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Abstract

Recent work has shown that certain handwriting biomet-
rics are susceptible to forgery attacks, both human- and
machine-based. In this paper, we examine a new scheme
for using handwritten input that attempts to address such
concerns. Pseudo-signatures are intended to be easy for
users to create and reproduce while being resilient to forg-
eries. Here we evaluate their feasibility in terms of usability
and security through several user studies. Our initial exper-
iments suggest that, when well-chosen, pseudo-signatures
may prove to be an attractive biometric, although more re-
search is required.

1. Introduction

As a potential biometric, handwriting offers an intuitive
appeal. Biometric key generation (BKG) from a user’s writ-
ing, as distinct from the task of signature authentication,
uses error-corrected features to create a cryptographic key.
Traditional handwritten signatures have a drawback for this
application, however: each user has only one true signature.
The use of arbitrary passphrases addresses this limitation,
but as has been demonstrated by Ballard, et al., population
statistics can be used to break such systems [2].

To address these concerns, we have proposed the con-
cept of a pseudo-signature [1, 3], which is outwardly similar
to the “Draw-a-Secret” (DAS) graphical password scheme
described by Jermyn, et al. [6]. In that work, the authors
present users with a 5× 5 grid of cells and ask them to cre-
ate simple drawings. They then derive a password from the
order in which the squares are visited by the stylus. They
argue that the theoretical password space for DAS is much
larger than the space for standard text-based passwords. In
an experiment involving 16 test subjects, however, Nali and
Thorpe found that 45% of their users chose symmetric pass-
words, yielding less security than expected [8].
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Dunphy, et al. investigated the idea of incorporating
background images to strengthen the DAS scheme [4].
Based on user studies, they found that people aided with
background images tend to create more complicated pass-
words which exhibit fewer symmetry issues. Moreover, this
also improves the memorability of graphical passwords.

In the present paper, we delve more deeply into the de-
tails of pseudo-signatures as first introduced elsewhere [1,
3]. After briefly reviewing the concept, we pose a series
of questions regarding their usability and security. We then
present the results of a series of experiments, drawing con-
clusions and highlighting areas for further research.

2. Pseudo-Signatures

Pseudo-signatures are sketches that a user writes solely
for security purposes. Our approach differs from the orig-
inal DAS scheme in several significant ways. First, we in-
corporate additional temporal features, such as the velocity
of the pen tip and the lengths of pauses between strokes.
Second, we provide users with randomly generated visual
cues to help them construct better passwords. These cues
include different shapes to trace, colors to suggest writing
speeds, arrows to indicate directions of strokes, and loca-
tions and lengths of potential pen-tip pauses.

Figure 1 is an example of a pseudo-signature consisting
of five cues. After placing her cues, a user might draw the
four edges of the center square in the indicated order, with
the red strokes drawn slowly, the yellow stroke somewhat
faster, and the green stroke drawn quickly. She would also
dwell the pen tip for a short time in the lower right corner
of the square, and for a longer time in the lower left corner.

We leave it to the user’s interpretation as to what con-
stitutes “medium” velocity, or a “long” dwell time. We
hope that by vaguely specifying the meanings of the visual
cues, users will be able to create their own keys with suffi-
cient entropy (a measure of unpredictability). Because users
have the freedom to place their cues anywhere on the draw-
ing surface, entropy should be further enhanced. Moreover,
since each user is shown a different set of graphical cues
based on a PIN she provides, and since these cues can be



Figure 1. A pseudo-signature using five cues.
The cue palette is displayed as a 3 × 5 ma-
trix in the upper half of the display. The user
places cues and writes in the lower half.

combined in arbitrary ways, the theoretical entropy avail-
able from pseudo-signatures ought to be greater than DAS
and other similar schemes. In our current implementation,
the cues are just a mnemonic – keys are generated solely
from the handwriting – so users can, in theory, recreate their
keys without using cues given enough practice.

3. Experimental Design

Our objective is to determine whether pseudo-signatures
can overcome the flaws of DAS and handwritten
passphrases. Several key questions come to mind:

1. Do pseudo-signatures suffer from symmetry issues?

2. Given a cue palette, do users tend to select the same
set of cues and place them similarly?

3. Given a specific cue placement, do users sketch out
their pseudo-signatures in the same way?

4. Can pseudo-signatures be forged by human attackers?
By machine algorithms for handwriting synthesis?

A “yes” answer to any of these questions would suggest that
pseudo-signatures might not serve the intended purpose.

3.1. Data Collection

Our experiment consisted of two phases: establishment
and forgery attempts. We collected 2, 844 samples from 37
test subjects on a tablet PC (a NEC Versa LitePad) over a
three month period (Table 1). In Round-E1, a PIN served
to protect users’ cue palettes. This round was repeated
across five different sessions. Round-E2 and Round-
E3 addressed the predictability of user-created pseudo-
signatures, a critical concern.

In Round-F1, we selected five pseudo-signatures at ran-
dom from Round-E1 as the target samples for forgery at-
tempts, and then collected forgeries from 20 test subjects.
Each target sample was shown first as a static image and
then in a dynamic rendering. Finally, we collected forgeries
from six trained forgers in Round-F2. These test subjects
were first given some intuition about the features we use,
then viewed playbacks of the target pseudo-signature and
their earlier attempts. When finished with creating three
new forgeries, the user then watched a real-time playback
and selected one as her best effort.

Users generally required between 50 and 70 minutes to
complete the establishment phase. For Round-F1, forg-
ers spent between 30 and 45 minutes, while for Round-F2,
they took 60 minutes on average.

3.2. Feature Selection and Biometric Hash

For key generation, we adopt the system described by
Vielhauer, et al. [11]. The basic idea is to build a func-
tion that maps an input sample to an error-corrected key.
However, since the feature selection in that earlier work has
been shown to be weak [10], we borrow the approach of [2]
for selecting stronger features. For each feature fi, let ri

and ai be the percentage that legitimate users and forgers
fail to replicate, given access to the dynamic information of
the target sample. Then the quality function is defined as
Qi = (ai − ri + 1)/2, and so the range of Q is [0.0, 1.0]. If
a feature’s Q-value is 0, then the feature is useless.

Having computed the quality values for 121 features [5,
7, 9, 10], we divided them into spatial and temporal cate-
gories and empirically filtered out those of low quality to
yield a final set of 24 features, as described in Table 2.

In the enrollment phase, each user repeated a pseudo-
signature 10 times. Let fi,j denote the feature value of
the jth feature in the ith sample. When a user com-
pletes m samples, the system generates a biometric tem-
plate as follows. Let l

′

j = minfi,j , r
′

j = maxfi,j ,

and ∆Ij = maxfi,j − minfi,j + 1. Set lj = l
′

j −

∆Ij × εj , and rj = r
′

j + ∆Ij × εj , where ε is the tol-
erance value for the corresponding feature prespecified in
a tolerance table (T = {ε1, ε2, . . . , εn}) [11]. The bio-
metric template is then an n × 2 matrix of integer values



Table 1. Specification of the data collection.
Phase Name Experiment Description Samples

Establish-
ment

Round-E1 Each user creates one pseudo-signature and repeats it 10 times. She enters a
PIN, selects and places her cues, and then draws the pseudo-signature.

1, 870

Round-E2 Each user creates 10 pseudo-signatures based on 10 different pre-defined cue
palettes. She selects and places cues, and then draws the pseudo-signature.

350

Round-E3 Each user creates one pseudo-signature based on a fixed set of cues that are
already placed. She only draws the pseudo-signature.

350

Forgery
Attempts

Round-F1 Each user attempts to forge five different pseudo-signatures that are shown as
static images and dynamic renderings.

190

Round-F2 Six selected users are provided with training and asked to forge the same five
pseudo-signatures as in Round-F1, repeating each three times.

84

[(l1, r1) , (l2, r2) , . . . , (ln, rn)].
To hash a new feature vector so that we can compare

it to the reference template, we also need some auxiliary
information. Let Ωj = ljmod∆Ij denote the offset of the
hashed jth feature value. In this way, when a legitimate
user wants to recreate a key, the system extracts the features
from her querying sample and computes the hash as Hj =
(fi,j − Ωj)/∆Ij , where i is the index of the input sample
and j = 1, 2, . . . , n. This scheme divides the feature space
into intervals along each dimension and thus is able to map
two inputs with minor differences into the same output: a
biometric key.

To compare a reference sample to a query sample, we
first generate a template from the reference sample, then
use this template and the query to generate a key, and finally
compute the total number of bit differences that need to be
corrected in the key. The ROC figures we plot in this paper
are based on this scheme.

4. Experimental Evaluation

We now consider the questions enumerated at the start of
Section 3. For Question 1, we counted symmetric pseudo-
signatures from Round-E1 and Round-E2 for 34 subjects,
and found that 58 out of 374 samples exhibited left-right
symmetry (other symmetries such as top-bottom or rota-
tional were much less common). This percentage is 15.5%.
Although hard to compare to Nali and Thorpe’s findings [8],
we consider this ratio to be relatively low, which is good.

As to Question 2, we found that 35 pairs of pseudo-
signatures used the same set of cues. Since 35 users partic-
ipated in the experiment, there are 35 × (35 − 1)/2 = 595
pairs of pseudo-signatures. a percentage of 5.9%. If we as-
sume that on average three distinct cues are selected from a
3×5 palette, then in theory the expected number of distinct

cue sets will be

(

3 × 5
3

)

= 455. Hence, the probabil-

ity of selecting the same set of cues is 1/455 = 0.22%.

Figure 2. User adjustment of cue placement.

Table 3. Average positional shifts for cues
from their initial placements. (∆X , ∆Y ) de-
notes the horizontal and vertical shifts.

Col 1 Col 2 Col 3 Col 4 Col 5
Row 1 (120,53) (89,61) (7,53) (-158,53) (-226,64)
Row 2 (140,-16) (85,-7) (-25,-22) (-112,-21) (-165, 4)
Row 3 (92,-81) (85,-118) (-13,-110) (-95,-107) (-157,-97)

Although the actual percentage is higher than this, we note
that while the cues may be the same, their placements differ
by 56 pixels on average, a substantial distance in our GUI.
Indeed, for increased security, users should be encouraged
to move their cues from the initial placements. On the other
hand, such a policy may adversely impact memorability. A
study of this tradeoff is left as future work.

To examine tendencies when users move their cues, we
measured the average positional shifts; these are plotted
in Figure 2. Here, arrows encode both the direction of
the move and the average distance from the default posi-
tions. The width of the arrow represents the number of cues
moved in that direction. Table 3 also lists the average hor-
izontal and vertical shifts. Users seem to prefer to move
their cues toward the center of the writing pad, behavior
that could be discouraged through feedback from the GUI.

We investigated Question 3 and Question 4 in the forgery



Table 2. Feature set used in the study.
Feature(f ) Q(f) Feature(f ) Q(f) Feature(f ) Q(f) Feature(f ) Q(f)

Spatial Features
# of strokes [10] 0.72 IntegralArea(x1) [10] 0.71 σ(x) [7] 0.70 signature width [5] 0.70
xend − xmin [7] 0.69 L/A [7] 0.68 IntegralArea(x2) [10] 0.67 Invar.Matrix(1, 1) [5] 0.67
PixelMatrix(3, 4) [10] 0.66 AveDistall [10] 0.66 aspect ratio [10] 0.64 AveX [10] 0.61
IntegralArea(y1) [10] 0.61 IntegralArea(x3) [10] 0.61 PixelMatrix(1, 1) [10] 0.60 PixelMatrix(2, 1) [10] 0.60

Temporal Features

T (2nd pen-down) [7] 0.73
−−−−→

AveVx [10] 0.70 T (MinVx) [10] 0.68 T [10] 0.68
−−−−→

AveVy [10] 0.68 path length/T [10] 0.67 θ(PD(1),PU(2)) [7] 0.62 MaxVy − AveVy [7] 0.60

experiments. We employ five forgery models from Ballard,
et al. [2]: naı̈ve, naı̈ve*, static, dynamic, and trained. To
compute FRR (False Reject Rate) and FAR (False Accept
Rate), we adopt the feature set we described in Section 3.2.

In the context of pseudo-signatures, naı̈ve forgeries are
not effective forgery attempts since our measure compares
the key from a user’s randomly selected pseudo-signature
with the target. Naı̈ve* forgeries (Round-E3) share the
same cue palette with the target pseudo-signature. We cal-
culate FRR by partitioning a subject’s m enrollment sam-
ples from Round-E1 into a training set (3m/5) and a test-
ing set (2m/5), and then measure the reject rates. As to
FAR, we measure the acceptance rates for forgeries based
on the same training data. From our analysis, the EER
(Equal Error Rate) for the naı̈ve forgery model is 0% and
for the naı̈ve* model it is about 1%.

To simulate a “shoulder-surfing” attack, we employed
the offline, online, and trained forgery models. As can be
seen in Figure 3, forgers are not likely to replicate the target
sample if they only have access to the static image; the EER
is approximately 1%. Given a dynamic rendering, forgers
did better, which is not a surprise. However, we note that
their overall success rate is still quite small; the EER in-
creases to 3% in this particular case. For comparison pur-
poses, we note that the EER for trained forgers in our earlier
work on handwritten passphrases was 20.6% [2].

The “FAR Offline” and “FAR Online” curves in Figure 3
are plotted across the entire forger set (size = 20). This pro-
vides a snapshot of the original pseudo-signature’s security.
It is also important to know if there are any particularly good
forgers in this group. This point may not be reflected in
the ROC curves if the number of good forgers is too small
to impact the averages. In plotting the distribution of each
forgery sample based on the number of bit differences in
the biometric key it generates, we find that all are located
in the interval [7, 19] (for trained forgeries, the interval is
[8, 17]), meaning that no forgeries are particularly close to
their targets. This suggests that pseudo-signatures may be
resilient to forgeries, and that the average EERs we report
reflect actual security levels. More testing is needed.

Computer security is typically based on a worst-case
analysis, since a weak password for just one user can lead

� � �� �� �� �� ��

�

���

���

���

���

���

���

��	

��


���

�

���������	�
����
����	�
������������	


��


����������


���������


�����
����

���	�������������������������������
	�

�
��
�
��
�


��
	

Figure 3. ROC curves for human forgeries.

Table 4. EERs for each pseudo-signature.
Pseudo-Signature Sample

Attack Model #1 #2 #3 #4 #5

Offline 4% 8% 18% 1% 1%

Online 10% 8% 18% 4% 5%

Trained 18% 22% 40% 1% 5%

to the compromise of the entire system. We note that a
few pseudo-signatures in our test set have high EERs (Ta-
ble 4). One example is Pseudo-Signature #3, which con-
sists of three cues and only four strokes. Moreover, two out
of the three cues the user chose are interpreted as dashed
curves, which are more difficult to reproduce reliably than
solid lines. Hence, the intervals in the template for this par-
ticular test subject are unusually loose, making it easier for
forgers to succeed in their attacks.

Pseudo-Signatures #1, #2, and #5 also consist of three
cues, but employ more strokes. This contributes to the
somewhat higher EERs for the first two. In the case of
Pseudo-Signature #5, which achieves a much better EER,
we believe this is because the user employed a range of writ-
ing speeds, including distinct low, medium, and high veloc-
ity segments. This creates a challenge even for trained forg-
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Figure 4. ROC curves for machine forgeries.
Gen1 assumes the attacker knows the cue
palette, while Gen2 is a worst-case analysis.

ers who are not able to reproduce the original sample even
though its composition is fairly simple. This observation
was confirmed by a post-study survey of the forgers.

As we know from past work [2], another significant
threat exists: machine-based attacks that employ genera-
tive algorithms for handwriting synthesis (Question 4). In
Figure 4, we present two preliminary attempts at testing
such attacks and compare them with the trained human forg-
ers. Gen1 is a shoulder-surfing scenario where we assume
the attacker knows the cue palette but nothing else. Gen2
serves as a worst-case analysis because in addition to the
cue placement, it assumes that the cue order, stroke order,
and stroke directions are known in advance. It then attempts
to guess the target’s speed profile (slow, medium, fast) based
on population statistics. At this early stage, the generative
attacks are even less effective than the trained forgers.

5. Conclusions

The work we have presented here builds on our earlier
proposals for pseudo-signatures [1, 3]. In this paper, we
evaluated their feasibility from the standpoint of usability
and security. Research is still ongoing, but it appears that
when well-chosen, pseudo-signatures may prove to be an
attractive biometric. In the near future, we plan to exam-
ine in more detail the vulnerabilities of pseudo-signatures
to machine-based attacks. We are also contemplating the
design of a feedback mechanism in our GUI which will
evaluate the quality of pseudo-signatures during the enroll-
ment phase and encourage users, when necessary, to create
stronger examples for their security applications.
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