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Abstract

The push toward voting via hand-marked paper ballots
has focused attention on the limitations of current optical
scan systems. Discrepancies between human and machine
interpretations of ballot markings can lead to a loss of trust
in the election process. In this paper, a style-based ap-
proach to ballot recognition is proposed in which marks are
recognized collectively rather than in isolation. The consis-
tency of a voter’s style is leveraged to improve the overall
accuracy of the system. We compare style-based recogni-
tion to various kinds of singlet classifiers and show that it
outperforms them by a substantial margin.

1. Introduction

Since the contentious recount in the 2000 U.S. presi-
dential election, followed by the subsequent passage of the
Help America Vote Act (HAVA) [2], a number of elec-
tronic voting systems have appeared on the market. Com-
pared to existing approaches such as mechanical lever ma-
chines, punched cards, and hand-counted paper ballots, di-
rect recording electronic (DRE) voting offers several ad-
vantages, including fast tabulation of election results and
user interfaces designed to address the needs of disabled
voters. The security of DRE’s, however, has been called
into serious doubt. In a famous study of the source code
for the Diebold (now Premier) Accu-Vote TX, a team of
researchers from Johns Hopkins identified a wide range of
software vulnerabilities, many of which could compromise
the results of an election. There is no reason to believe
that other DRE’s are immune, since any complex hard-
ware/software system will exhibit similar flaws.

This has led to a push toward the incorporation of phys-
ical (i.e., paper) records that can be verified independently
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of the electronic tally. Burr, et al. introduced the concept
of software independence as a way of better assuring the
trustworthiness of voting systems [1]. A system is software
independent if a previously undetected error in its software
cannot cause an undetectable change in the outcome of an
election. In other words, we can trust the results without re-
quiring assumptions about the correctness of the software.

The best-known examples in the software-independent
category are optical scan (op-scan) systems that employ
hand- or machine-marked paper ballots [4]. Errors in an op-
scan system’s software can be caught and corrected during
manual audits conducted after the election with the help of
the paper ballot record. As a result, op-scan voting is grow-
ing more widespread and has become an important topic to
study from a variety of perspectives [3].

Reading ballots may seem like a relatively simple forms
processing application; it is not. Voter intent is the driving
definition of what constitutes a legal vote. Voting is dis-
tinctive in that it touches upon an extremely broad segment
of a country’s population, including citizens who are illit-
erate or who are aged or suffer from physical or cognitive
handicaps that interfere with their ability to understand and
carry-out instructions. Votes cannot be invalidated because
they fail to satisfy some arbitrary predefined criterion – if a
human judge would interpret a marking as a vote (or, con-
versely, as a non-vote), then the voting machine should do
the same. Prior assumptions about voter preferences (e.g.,
if someone votes for a candidate from Party A in one race,
they are likely to vote for a candidate from the same party
in a second race) must never be made. Some particularly
challenging examples are on public display as a result of
the recount in a disputed 2008 senatorial election in Min-
nesota [7]. The history of relevant document analysis re-
search stretches back over 20 years [8].

Despite the wide range of ballot marking styles across
a population, we wish to explore the assumption that indi-
vidual voters will tend to be consistent. This might mean
always filling in oval targets on a ballot, or always using
check marks to indicate choices. Our ultimate goal is to
develop mark-reading algorithms that closely replicate the
human ability to discern voter intent. For this purpose, style
should be exploited, not avoided. A familiar concept, this
notion has already been applied with success in the field of



handwriting recognition [10].
To make this concrete in the realm of voting where rep-

resentative datasets of real ballots are hard to come by, we
develop an example based on three types of ballot markings:

Intentional mark A real vote as intended by the voter. In
our current studies, we assume this will be a filled tar-
get oval, a check mark, or an ex (X).

Unintentional mark Any sort of noise on the ballot that
has been added accidentally in or near the target oval.

Erased mark A marking that the voter has tried to erase.
While voters are instructed not to use erasers, they
sometimes try to do so. The correct procedure in such
cases is to “spoil” the ballot and ask for a new one.

When a field is style-consistent, algorithms can be more
effective in recognizing the underlying symbols [10]. This
fits our application; we can assume that it is rare for voters
to mark their ballots using a mixed style. Hence, we may
use Sarkar and Nagy’s approach to create a style-based clas-
sifier from a set of style-specialized classifiers and thereby
improve recognition accuracy.

2. Theoretical Background

The mathematics of style-based recognition are pre-
sented in [10]. As in that work, we consider fields
of L isogeneous patterns represented by feature vectors
x1, x2, . . . , xL. Each pattern, xl, belongs to one of C
classes: cl ∈ 1, 2, . . . , C. The goal is to deduce the class
of a pattern from the observed feature vectors.

For each field, we define the field feature vector, x, as
the concatenation, x1, x2, . . . , xL, of the constituent pat-
tern feature vectors. The concatenation of pattern classes is
called the field class or field identity, c = (c1, c2, . . . , cL).

The essential aspect of a style-consistent model is the
statistical dependence among pattern-features in a field. In
contrast, in a singlet model, we assume that pattern-features
in a field are class-conditionally independent:

p(x|c) = p(x1, x2, . . . , xL|c1, c2, . . . , cL) = (1)
L∏

l=1

p(xl|c1, c2, . . . , cL).

We can simplify further by assuming that the lth pattern
feature, xl, depends on the class of the lth pattern, but is
independent of all of the other pattern-classes:

p(x|c) =
L∏

l=1

p(xl|cl). (2)

When each pattern-class can be rendered in different
styles, the resulting conditional pattern-feature probability
is a mixture distribution. For K styles, 1, ..., K, we have:

p(xl|cl) =

K∑

k=1

akp(xl|k, cl). (3)

where ak is the probability of occurrence of style k. Sub-
stituting this in Eqn. (2), the field-class conditional field-
feature density is:

p(x|c) =

L∏

l=1

K∑

k=1

akp(xl|k, cl). (4)

While the above formula accounts for multiple pattern
styles, it does not model the consistency of style within a
field. Thus, different patterns in a field can be generated
from different styles. In our style-consistent model, field-
features have mixture distributions induced by styles while,
within a field, all patterns come from the same style:

p(x|c) =
K∑

k=1

P (k|c)p(x|k, c) =
K∑

k=1

akp(x|k, c), (5)

p(x|c) =
K∑

k=1

αk

L∏

l=1

p(xl|cl, k). (6)

So the most probable field-level string is:

C∗ = argmax
c

K∑

k=1

αk

L∏

l=1

p(xl|cl, k). (7)

The computational cost for obtaining C∗ is exponential,
because for each string c we will compute Eqn. (6). If we
change the sum to a max, however, and move it inside the
product, the cost is lowered significantly; the problem is
reduced to one where we can use a style-specific classifier
to provide interpretations, then choose the most confident
of these as the result:

C∗ = argmax
c

L∏

l=1

max
k

(p(xl|cl, k)). (8)

As was demonstrated in [10], this should not be too different
from using the true formula in Eqn. (7).

3. Experimental Evaluation

3.1. Test data

Before classification, ground-truthed training samples
must be prepared. We hand-marked a set of ballot images,



Table 1. Test set sizes (training sets are 5×).
No-Votes

Classifier Votes (noise, blank)
Check 140 180

Ex 140 180
Filled 154 235
Blend 434 295

Separate 140 check + 295
140 ex +

154 filled

aligning them with the blank ballot. The alignment proce-
dure first pinpoints pairs of registration points between the
two images to be aligned, then calculates three variables: a
two-dimensional shift vector, a scaling factor, and a slant
angle. This procedure is implemented in PERL.

Next, we use the BallotGen toolkit developed for the
PERFECT project [6] to generate the ground-truthed mark
images for training. BallotGen is written in Tck/Tk, and ad-
ditional support was added for introducing small variations
to amplify the training set, such as shift, rotation, etc. The
standard netpbm library is used for manipulating images.
Target bounding boxes are all the same size, 155× 105.

Input patterns are to be classified as either vote or no-
vote. Samples from the three marking styles we consider in
this paper are shown in Figure 1, while the characteristics
of our dataset are listed in Table 1.

3.2. Classifier technology

We use Modified Quadratic Discriminant Functions
(MQDF) as our classifier technology [5]. The probability
distributions for MQDF have a large variance because it op-
erates in a high dimensional space. Hence, it is appropriate
to adopt the approximation version given in Eqn. (8), as op-
posed to the exact formulation of Eqn. (7).

As our feature set, we use polar transformations and the
magnitude portion of the 2-D Fast Fourier Transform, yield-
ing a total of 300 features. Our rationale is based on the
observation that the markings we wish to recognize are usu-
ally symmetric. A blank oval’s 2-D FFT concentrates its en-
ergy in certain frequencies, while pepper noise is spread out.
Checks and ex marks concentrate their energies differently
than ovals. Finally, filled ovals have significantly higher DC
components than the other types of marks. Hence, this ap-
pears to be a reasonable feature set for our test case.

To characterize the problem, we trained an MQDF clas-
sifier on four classes: check, ex, and filled marks, as well as
no-vote instances (blank targets and partially-erased marks).
We then tested the classifier on the training set to yield the
confusion matrix shown in Table 2. From this, we can see

Table 2. Confusion matrix for the classes.
Class No-Vote Check Ex Filled

No-Vote 71.33% 16.00% 11.67% 01.00%
Check 32.14% 34.29% 33.57% 00.00%

Ex 00.71% 11.43% 85.00% 02.86%
Filled 00.00% 00.00% 04.29% 95.71%

Figure 1. Three different marking styles:
check, ex, and filled, and their correspond-
ing noisy (no-vote) patterns. Noisy inputs
are generated by attempting to erase a mark,
something that voters occasionally do.

that no-votes and filled marks are rarely confused. How-
ever, noisy no-votes can be confused with checks and ex’s.

If we know which style we are recognizing (check, ex,
or filled), we can use a specialized recognizer and presum-
ably achieve higher accuracy than a more general-purpose
classifier trained on all styles. In our experiments, we train a
Check recognizer using checks as the vote class, with erased
checks, blank targets, and pencil-drop noise as the no-vote
class. Ex and Filled recognizers are trained likewise.

In designing general-purpose classifiers to recognize in-
puts in any of the three marking styles, we employ two
strategies. The first is to train a two-class classifier: vote and
no-vote. Marks from all styles are treated as representing a
single vote class, and no-vote patterns (including blank tar-
gets and erased marks) are treated as a single no-vote class.
It may, of course, be problematic to mix distinct mark types
in a single class. Another way to design a classifier is to
treat the marks from each style as separate classes, while re-
garding all no-votes as equivalent. This yields a four-class
classifier: check, ex, filled, and no-vote. We refer to the
former as Blend, and the latter Separate.

Note that style-based recognition requires the classifiers
to operate on the same feature space because their poste-
rior probabilities will appear in the same formula and hence



Table 3. Target-level error rates (top) and field-level error rates (bottom).
Classifier

Sample Set Check Ex Filled Blend Separate Style-based
Check 2.36% 7.46% 25.00% 1.97% 4.35% 2.78%

Ex 0.40% 0.34% 16.16% 0.40% 0.40% 0.35%
Filled 2.75% 2.38% 1.10% 2.75% 2.50% 1.09%

Average 1.84% 3.39% 14.09% 1.70% 2.42% 1.41%

Classifier
Sample Set Check Ex Filled Blend Separate Style-based

Check 38.30% 83.25% 100.00% 33.43% 61.08% 42.85%
Ex 7.77% 6.70% 99.30% 7.77% 7.77% 6.75%

Filled 53.18% 46.07% 20.75% 53.18% 48.55% 20.63%
Average 33.08% 45.34% 73.35% 31.46% 39.13% 23.41%

Figure 2. Example of a recognition result: the
race’s ground-truth is VNNN (Vote, No-Vote,
No-Vote, No-Vote). The native Ex recognizer
reads it correctly as VNNN, the Check rec-
ognizer reads it as VVNN, the Filled recog-
nizer reads it as NNNN, the Blend recognizer
reads it as VVNN, and the Separate recog-
nizer reads it as VVNN. The style-based rec-
ognizer reads it correctly as VNNN.

must derive from the same probability space. This differs
from typical classifier combination strategies which employ
different classifiers and which do not operate on fields.

3.3. Results

In conducting our experiments, we have five singlet clas-
sifiers at our disposal: Check, Ex, Filled, Blend, and Sep-
arate. For each class we have 1, 800 image samples. The
classifiers were trained on 5/6th of the samples, and then
tested on the remaining 1/6th. We will contrast their per-
formance with that of a style-based recognizer.

An example of a field containing four patterns is shown
in Figure 2. We have two basic options for quantifying
recognition rates: comparing performance at the target level
or at the field level. The former measures the percentage
of correct decisions for each individual vote, while the lat-
ter can be thought of as measuring the percentage of ballot
races that are correctly interpreted as a whole. Only if all
of the targets constituting a race (field) are recognized cor-
rectly do we consider the field correct.

We ran the five singlet classifiers and then the style-based
recognizer. The field length was 20, with five of the pat-
terns corresponding to real votes, one to an erasure, and the
remaining 14 blank. The top half of Table 3 shows the er-
ror rates for individual target recognition, while the bottom
half gives the field-level error rates. We note that the singlet
classifiers generally do well in their own domains of exper-
tise, but sometimes break for other kinds of inputs. The
field-level error rates are higher than the target-level rates
because just one error in a field renders the result incorrect.

The Blend and Separate recognizers perform similarly,
with the former somewhat better than the latter. This
suggests that separating the mark classes does not help.
Note also that both usually beat the singlet classifiers (ex-
cept in the case of filled marks). Hence, using a general-
purpose classifier is better than using a wrongly-applied
style-specific classifier. The style-based recognizer is rarely
the best for a specific kind of input, but its overall perfor-
mance is better by a substantial margin. This is, in fact, our
goal. While the quoted error rates are not low enough for
commercial election equipment, this is still compelling evi-
dence of the promise of style-based ballot mark recognition.

Class-specific error rates for the different classifier
schemes are displayed in Table 4 (the error rate for rec-
ognizing blank targets is 0.0% across the board). Again,
the style-based recognizer is not uniformly the best. The
Blend classifier has the lowest error rate for recognizing
votes (2.92%), whereas the Filled classifier has the lowest
error rate for recognizing noise that should be considered a
no-vote (4.75%). However, Blend does a poor job with the
noise that arises when filled marks are erased (51.35% error
rate), and Filled does badly for votes that are marked as a
check (100.00%) or an ex (64.63%), which it likely regards
as noise. The style-based approach yields the most broadly
competent classifier in the group, with a 4.32% error rate
at recognizing votes of all types, and a 6.52% error rate at
recognizing noise as no-vote.



Table 4. Class-specific mark error rates (top) and noise error rates (bottom).
Classifier

Sample Set Check Ex Filled Blend Separate Style-based
Check 8.94% 29.49% 100.00% 7.14% 17.06% 10.61%

Ex 0.91% 0.91% 64.63% 0.91% 0.91% 0.91%
Filled 0.71% 0.71% 1.53% 0.71% 0.71% 1.43%

Average 3.52% 10.37% 55.39% 2.92% 6.23% 4.32%

Classifier
Sample Set Check Ex Filled Blend Separate Style-based

Check 2.58% 1.68% 0.00% 3.67% 1.68% 2.48%
Ex 3.43% 2.35% 0.00% 3.43% 3.43% 2.40%

Filled 51.35% 43.97% 14.25% 51.35% 46.50% 14.68%
Average 19.12% 16.00% 4.75% 19.48% 17.20% 6.52%

4. Conclusions

Style-based ballot mark recognition exploits voter con-
sistency to boost accuracy. In this paper, we tested the tech-
nique on a focused dataset, but we believe that its potential
for improving the processing of hand-marked paper ballots
is enormous. The result should be a better realization of
“voter intent,” the legal definition of what constitutes a vote.

The error rates we report are relatively high because the
testing samples are intended to be hard. Moreover, our cur-
rent implementation does not include the common sorts of
pre-processing steps one would find in a more complete im-
plementation. We plan to examine different classifier strate-
gies and feature sets to raise mark recognition to an accept-
able level for voting applications.

From Figure 1, we can see that noise has style, too. One
person’s attempt to cancel a vote may look quite similar to
another person’s attempt to record a vote. In this case, style-
based recognition may perform even better, for it excels at
disambiguating conflicting classes of different styles. We
plan to collect data to confirm this hypothesis.

We may also try varying the field length to determine if
there is an optimal value. As we have noted, there appears to
be no need to pay the exponential computation time penalty.
Finally, we conclude by encouraging the document analysis
community to consider ballot reading as a worthy research
topic with tremendous social importance. The PERFECT
project has as its goal the development of more accurate
mark recognition algorithms for op-scan systems [6, 9].
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