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~ Abstract—Biometric security is a topic of rapidly growing a specific phrase). Additionally, while physiological biometrics
importance in the areas of user authentication and cryptographic - cannot change, behavioral biometrics naturally change with the
key generation. In this paper, we describe our steps toward gtion that is performed. This property is useful for security

developing evaluation methodologies for behavioral biometrics licati h K fi h K :
that take into account threat models which have been largely applications such as key generation, where key compromise

ignored. We argue that the pervasive assumption that forgers are Necessitates the creation of a new key.

minimally motivated (or, even worse, ndve) is too optimistic and Regardless of the type of biometric, designers generally
even dangerous. Taking handwriting as a case in point, we show perform empirical evaluations to justify the assumption that a
through a series of experiments that some users are significantly gystem will withstand attacks. The evaluation usually follows
better forgers than others, that such forgers can be trained in a . .
relatively straightforward fashion to pose an even greater threat, a S_tqndard model: enroll Some number of users by_collectlng
that certain users are easy targets for forgers, and that most training samples. At a later time, test the rate at which users’
humans are a relatively poor judge of handwriting authenticity —attempts to recreate the biometric to within a predetermined
and hence their unaided instincts cannot be trusted. Additionally, tolerance fail. This failure rate is denoted as the False Reject

to overcome current labor-intensive hurdles in performing more Rt ERR. Additionally, evaluation involves assessing the
accurate assessments of system security, we presengenerative te at which s inout (i . tor) is able t
attack model based on concatenative synthesis that can provide a'at€ at which one user's input (i.e., an impostor) is able to

rapid indication of the security afforded by the system. We show fool the system when presented as coming from another user
that our generative attacks match or exceed the effectiveness of (i.e., the target). This yields the False Accept R&AR) for
forgeries rendered by the skilled humans we have encountered. the system under consideration. Typically, one uses the equal
error rate EER), or the point at which thERRand theFARare
equal, to describe the accuracy of a biometric system.

. ) L Clearly theFAR and EER are a function of the quality of

~ The security of many systems relies on obtaining humage cojlected forgeries. For an evaluation to be meaningful,
input that is assumed to be not readily reproducible Bye forgeries must be representative of those that the system
an attacker. Passwords are a common example, though {14 expect to see during actual operation. For physiological
assumption that these are not reproducible is suspect. Indeiffgmetrics—which are not based on human actions—a reason-
memorable passwords are generally easy for an adversan, i, annroach is to use samples from one user as forgeries for

guess [5]. Biometrics is an alternative form of input that i§, iher. As an example, one might try to match one user's
believed to address the contention between memorability af'i"lﬁjgerprint to another's template.

security. This belief has led to the incorporation of biometrics Providing a reasonable forgery for behavioral biometrics

inio SeC“”tY applications_ such as authentication [24] apd ot 55 straightforward. Researchers predominantly use two
cryptographic key generation [23], [32]. forgery styles to estimate theAR of a behavioral biometric
Biometrics may be divided into two broad categoriehys- system. “Nave” (also called “random,” “zero-effort,” or “ac-

iological biometrics measure biological traits, for inStancecidentaI”) forgeries are created by using one users samples
characteristics of a fingerprint or iri@ehavioral biometrics ;¢ forgeries for another user. Ne forgery has roots in

measure how users perform certain actions, such as speakiiiaries of physiological biometric systems (where its use
or writing. Although phyS|o.Iog|caI_ blomt_atrlcs have enjoyegy |ass suspect) and is easy to perform as it requires only
more attention than behaworal b|(_)metr|cs, and _have CONBiroliment samples. However, ina forgeries may not provide
quently become more integrated into commercial producly, adequate estimate of security; in some instances, they

behavioral biometrics exhibit several qualities that make thefpa ot even based on writing, speaking, or typing the same
attractive for security applications. For instance, whereas Blssphrase as the target user., '

adversary can passively extract physiological biometrics (i.€..«gyjlled” forgeries are created by users who use information
by lifting a fingerprint from a keyboard), behavioral biometrics,, ¢ the targeted input to create a replica. Skilled forgeries

do npt lend themselves as easily to surreptitiqus cgpture as t_g?é( generally preferred to v forgeries as they provide a
require a user to consciously perform an action (i.e., speakifgre realistic view of security. However, in this work, we
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I. INTRODUCTION



Misunderstanding forger capability is especially dangerotimaditional attack models in the security community, later on
when behavioral biometrics are adopted for sensitive applida-this paper we shall eschew that terminology and refer to
tions such as authentication or cryptographic key generatidhe former as covering both temporal and spatial information,
Underestimating the ability of an adversary to bypass avhereas the latter only covers spatial information. Features
authentication mechanism could lead users to feel a dispexracted from offline handwriting samples include bounding
portionally high level of trust, and consequently to forgo extraoxes and aspect ratios, stroke densities in a particular region,
steps that they may have otherwise taken to secure sensituevature measurements, etc. In the online case, these features
information. This problem is amplified when biometrics arare also available and, in addition, timing and stroke order
used to create cryptographic keys, which might be used itdormation that allows the computation of pen-tip velocities,
encrypt sensitive data over extended periods of time. Thecelerations, etc. Studies on signature verification and the
long term nature of the encryption introduces the possibilitglated topic of handwriting recognition often make use of
for adversaries to search for the target key. For instané#) or more features and, indeed, feature selection is itself a
adversaries could forge the biometric input to within som®pic for research. The features we use in our own work are
tolerance, and then perturb the resulting key to enumeragpresentative of those commonly reported in the field [7],
likely possibilities. In such a situation, any overestimate ¢16], [21], [34].
forger capability could be devastating. Thus, it is essential forIn the literature, performance figures (i.EER typically
researchers to truly understand the effort that an adversaapge from 2% to 10% (or higher), but are difficult to compare
must exert to forge a behavioral biometric. directly as the sample sizes are often small and test conditions

In what follows, we provide an in-depth study that emdissimilar [3]. Unfortunately, forgers are rarely employed in
phasizes the disconnect between standard evaluation practitesh studies and, when they are, there is usually no indication
and realistic adversaries. While our belief is that our result$ their proficiency. Attempts to model attackers with a mini-
are generally applicable, and our ideas may be extendedmal degree of knowledge have involved showing a static image
any behavioral biometric, the detail required by our studyf the target signature and asking the impostor to try to recreate
necessitates an comprehensive analysis of a specific modatitg. dynamics [25]. The only concerted attempt we are aware
As a case in point, we focus on handwriting. Through a serie§ previous to our own, to provide a tool for training forgers
of experiments, we show that some users are significanttyexplore the limits of their abilities is the work by Zoebisch
better forgers than others (so-called “wolves” in the jargon f@nd Vielhauer [33]. In a small preliminary study involving four
a hypothetical menagerie of users [2]), that such forgers canusers, they found that showing an image of the target signature
trained in a relatively straightforward fashion to pose an evéncreased false accepts, and showing a dynamic replay doubled
greater threat, that certain users are easy targets for forgées susceptibility to forgeries yet again. However, since the
(i.e., “lambs”), and that most humans are a relatively powerification algorithm used was simplistic and they do not
judge of handwriting authenticity (hence assertions that “oveport false reject rates, it is difficult to draw more general
forgers looked like they were doing a good job” are suspectonclusions.

We conclude with our proposal for a new evaluation paradigm To overcome the “one-signature-per-user” (and hence, one
for biometric security based on the concept of generatikey) restriction, we employ more general passphrases in our
models for the behavior in question. research. While signatures are likely to be more user-specific
than arbitrary handwriting, results from the field of forensic
analysis demonstrate that writer identification from a relatively
small sample set is feasible [9]. Indeed, since this field

Research on user authentication via handwriting has hfattuses on handwriting extracted from scanned page images,
a long, rich history, with hundreds of papers written on ththe problem we face is less challenging in some sense since
topic. The majority of this work to date has focused on thee have access to dynamic features in addition to static.
problem of signature verification [28]. Signatures have someother concern, user habituation [3], is addressed by giving
well known advantages: they are a natural and familiar way e&ch test subject enough time to become comfortable with
confirming identity, have already achieved acceptance for leghé experimental set-up and requiring practice writing before
purposes, and their capture is less invasive than most otltes real samples are collected. Still, this is an issue and the
biometric schemes [4]. While each individual has only onepeatability of non-signature passphrases is a topic for future
true signature—a notable limitation—handwriting in generaksearch.
contains numerous idiosyncrasies that might allow a writer to
be identified. I1l. EXPERIMENTAL DESIGN

In considering the mathematical features that can be ex+\Ne collected data over a two month period to analyze six
tracted from the incoming signal to perform authentication, different forgery styles. We consider three standard evaluation
is important to distinguish between two different classes @etrics:naive, static, anddynamicforgeried [10], [15], [30],
inputs. Data captured by sampling the position of a stylus tis well as three metrics that will provide a more realistic
over time on a digitizing tablet or pen computer are referred to

asonline handwriting whereas inputs presented in the form LAlthough the biometric literature often refers to static or dynamic forgeries
’ as skilled forgeries, here we make a distinction. In fact, only a subset of

of a 2-D bitmal? (e.g., Sca_-nned off Of_a piece _Of paper) 8f&tgers who are presented with static or dynamic information may indeed be
referred to a®ffline handwriting. To avoid confusion with the “skilled”.

Il. HANDWRITING BIOMETRICS



definition of security:naive*, trained andgenerative Naive be used to create generative forgeries. This set was restricted
forgeries are not really forgeries in the traditional sense; theg that it did not contain any of the five phrases from the
are measured by authenticating one user’'s natural writiegrollment data set, yet provided coverage of the phrases at
samples of a passphrase against another user’s templatettierbigram level. Users were asked to write one instance of
the same passphrase. Static forgeries are created by hunemth phrase as naturally as possible.

after seeing static renderings of a target user’s passphraséVe collected static and dynamic forgeriesrisund Il
Dynamic forgeries are created by humans after seeing reldbers were asked to forge representative samples (based on
time renderings of a target user’'s passphrasévéNdorgeries writing style, handedness of the original writer, and gender)
are similar to néve forgeries except that only writings fromfrom round | to create two sets of 17 forgeries. First,
users of a similar style are authenticated against a targeers were required to forge samples after seainty a
user's template. Trained forgeries are generated by humaiettic representation. Users were then asked to forge the same
under certain conditions, which will be described in greatghrases again, after seeing a real-time rendering. Users were
detail later. Lastly, generative forgeries exploit informatiommstructed to use the real-time presentation to improve their
about a target user to algorithmically create forgeries. Sumpéndering of the spatial features (for example, to distinguish
information may include samples of the user’s writing from bBetween one continuous stroke versus two overlapping strokes)

different context or general population statistics. and to replicate the temporal features of the writing.
_ Lastly, inround 1l we selected nine users froround
A. Data Collection Il to provide our trained forgeries. These users exhibited a

Our results are based on 9,026 handwriting samples cobtural tendency to produce better forgeries than the average
lected on digitized pen tablet computers from 47 users duringer in our study (although we did not include all of the
several rounds. We grouped users into three categories accbest forgers). This group consisted of three “skilled” (but
ing to their writing style: “block” writers tend to lift their pen untrained) forgers for each writing style, when evaluated using
between letters, “cursive” writers tend to connect every lettdhe authentication system to be described in Section 11I-C
and “mixed” writers connected some letters, but not othend Section 1lI-D. Each skilled forger was asked to forge
The determination of whether or not users connected lettavating from the style which they exhibited an innate ability
was made by the authors based on static writing samples. @urreplicate and was provided with a general overview and
data set contains 10 block writers, 17 mixed writers, and 2xamples of the types of features that handwriting systems
cursive writers. typically capture. As we were trying to examine (and develop)

We used NEC Versalite Pad and HP Compag TC1l1@uly skilled adversaries, our forgers were asked to forge 15
tablets as our writing platforms. To ensure that the participantsiting samples from their specified writing style, wié®%
were well motivated and provided writing samples reflectivef the samples coming from the weakest 10 targets, and the
of their natural writing (as well as forgery attempts indicativether 40% chosen at random. (Interestingly, the accuracy of
of their innate abilities), several incentives were awarded four trained forgers against this mix of targets and against the
the most consistent writers, the best/most dedicated forgexstire population differed only a statistically insignificantly
etc. Additionally, before any data collection, users were askachount.) From this point on, these forgers will be referred to as
to write several phrases to become comfortable with tlirained” forgers. See Figure 1 for example trained forgeries.
writing device [3]. To create a strong underlying representatiWe believe that the selection of the naturally skilled forgers,
system, users were given instructions to write as naturally (athet additional training, and the selection of specific targets
consistently) as possible. produced adversaries who reflect realistic threats to biometric

During enrollment users provided twenty renderings of fiveecurity.
different phrases consisting of two-word oxymorons (“crisis The experimental setup for trained forgers was as follows.
management,” “graphic language,” “least favorite,” “perfedtirst, a real-time reproduction of the target sample is displayed
misfit,” and “solo concert”). We chose these phrases as th@t the top half of the tablet) and the forger is allowed to
were easy to remember (and therefore, can be written nasttempt forgeries (on the bottom half) with the option of saving
rally) and could be considered of reasonable length. Signatuties attempts she liked. She can also select and replay her
were not used due to privacy concerns and strict restrictionsfangeries and compare them to the target. In this way, she
research involving human subjects. More importantly, in thig able to fine-tune her attempts by comparing the two writing
context of key generation, signatures are not a good choice §amples. Next, she selects the forgery she believes to be her
a handwriting biometric as the compromise of keying materigkest attempt, and proceeds to the next target.
could prevent a user from using the system thereafter. This
data was collected across two roundsund 1l starting
approximately two weeks afteound | (see Table | for a
breakdown of the number of enroliment and forgery samplesExtra care was taken when preparing our tools for data
collected in each round). Enrollment samples were used dollection. In particular, we encountered two difficulties: (1)
create templates for authentication, as well asenand nave* the two platforms sampled stylus inputs at different rates and
forgeries. (2) replay of real-time forgeries could be inconsistent and slow.

In round | users also provided 65 additional writingThe first issue is problematic as it leads to extra errors if
samples to create our “parallel corpus,” which would latavaluation samples are not collected on the same tablet as

B. Accounting for Hardware Variability



Enrollment | Parallel Corpus| Nave | Naive* | Static | Dynamic Trained
round | /Il round | round | /Il round |l round Il
Block 1000 650 4600 180 122 122 47
Mixed 1700 1105 4600 360 218 219 46
Cursive 2000 1300 4600 380 227 227 43
TABLE |

NUMBER OF SAMPLES COLLECTED FOR ENROLLMENTTHE PARALLEL CORPUS AND FORGERIES
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Fig. 1. Examples of block, mixed, and cursive forgeries provided by our trained forgers.

the enrollment samples. The second issue is problematicvaites a passphrase on an electronic tablet to input a sample
forgers cannot be expected to accurately replicate tempai@lthe system. The tablet extracts a set of signals from the
features if they are not presented with realistic representatidrendwriting. The discrete signals(t) and y(¢) specify the
of the handwriting. We address these two issues as followdocation of the pen on the writing surface at timeand the

Whereas the NEC tablet sampled 66.5% of the stylus inpitimary signalp(t) specifies whether the pen is up or down at
at a rate of 5-8 ms, the HP tablet sampled 88.5% of the infirhe ¢. The tablet then computes a setrobtatistical features
at 3-5 ms or 10-12 ms. To account for this variability, wéfi, ..., f,) over these signals. These features comprise the
re-sampled each sample at a rate of 8 ms before computawual input to the biometric hash algorithm.
any feature. Our re-sampling approach is straightforward andDuring an enrollment phase, each legitimate user writes
closely related to widely accepted techniques [29]. The resudts passphrase a pre-specified number) (of times. Let
presented in Section V indicate that the forging accuracy f@y i, ..., f; , denote the feature values for sampleUsing
inter-tablet experiments versus intra-tablet experiments wehe feature values from each user and passphrase, the system
statistically insignificant. computes a global set of tolerance valugs= {¢y,...,¢€,})

We attributed slow playback of handwriting samples to urie be used to account for natural human variation [34]. Once
derlying activities in the operating system. These unpredictalthe m readings have been captured, a biometric template is
and bursty overheads increased the delays that naturally oogenerated for each user and passphrase as follows’; L-et
between rendering each point in the handwriting. To accountn,c 1, fi.j, b} = maxie(1,m) fij, aNdA; = b — £ + 1.
for this, we designed a simple error correcting algorithn®et/; = ¢’ —Aje¢;, andh; = h);+Aje;. The resulting template
Assume that the system has rendered ppjraind should wait is ann x 2 matrix of values{{¢1,h1},...,{ln, hn}}.

d; ms before rendering;.,. Let t; be the amount of time Later, when a user provides a sample with feature values
that should have elapsed while renderimgs, p;—1, andp;  fi,..., f,, the system checks whethef; < [¢;, h;] for

and ¢, be the actual elapsed time. #f > 2t;, we reduce each featuref;,. Each f; & [¢;,h;] is deemed an error,

the next delay tanax(0,d; — (t; — t;)). The success of our and depending on the threshold of errors tolerated by the
forgers in replicating temporal features (see Section V) showgstem, the attempt is either accepted or denied. We note
that discrepancies that appeared in the rendering were indéeat as defined here, templates are insecure because they leak

insignificant. information about a user’s feature values. We omit discussion
of securely representing biometric templates as this is not a
C. Authentication Algorithm primary concern of this research.

We loosely adapted the system presented in [34] for gen- ]
eration of “biometric hashes” to measure tRAR for each D- Feature Analysis
of the six forgery styles. We selected this technique as theThe security of any biometric system is directly related
basis for our evaluation since it does not use any additiorial the quality of the underlying features. A detailed analysis
cryptographic components (e.g., [14]), that might pose ar proposed features for handwriting verification is presented
additional hurdle to forgers. To create an accurate forgery for [34], although we argue that the security model of that
a biometric hash, one must only replicate the features, whialork sufficiently differs from our own and so a new feature-
were selected to be representative of the state of the art [@aluation metric was required for our examinations. In that
[16], [21], [34]. work, the quality of a feature was measured by the deviation
For completeness, we briefly describe relevant aspectsabfthe feature and entropy of the feature across the population.
the system; for a more detailed description see [34]. A usEor our purposes, these evaluation metrics are not ideal: we



[ Feature (f) Q(f) [ Feature (f) Q(f) [ Feature (f) Q) |
Spatial Features
Pen-down distance [7] 0.81] Writing height [7], [34] 0.65 | Lower zone [21] 0.62
Median6 [21] 0.71 | Pen-up distance 0.64 X-Area [34] 0.62
Vert. end dist. [16] 0.67 | # of strokes [34] 0.63 | Loop area [7] 0.61
Y-Area [34] 0.65 | # of extrema [34] 0.62 | Upper zone [21] 0.61
Writing width [7], [34] 0.65 | Loop y centroid [7] 0.62 | Horiz. end dist [16] 0.60
Temporal Features
Writing time [16] 0.87 | Time of maxv, [16] 0.78 | Pen up/down ratio [16] 0.71
# of timesv, =0 [16] 0.86 | Inv. Mom. 21 [7] 0.76 | Time of maxé 0.70
# of timesvy, =0 [16] 0.85 | Inv. Mom. 12 [7] 0.75 | Durationv, < 0 [16] 0.70
Inv. Mom. 00 [7] 0.85 | Median pen velocity [16]  0.74| Durationv,; < 0 [16] 0.69
Inv. Mom. 10 [7] 0.82 | Durationv, > 0 [16] 0.73 | Time of minv; [16] 0.69
Inv. Mom. 01 [7] 0.79 | Durationv, > 0 [16] 0.72 | Time of minwv, [16] 0.68
Inv. Mom. 11 [7] 0.78 | Time of max vel. [16] 0.72 | Time of maxwv, [16] 0.68
TABLE Il

FEATURES USED TO EVALUATE FORGERS# IS THE ANGLE BETWEEN POINTS v, Vg, Uy ARE OVERALL, HORIZONTAL, AND VERTICAL VELOCITIES.

are not only concerned with the entropy of each feature, Biiailing to Enroll” [20]. The FTE rate wasv 8.7%. After
rather how difficult the feature is tforge?. combining this with outlier removal, we still had access to
As our main goal is to highlight limitations in current79.2% of the original data set.
practices, it is imperative that we evaluate a robust andTo compute th&FRRandFARwe use the system described
usable system based on a strong feature set. To this end,imnv&ection IlI-C with the 36 best features from Section IlI-
implemented 144 state of the art features [7], [16], [26], [34). The FRRis computed as follows: we repeatedly randomly
and evaluated each with a quality function. For each featypartition a user'sn samples into two groups and use the first
f, let r; anday be the proportion of times that legitimategroup (of size%m) to build a template and authenticate the
users and forgers with access to dynamic information fail &mples in the second group (of si?g against the template.
replicate f. Then, our quality function is defined &3(f) = Depending on how many outliers were removed for each user,
(ay —ry +1)/2, and so the range @ is [0, 1]. Intuitively, 15 < m < 20. To compute theFAR we use all of the
features with a quality score df are completely useless—user’'s samples to generate a template and then authenticate
they areneverreliably reproduced by original usersy(= 1) the forgeries against this template.
and arealwaysreproduced by forgers:¢ = 0). On the other
hand, features with scores closertare highly desirable when V. HUMAN EVALUATION

implementing biometric authentication systems. Our experiments were designed to illustrate the discrepancy
For our evaluation, we divided our feature set into W, nerceived security when considering traditional forgery
groups covering the temporal and spatial features, and Ordeb%qf;digms and a more stringent, but more realistic, security
each according to the quality score. We then chose the tpqe) "n particular, we assume that at the very minimum, the
40 from each group, and disregarded any witkRR greater ,qyersary (1) tries to impersonate users who have a writing
than 10%. Finally, we discounted any features that could bgye that the forger has a natural ability to replicate, (2) has
inferred from others. This anaIyS|s resulted in what we de_%owledge of how biometric authentication systems operate,
the 36 best features—15 spatial and 21 temporal—describggl (3) has a vested interest in accessing the system, and

in Table II. therefore is willing to devote significant effort towards these
ends.
V. EVALUATION METHODOLOGY Figure 2 presents ROC curves for forgeries from imperson-
&tors with varying levels of knowledge. The plot denofgR-
ive depicts results for the traditional case ofvesforgeries
widely used in the literature [10], [15], [30]. Therefore, in

puting the FRR and FAR we removed outliers from the " X . oL 2 . o
enrollment samples as follows. We assume that each featﬂpéj't'on to ignoring the target writer’s attributes, this classifi-
tion makes no differentiation based on the forger's or vic-

is independently distributed. For each user, we removed St

samples that have more than= 3 features that fell outside urm’s style of writing, and so may include, for example, block

k = 2 standard deviations from that user's mean feature valJ&' 'S forging™ cursive writers. Arguably, such forgeries may

The parameters and k& were empirically derived; increasing € mfelr lor .?.) at_less AsF\t)_anf:.Iarg (brt:t more reals,on?tble) ttyll;e of
0 or k beyond this point did not significantly affect which"aVe classilica lon RARnaive ) Where one only attempts to
henticate samples from writers of similar styles.

samples were classified as outliers. We also excluded us%ﬁ"#h FARStatic plot sh th te of f h
(the so-called “Goats” [2]) for which we removed more than € ~Static plot Shows the Success rate ot forgers who

25% of the samples as outliers and classified such users'§&EIVE access to only_a statlc_ rendering of the passphrase.
By contrast,FAR-dynamic forgeries are produced by humans

2It is interesting to note that despite the different metrics, there was a hi@rﬁer seeing (possibly _many) r?al't'me fe”de“_”gs of the tgrget
correlation between our stronger features and those in [34]. phrase. One can easily consider this a realistic threat if we

This section presents the results for the five evaluati
metrics that use forgeries generated by humans. Before c



ROC Curves for Various Forgery Styles ROC Curves for Various Forgery Styles (Cursive Writers)
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Fig. 2. ROC curves for human forgers.iM@* and dynamic forgeries exhibit Fig. 4. ROC curves for cursive writers. This group appeared the most difficult
similar patterns, but both are inferior to trained forgeries. to forge by users in our study.

ROC Curves for Various Forgery Styles (Mixed Writers)

1 = e significant discrepancy in tHeARbetween standard evaluation
o iy methodologies and that of the trained forgers captured under

] : our strengthened model. For instance, BieRfor this system

under FARtrained forgeries is approximateB0.6% at four

g 1 error corrections (see Table RI) However, for the more

T traditional dynamic, static and e forgeries, one would

s 1 arrive atEERs of 7.9%, 6.0%, and 5.5%. These results are
indeed inline with the current state of the art [10], [15], [30].
FRR —— ;
FAR-naive* - Even worse, under the most widely used form of adversary
FAEQE;S;;%?; - considered in the literature (i.e.,ima) we see almost a four-
S =8 o, FARTraned oo, fold over-estimate of equal error rate.
0 10 15 20 25 30 35
Errors Corrected = - - -
[ | Naive* | Static | Dynamic [ Trained |
Fig. 3. ROC curves for mixed writers. This group appeared the easiest to B'_OCk 7.6 7.2 8.5 21.3
forge by the users in our study. Mixed 5.6 8.2 9.0 331
Cursive 8.3 3.6 5.5 13.5
Overall | 7.4 6.0 7.9 20.6
TABLE Il

assume that a motivated adversary may capture the writing EQUAL ERRORRATES FOR DIFFERENT FORGERY STYLES

on camera, or more likely, may have access to data written

electronically in another context. LastlyARtrained presents

the resulting success rate of forgeries derived under our forgeryigure 5 provides assurance that the increase in forgery

model which captures a more worthy opponent—one who hggality is not simply a function of selecting naturally skilled

natural skill and who has undergone some level of traininghdividuals from our dynamic forgers to act as trained forgers.

When classified by writing style, these trained forgers wemhe graph shows the improvement BAR for these forgers

very successful against block and mixed writers (see Figure gjross roundsl andIll . Improvement is significant, es-

and had the most difficulty with cursive writers (Figure 4). pecially for those who focused on mixed and block writers.
Intuitively, one would expect that forgers with access to dyNotice that at th&€ER(at seven errors) induced by forgers with

namic and/or static representations of the target writing showgcess to dynamic information froneund Il (Figure 2),

be able to outperform iiee* forgeries. This is not necessarilyour trained cursive, block, and mixed forgers improved their

the case, as we see in Figure 2 that at some points, fie*na FAR by 0.18, 0.34, and 0.47, respectively. This change results

forgeries do better than the forgeries generated by forgefém less than two hours of training and effort, which is likely

who have access to static and/or dynamic information. Thisrsuch less than what would be exerted by a dedicated forger.

primarily due to the fact that the hee* classification reflects  while it is interesting to note the drastic increase in forger

users’ normal writing (as there is really no forgery attempgnprovement, the manner in which the forgers improved is

here). The natural tendencies exhibited in such writings appe@o intriguing. While the trained forgers were able to better
to produce better “forgeries” than that of static or dynamic

forgers (beyond some point), who may suffer from unnatural3it is important to note that the trained forgers faced a different distribution

writing characteristics as a result of focusing on the act 8f “easy” targets in Roundl ‘and in Roundill . We did this to analyze
forai the system at its weakest link. However, after normalizing the results so that
orging. both rounds had the same makeup of “easy” targetsEtBR only changes

One of the most striking results depicted in the figures is therginally from 20.6% to 20.0% at four errors corrected.
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5 5 10 15 20 o % " stL_de (herein referred to dsuman judgesat detecting forg_
Errors Corrected eries. To the best of our knowledge, there were no professional

document examiners in our preliminary study.

We caution the reader that the proficiency of professional
document examiners compared to that of laypersons in de-
tection forgeries remains a controversial topic (see for exam-
replicate each feature, the improvement of a particular subséd, [6], [31]). Indeed, while recent studies [11], [12] seem to
(see Table IV) was especially noteworthy. indicate that a well-trained subset of the population can per-

With the exception of writing width and pen-down distanceform significantly better than chance at this task, these results
each of the features are intuitively related to being able e still being openly debated. For that reason, we primarily
consistently replicate pen-tip velocity across the entire writingse our analysis of human judges as yet another indication of
sample. A closer analysis of these features also provid@® importance of using strong forgers for evaluation purposes.
insight as to why mixed forgers improved more dramatically To measure the impact of forger training on a layperson’s
than block or cursive forgers. For instance, the success affility to distinguish forgeries, we performed the following
the mixed forgers in capturing Invariant Moments 12 and 2&xperiment. In a given round, judges were presented with
writing width, and the number of times that = 0, improved three writing samples of the same passphrase: the first two
by an average of’8.3%. By contrast, cursive forgers only originated from the same user, and the third was selected as a
improved by an average ab.0%. forgery with 50% probability. The judge’s task was to decide

A disturbing characteristic of these features is that they wesghether or not all of the samples originated from the same
ranked among the highest by our quality metric (see Table ll)ser. In all,24 judges were asked to determine the authenticity
This correlation could be due to the fact that these were tb&20 samples. The tests were not timed.
features that were originally the most difficult to forge and Half of the forgeries originated from untrained forgers and
therefore had the most room for improvement. Nonethelesshaif originated from trained forgers. For each round, the judge
closer examination of this impact is warranted, but is left faaw either static or dynamic renderings. If the forger was only
future work. presented with static information, then the judge saw a static
rendering of the samples as well; otherwise, the judge saw

Fig. 5. The impact of training on thEAR exhibited by our trained forgers.

| ;e;u:i::eg% = I, (.glzds” ) Lo (r_;]:i” ) [ % Im[;:zememl dynamic renderings which she could replay at will. Thus,
Writing width 386 147 61.8 forgeries generated by trained forgers were always rendered
Inv. Mom. 21 612 .240 60.8 in real-time. See Table V for the precise distribution of the
ITr;\r%eMgfmnHii -ig? 'igg gg-g samples classified by our human judges.
Inv. Mom. 11 659 589 56.1 We note that since judges saw only two samples from the
Pen-down distance 713 314 56.0 target writer we cannot directly compare the judges’ accuracy
# of extrema 318 149 53.2 to that of the authentication algorithm, which was trained
Inv. Mom. 10 744 .359 53.1

ABLE IV on 15-20 samples. However, we can rely on these results as

an indication of forger improvement, and as a preliminary
indication of whether humans are good at detecting forgeries.
Figure 6 shows the overall accuracy of the judges. The error
rate is simply the proportion of times a judge misclassifies a
sample, whether it be a false accept or false reject. At first
glance, it appears that different types of forgeries have little
impact on the error rates of judges. However, as we show
shortly, when we separate the errors as false rejects (Figure 7)
The results from Section V demonstrate that our methodoland false accepts (Figure 8), this is not necessarily the case.
gies did indeed improve the talents of our forgers with respethe primary observation from Figure 6 is that untrained human
to an authentication algorithm. To provide additional evidengedges seem to perform poorly at detecting forgeries. For
that forgers can improve their performance through training instance, for each of the forgery styles, approximat&
a more intuitive sense, we conducted an alternative evaluatiminthe judges had a classification rate of less thAaf.

FEATURES FOR WHICHFARWAS MOST INCREASED BY TRAINING af 1S
THE PROPORTION OF TIMES FEATUREK IS MISSED BY FORGERS

VI. AN ALTERNATIVE PERSPECTIVE FORGERY
DETECTION BY HUMANS
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Fig. 6. Proportion of judges with overall accuracy greater thdh Fig. 8. Proportion of judges with BAR greater thanc%.

Judge FRR

by wide-scale data collection and training of good imper-
sonators, we explore an automated approach using generative
08| 1 models as a supplementary technique for evaluating behavioral
. biometrics. We investigate whether an automated approach,
06 g using limited writing samples from the target, could match
[ the false accept rates of our trained forgers in Section V.
04t ™ Our proposed algorithm igenerativein nature; it uses
limited information from the target user, as well as general
population statistics, and intuitive rules of thumb to create
i.xx a best-effort guess at a target user’s biometric. As such,
it is designed to replicate only a target user's passphrase.
FRR ' However, as our results will demonstrate, this simple approach
is surprisingly effective and underscores the importance of
considering generative algorithms both as useful techniques
to evaluate the security of a system, as well as a new threat
model that researchers should consider when designing their
The averageé RR (Figure 7) was35.5% and 35.4% when Systems.
observing static and real-time renderings, respectively. Inter-For the remaining discussion we explore a set of threats
estingly, this seems to imply that, for the most part, the addhat stem from generative attacks which assume knowledge
tion of dynamic information did not improve a judge’s abilitythat spans the following spectrum:
to accurately identify true samples. However, the increase |, General population statisticsSleaned, for example, via
in the FAR for normal versus trained forgers is significant the open sharing of test data sets by the research com-
(Figure 8); the false-accept rate of the trained forgeries rose  munity, or by recruiting colleagues to provide samples.
above 0 for almost5% of the judges. By contrast, tHeAR of ll. Statistics specific to a demographic of the targeted user
the untrained forgers only was greater than 0Zo% of the In the case of handwriting, we assume the attacker can
judges. Additionally,50% of the judges exhibited &AR > extract statistics from a corpus collected from other users
20% against the trained forgers, whereas ohfi#o of these of a similar writing style.
judges had similar rates against untrained forgers. Clearlyj|. Data gathered from the targeted usdxcluding direct
our trained forgers were not only more talented in replicating  capture of the secret itself, one can imagine the attacker
the features from Section 1lI-D, but in also replicating the capturing copies of a user's handwriting, either through
idiosyncrasies that a normal human might use to differentiate  discarded documents or by stealing a PDA.
writing from different users. Note that there is an anomaly in To make this approach feasible, we also explore the impact

Figure 8 in that outliers at the tails of the dis_tributions SUGYeS} these varying threats. A key issue that we consider is the
:Eatnt?reri(ra‘ v;efrer reg;]ulalgforgr(tairs IWt]O fr?olgddjud%ves rrf10r(|a ((j)ftg ount of recordings one needs to make these scenarios viable
an trained Torgers. 'n particurar, one judge was foole be}ftack vectors. As we show later, the amount of data required

80% of the untrained forgeries. may be surprisingly small for the case of authentication
systems based on handwriting dynamics.
To synthesize handwriting we assemble a collection of
Finding and training “skilled” forgers is a time, and rebasic units f-grams) that can be combined in a concatenative
source, consuming endeavor. To confront the obstacles pofeshion to mimic authentic handwriting. We do not make use

" Static Sampies X
Dynamic Samples --&--

02t g

Proportion of Judges with FRR > x %

Fig. 7. Proportion of judges with ERRgreater thanc%.

VIl. GENERATIVE EVALUATION
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Fig. 9. Example generative forgeries against block, mixed and cursive writers. For each box, the second rendering is a human-generated forgery of the first,
and the third is created by our generative algorithm.

of an underlying model of human physiology, rather, creatidmrizontal shifts of then-grams we have effectively created
of the writing sample is accomplished by choosing appropriagestatic forgery. To modify this forgery to mimic temporal
n-grams from an inventory that may cover writing fronfeatures we apply the second and third stages.
the target user (scenario Il above) as well as representativefThe second stage, determining the order of strokes across
writings by other members of the population at large (scenarigsgrams, is slightly more complicated. We start with the left-
I and II). Our technique expands upon earlier rudimentaryiost letter of the left-most-gram and proceed to the right,
work [19], and is similar in flavor to approaches taken tordering the strokes according to their temporal order within
generate synthesized speech [23] and for text-to-handwritiagchn-gram. There is one exception to this rule: we must
conversion [8]. delay strokes that occur after a stroke that is connected to the
The first step of the forging process is to obtain a smalroceeding letter. For instance, cursive writers might render
set of samples from the user (the parallel corpus), and a #et dot of an ‘i’ that appears near the beginning of a word
of samples from other writers of the same writing style (tonly after finishing all other letters. We exploit the simple
derive population statistics). As is the case with traditionabservation that a stroke will (generally) only be delayed if
computations oEER we assume that passphrases are knownpreceding stroke is connected to the following letter. The
by the forger. Additionally, we assume that both corponarobability that a given stroke is connected to a given letter
contain letters in the target user’s passphrase. Given thesay be inferred from the population. So, we process each
corpora, our algorithm takes a setrefyrams ¢, ..., g.) from stroke of each letter, and connect it to the first stroke of
a target user and replicates a passphrase. In particular, it shtfis, next letter with this inferred probability. If we decide to
transposes, and concatenatestthe(t), y(t) andp(t) signals connect a stroke to the next letter, we push the proceedings
of eachn-gram to create a master set of signals that represestokes onto a stack and smooth the ends of the connected
a forgery. This process can be classified into three high-lewtokes using an iterative averaging algorithm. On the next
stages: (1) adjusting the spatial positions of eadajram, (2) pen-up event (either one that occurs naturally withinran
adjusting the ordering of strokes across eaefram, and (3) gram or the next time we decide to not connect letters) we
adjusting the overall time signal. empty the stack. This simulates a cursive writer who writes a
Adjusting the spatial location of each point is relativelyphrase and then returns to dot ‘i's and cross ‘t’s, starting with
straightforward. We first shift eaclrgram such that the base-those closest to the end of the word.
lines align on the same horizontal axis. We then use populatioriThe third stage, shifting time signals, involves determining
statistics to determine the horizontal distance between gachthe temporal delay between eaechgram, as well as the
gram. In particular, given the last character of the firgfram, delay imposed on the deferred strokes. To determine the delay
and the first character of the second, we distance thentwo between the last character of omgram and the first character
grams by the median distance between these two charactdrhe next we simply take the median delay between these two
as they appear in the population (if these two letters generatliyaracters as they appear in the population. Mathematically,
overlap, then this value could be negative, which would cauke 7(g;, g;11) be the median delay between the last character
a shift to the left). This process is applied iteratively over eaéh g; and the first ing;;1. Let T; be the time that the first
n-gram to create the final horizontal alignment. delayed stroke in the last letter gf starts. If there are no
Explicitly, let w(g;, g:+1) be the median distance betweerlelayed strokes ip;, T; is the maximum time (the time signal
the last character i; and the first irng;, 1, and X; be the value of g; is always shifted to start at 0). Then our final forgery
of the z coordinate of the rightmost point i (the leftmost will incorporateg;, but with the time shifted by
value is always normalized to 0). Then our final forgery will
incorporateg;, but with all points shifted to the right by 0¢() = 0:(4 = 1) + Ti + 7(gi—1, 9:)

8:(8) = 0,(1 — 1) + X; + w(gi—1,9:) for2<i<z andoy(1) = 0.
To infer the elapsed time for delayed strokes we use the

for2 <i < zandd, (1) = 0. After completing the vertical and 75" percentile pen-up velocity from the population and the
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ROC Curves for Generative Attacks (Cursive Writers) ROC Curves for Generative Attacks (Mixed Writers)
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Fig. 10. ROC curves for generative forgeries against cursive writers. Evelfig. 11. ROC curves for generative forgeries against mixed writers. The
with access to only limited information, the algorithm outperforms our trainedyenerative algorithm does not perform as well as our trained forgers: the
forgers, shifting theEERfrom 13.5% at four errors tal6.1% at three errors. EERSshifts from33.4% at three errors t@4.5% at four errors.

distance between the beginning of a delayed stroke and thén general, the generative approach fares well against block
last rendered stroke. We choose to use ¢ percentile as writers (not shown), improving thEER over trained forgers
pen-up velocities tend to be dominated by velocities associafeam 20.4% at four errors corrected t81.2% at three errors
with spaces, which are intuitively slower than those associatedrrected. The improvement is less pronounced against cursive
with dotting ‘i's and crossing ‘t’s. writers (Figure 10), only improving over theER of trained
Using these three high-level stages, we combine each of foegers from13.5% at six errors corrected t@6.1% at five
n-grams to make a final set of signals to represent a forgegfrors corrected. Interestingly, the generative approach does
not outperform our trained forgers against mixed writers.
The EER for trained forgers of mixed writers wa33.4% at
VIII. G ENERATIVE RESULTS three errors, whereas our generative approach only achieved
465% at four errors (Figure 11). However, we argue that

quality of the generated forgeries for each user and passphré g approach highlights an adversarial threat that should be

However, rather than using all 65 of the available sampl@gcoumed for in analyzing the security of biometric systems.
' #astly, we note that on average each generative attempt

from the parallel corpus, we instead choose 15 samples a . . i "
random from each target user's parallel corpus—with t y used information fron6.67 of the target user’s writing
samples. Moreover, the average length ofiagram wasl.64

one restriction that there must exist at least one instance ‘ q tor tHANM ) antl
each character in the passphrase among the 15 samples. acters (and was never greater fnMore importantly, .
s we make no attempt to filter the output of the generative

attacker’s choice ofi-grams are selected from this restricted

set. To explore the feasibility of our generative algorithm nggorithm_ by rank-ordering t_he best fqrgeries, the results_ C(.)UId
ensure that adjacemt-grams do not originate from the sam e much improved. That said, we believe that given the limited

writing sample, but an actual adversary might benefit frO,LHfOFmatlon assumed here, the results of this generative attack

using n-grams from the same writing sample. only underscores its importance.
Additionally, we limit the corpus from which we derive
population statistics to contain only 15 randomly selected IX. RELATED WORK
samples from each user with a similar writing style as the This paper expands upon previous work [1], where we
target user. We purposefully chose to use small (and argualligcuss our data collection efforts, highlight the shortcomings
easily obtainable) data sets to illustrate the power of thissociated with assuming weak adversaries, and provide our
concatenative attack. Example forgeries derived by this procegherative framework as an approach to facilitate more robust
are shown in Figure 9. evaluation metrics. In the current work, we present a more
We generated 25 forgery attempts for each user atitbrough analysis of our testing methodologies and elaborate
passphrase. Figures 10 and 11 depict the avefédeacross on the results of our trained forgers. Additionally, we present
all 25 forgery attempts for cursive and mixed writers. As eesults from a study that show that the forgeries we collected
baseline for comparison, we replot tRRR and FARtrained were not only able to bypass an automated reference monitor,
plots from Section V. Thé-ARgenerative plot shows the re-but were also able to misleddimanjudges.
sults of the generative algorithm against the entire population.To the best of our knowledge, there is relatively little work
Overall, under these forgeries there is BER of 27.4% at that encompass our goals and attack models described herein.
three error correction compared to BER of 20.6% at four However, there is a vast body of work on the topic of signature
error corrections when considering our trained forgers. verification (see [10], [28]). Kholmatov and Yanikoglu [13]

To evaluate this concatentative approach we analyzed
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provide an authentication mechanism based on online sigmaeakest-link type analyses of other behavioral biometric

ture verification. Their technique uses Dynamic Time Warpirmgodalities. Specifically, we feel that the idea of trained and

in conjunction with Principle Component Analysis and a linedarget-selected forgers should be examined further. For in-
classifier to decide whether or not signatures are genuiséance, one might take ethnicity and gender into account when
This approach achieved @BER of approximately 1.3% and creating forgeries for voice-based biometrics, or handedness
was used to win the first Signature Verification Competitioand hand size into account for keystroke-based biometrics.
(SVC) [35]. Additionally, Kholmatov and Yanikoglu employ Another worthwhile avenue of research could examine gener-
a tool to provide realtime playback of writing samples tative models to explore the threat space for other modalities.

aid forgers during evaluation. However, it is unclear whether

forger proficiency or training was considered when comput-
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