to the left). This process is applied iteratively over each
n-gram to create the final horizontal alignment.

Explicitly, let ω(gi, gi+1) be the median distance between
the last character ingi and the first ingi+1, andXi be the value
of the x coordinate of the rightmost point ingi (the leftmost
value is always normalized to 0). Then our final forgery will
incorporategi, but with all points shifted to the right by

δx(i) = δx(i− 1) + Xi + ω(gi−1, gi)

for 2 ≤ i ≤ z andδx(1) = 0. After completing the vertical and

horizontal shifts of then-grams we have effectively created
a static forgery. To modify this forgery to mimic temporal
features we apply the second and third stages.

The second stage, determining the order of strokes across
n-grams, is slightly more complicated. We start with the left-
most letter of the left-mostn-gram and proceed to the right,
ordering the strokes according to their temporal order within
eachn-gram. There is one exception to this rule: we must
delay strokes that occur after a stroke that is connected to the
proceeding letter. For instance, cursive writers might render
the dot of an ‘i’ that appears near the beginning of a word
only after finishing all other letters. We exploit the simple
observation that a stroke will (generally) only be delayed if
a preceding stroke is connected to the following letter. The
probability that a given stroke is connected to a given letter
may be inferred from the population. So, we process each
stroke of each letter, and connect it to the first stroke of
the next letter with this inferred probability. If we decide to
connect a stroke to the next letter, we push the proceedings
strokes onto a stack and smooth the ends of the connected
strokes using an iterative averaging algorithm. On the next
pen-up event (either one that occurs naturally within ann-
gram or the next time we decide to not connect letters) we
empty the stack. This simulates a cursive writer who writes a
phrase and then returns to dot ‘i’s and cross ‘t’s, starting with
those closest to the end of the word.

The third stage, shifting time signals, involves determining
the temporal delay between eachn-gram, as well as the
delay imposed on the deferred strokes. To determine the delay
between the last character of onen-gram and the first character
of the next we simply take the median delay between these two
characters as they appear in the population. Mathematically,
let τ(gi, gi+1) be the median delay between the last character
in gi and the first ingi+1. Let Ti be the time that the first
delayed stroke in the last letter ofgi starts. If there are no
delayed strokes ingi, Ti is the maximum time (the time signal
of gi is always shifted to start at 0). Then our final forgery
will incorporategi, but with the time shifted by

δt(i) = δt(i− 1) + Ti + τ(gi−1, gi)

for 2 ≤ i ≤ z andδt(1) = 0.
To infer the elapsed time for delayed strokes we use the

75th percentile pen-up velocity from the population and the
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Fig. 10. ROC curves for generative forgeries against cursive writers. Even
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Fig. 11. ROC curves for generative forgeries against mixed writers. The
generative algorithm does not perform as well as our trained forgers: the
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distance between the beginning of a delayed stroke and the
last rendered stroke. We choose to use the75th percentile as
pen-up velocities tend to be dominated by velocities associated
with spaces, which are intuitively slower than those associated
with dotting ‘i’s and crossing ‘t’s.

Using these three high-level stages, we combine each of the
n-grams to make a final set of signals to represent a forgery.

VIII. G ENERATIVE RESULTS

To evaluate this concatentative approach we analyzed the
quality of the generated forgeries for each user and passphrase.
However, rather than using all 65 of the available samples
from the parallel corpus, we instead choose 15 samples at
random from each target user’s parallel corpus—with the
one restriction that there must exist at least one instance of
each character in the passphrase among the 15 samples. The
attacker’s choice ofn-grams are selected from this restricted
set. To explore the feasibility of our generative algorithm we
ensure that adjacentn-grams do not originate from the same
writing sample, but an actual adversary might benefit from
usingn-grams from the same writing sample.

Additionally, we limit the corpus from which we derive
population statistics to contain only 15 randomly selected
samples from each user with a similar writing style as the
target user. We purposefully chose to use small (and arguably,
easily obtainable) data sets to illustrate the power of this
concatenative attack. Example forgeries derived by this process
are shown in Figure 9.

We generated 25 forgery attempts for each user and
passphrase. Figures 10 and 11 depict the averageFAR across
all 25 forgery attempts for cursive and mixed writers. As a
baseline for comparison, we replot theFRRand FAR-trained
plots from Section V. TheFAR-generative plot shows the re-
sults of the generative algorithm against the entire population.
Overall, under these forgeries there is anEER of 27.4% at
three error correction compared to anEERof 20.6% at four
error corrections when considering our trained forgers.

In general, the generative approach fares well against block
writers (not shown), improving theEERover trained forgers
from 20.4% at four errors corrected to31.2% at three errors
corrected. The improvement is less pronounced against cursive
writers (Figure 10), only improving over theEER of trained
forgers from13.5% at six errors corrected to16.1% at five
errors corrected. Interestingly, the generative approach does
not outperform our trained forgers against mixed writers.
The EER for trained forgers of mixed writers was33.4% at
three errors, whereas our generative approach only achieved
24.5% at four errors (Figure 11). However, we argue that
this approach highlights an adversarial threat that should be
accounted for in analyzing the security of biometric systems.

Lastly, we note that on average each generative attempt
only used information from6.67 of the target user’s writing
samples. Moreover, the average length of ann-gram was1.64
characters (and was never greater than4). More importantly,
as we make no attempt to filter the output of the generative
algorithm by rank-ordering the best forgeries, the results could
be much improved. That said, we believe that given the limited
information assumed here, the results of this generative attack
only underscores its importance.

IX. RELATED WORK

This paper expands upon previous work [1], where we
discuss our data collection efforts, highlight the shortcomings
associated with assuming weak adversaries, and provide our
generative framework as an approach to facilitate more robust
evaluation metrics. In the current work, we present a more
thorough analysis of our testing methodologies and elaborate
on the results of our trained forgers. Additionally, we present
results from a study that show that the forgeries we collected
were not only able to bypass an automated reference monitor,
but were also able to misleadhumanjudges.

To the best of our knowledge, there is relatively little work
that encompass our goals and attack models described herein.
However, there is a vast body of work on the topic of signature
verification (see [10], [28]). Kholmatov and Yanikoglu [13]
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provide an authentication mechanism based on online signa-
ture verification. Their technique uses Dynamic Time Warping
in conjunction with Principle Component Analysis and a linear
classifier to decide whether or not signatures are genuine.
This approach achieved anEER of approximately 1.3% and
was used to win the first Signature Verification Competition
(SVC) [35]. Additionally, Kholmatov and Yanikoglu employ
a tool to provide realtime playback of writing samples to
aid forgers during evaluation. However, it is unclear whether
forger proficiency or training was considered when comput-
ing FAR.

Also germane are a series of recent papers that have started
to examine the use of dynamic handwriting for the generation
of cryptographic keys. Kuan et al. present a method based
on block-cipher principles to yield cryptographic keys from
signatures [14]. The authors test their algorithm on the SVC
data set and reportEERs of between 6% and 14% if the forger
has access to a stolen token. The production of skilled forgeries
in the SVC data set resembles part of the methodology used
in round II of our studies and so does not account for
motivation, training, or talent.

Finally, there have been a handful of works on using
generative models to attack biometric authentication. However,
we note there exists significant disagreement in the literature
concerning the potential effectiveness of similar (but inherently
simpler) attacks on speaker verification systems (e.g., [23],
[27]). Lindberg and Blomberg, for example, determined that
synthesized passphrases were not effective in their small-scale
experiments [18], whereas Masuko et al. found that their
system was defeated [22].

X. CONCLUSIONS

Some of the most fundamental computer security
mechanisms—whether they are used to ensure access con-
trol, data privacy, or data integrity—rest on the ability of a
legitimate user to generate an input that an attacker is unable
to reproduce. The security of technologies that are based on
behavioral biometrics is estimated using the perceived inability
of forgers to replicate a target user’s input. We caution that
if legitimate adversaries are not considered, this practice may
significantly underestimate the real risk of accepting forgeries.
In fact, we demonstrate for a specific behavioral biometric,
that even a small amount of training can drastically improve
a forger’s chances at success.

To address previous evaluation shortcomings and data col-
lection obstacles, we present an automated technique for
producing forgeries to assist in the evaluation of biometric
systems. We show that our generative approach matches or
exceeds the effectiveness of forgeries rendered by the trained
humans in our study, and thus offers a viable alternative for
enhancing the evaluation of biometric security. We argue that
such an approach is imperative when weakest-link security
assessment is important. As part of our future work, we intend
to incorporate more sophisticated algorithms in our generative
models (e.g., [17], [30]), and provide a broader spectrum of
approaches for enhancing biometric performance evaluation.

We believe that the ideas and methodologies presented
herein can be extended beyond handwriting to provide

weakest-link type analyses of other behavioral biometric
modalities. Specifically, we feel that the idea of trained and
target-selected forgers should be examined further. For in-
stance, one might take ethnicity and gender into account when
creating forgeries for voice-based biometrics, or handedness
and hand size into account for keystroke-based biometrics.
Another worthwhile avenue of research could examine gener-
ative models to explore the threat space for other modalities.
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