Life @ Lehigh Lehigh Life Days • April 12, 2006

Dan Lopresti Associate Professor Office PL 404B dal9@lehigh.edu

Bioinformatics

What is bioinformatics?

Application of techniques from computer science to problems from biology.

 Computer Science
 Bioinformatics

 Bioinformatics
 Biology

Why is it interesting?

- Important problems.
- Massive quantities of data.
- Desperate need for efficient solutions.
- Success is rewarded.

Motivation

"Biology easily has 500 years of exciting problems to work on." *Donald Knuth*

By developing techniques for analyzing this data, we can attempt to understand genetic nature of diseases, evolution of life itself, etc.

http://cmgm.stanford.edu/biochem218/

Opportunity

Genetic identity of most organisms is encoded in long molecules made up of four basic units, the nucleic acids:

- (1) Adenine,
- (2) Cytosine,
- (3) Guanine,
- (4) *Thymine*.

To first approximation, DNA is language over 4 character alphabet, {A, C, G, T}.

http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

Genomes

Complete set of chromosomes that determines an organism is known as its *genome*.

0 0 0 0		GenBank Release 121.0 — December 15, 2000			
		Species	Haploid genome size	Bases	Entries
Us ——		Homo sapiens	3,400,000,000	6,702,881,570	3,918,724
		Mus musculus	3,454,200,000	1,291,602,139	2,456,194
		Drosophila melanoga	aster 180,000,000	487,561,384	166,554
		Arabidopsis thaliana	100,000,000	242,674,129	181,388
		Caenorhabditis elega	ins 100,000,000	203,544,197	114,553
Poaceae Mus musculus Comparing Comparing Comparing Comparing Comparing Comparing		Tetraodon nigrovirid	is 350,000,000	165,539,271	188,993
		Oryza sativa	400,000,000	125,948,974	151,411
		Rattus norvegicus	2,900,000,000	106,344,366	218,598
	E C M T	Bos taurus	3,651,500,000	71,215,626	159,473
		Glycine max	1,115,000,000	62,817,102	141,802
		Medicago truncatula	400,000,000	50,991,920	104,535
		Trypanosoma brucei	35,000,000	49,855,996	91,334
		Lycopersicon esculer	ntum 655,000,000	49,415,566	97,112
		Giardia intestinalis	12,000,000	47,639,714	54,328
		Strongylocentrotus purp	900,000,000 900,000	47,590,936	77,532
		Entamoeba histolytic	ca —	44,522,016	49,938
		Hordeum vulgare	<u></u>	44,489,692	57,779
	Danio rerio	1,900,000,000	40,906,902	83,726	
	Y	Zea mays	5,000,000,000	36,885,212	77,506
http://www.cbs.dtu.dk/databases/DOGS/		Saccharomyces cerev	visiae 12,067,280	32,779,082	18,361
http://www.nsrl.ttu.edu/tmot1/mus_musc.htm					

http://www.oardc.ohio-state.edu/seedid/single.asp?strID=324

Comparative Genomics

http://www.ornl.gov/sci/techresources/Human_Genome/graphics/slides/ttmousehuman.shtml

Reading DNA

This is known as *Sanger sequencing*.

http://www.apelex.fr/anglais/applications/sommaire2/sanger.htm http://www.iupui.edu/~wellsctr/MMIA/htm/animations.htm

Gel electrophoresis is process of separating a mixture of molecules in a gel media by application of an electric field. In general, DNA molecules with similar lengths will migrate same distance.

First cut DNA at each base: A, C, G, T. Then run gel and read off sequence: ATCGTG ...

Reading DNA

Original sequence: ATCGTGTCGATAGCGCT

Sequencing a Genome

Unfortunately, current sequencing technologies can only read 700 nucleotides at a time.

For genomes, we use *shotgun sequencing*, which breaks a chromosome into overlapping short sequences which must then be reassembled.

It's kind of like putting together a jigsaw puzzle with millions of pieces (a lot of which are "blue sky").

 $http://occawlonline.pearsoned.com/bookbind/pubbooks/bc_mcampbell_genomics_1/medialib/method/shotgun.html$

A simple model of DNA assembly is the *Shortest Supersequence Problem*: given a set of sequences, find the shortest sequence *S* such that each of original sequences appears as subsequence of *S*.

Look for overlap between *prefix* of one sequence and *suffix* of another:

--ACCGT--

- ---CGTGC
- TTAC----

TTACCGTGC

Sketch of algorithm (procedure for assembling fragments):

- Create an *overlap graph* in which every node represents a fragment and edges indicate overlap.
- Determine which overlaps will be used in the final assembly: find an optimal collection of paths in overlap graph.

- Look for paths of maximum weight: use *greedy* algorithm to select edge with highest weight at every step.
- Selected edge must connect nodes with in- and out-degrees <= 1.
- May end up with set of paths: each corresponds to a contig.

DNA Microarrays

- Allows simultaneous measurement of the level of transcription for every gene in a genome (gene expression).
- Differential expression, changes over time.
- Single microarray can test ~10k genes.
- Data obtained faster than can be processed.
- Want to find genes that behave similarly.
- A pattern discovery problem.

green = repressed red = induced

Visualizing Microarray Data

From "Cluster analysis and display of genome-wide expression patterns" by Eisen, Spellman, Brown, and Botstein, Proc. Natl. Acad. Sci. USA, Vol. 95, pp. 14863–14868, December 1998

Clustering Microarray Data

K-means clustering is one way to organize this data:

- Given set of *n* data points and an integer *k*.
- We want to find set of *k* center points that minimizes mean-squared distance from each data point to its nearest cluster center.

Sketch of algorithm:

- Choose *k* initial center points randomly and cluster data.
- Calculate new centers for each cluster using points in cluster.
- Re-cluster all data using new center points.
- Repeat second two steps until no data points are moved from one cluster to another or some other convergence criterion is met.

Clustering Microarray Data

- Pick k = 2 centers at random.
- Cluster data around these center points.

• Re-calculate centers based on current clusters.

From "Data Analysis Tools for DNA Microarrays" by Sorin Draghici.

Clustering Microarray Data

• Re-cluster data around new center points.

• Repeat last two steps until no more data points are moved into a different cluster.

From "Data Analysis Tools for DNA Microarrays" by Sorin Draghici.

Building the "Tree of Life"

Scientists build phylogenetic trees in an attempt to understand evolutionary relationships.

Note: these trees are "best guesses" and certainly contain some errors!

Why Study Bioinformatics?

- Still many urgent open problems ⇒ lots of opportunities to make fundamental contributions (and become rich and famous).
- Stretch your creativity and problem-solving skills to the limit.
- Join a cross-disciplinary team work with interesting people.
- Participate in unlocking the mysteries of life itself.
- Make the world a better place.

My Advice on Colleges

- Gather all the data. Then trust your instincts.
- Whatever your decision, college will probably be the best years of your life take full advantage of it.
- Beyond the obvious criteria, look for opportunities to become engaged in cutting-edge research, whatever your major.
- Seek out projects that will attract attention and have an impact.

Breaking a Civil War Secret Code

The Civil War letter ...

Q. mi Cluston SE PAN, and lost 1 The abiden adid Key constant man. harty may 11 http://digital.lib.lehigh.edu/remaii larace gime and men Frederick mill without the morning how go gill atrancimention nothing cattle by two in near rig aboverombies be doubt.

... encrypted – not yet broken.

The players ...

Major General Fitz-John Porter author of letter, blamed for Union loss at Second Bull Run, court-martialed in 1863

Major General George McClellan recipient of letter

Anson Stager inventor of cypher system and later an early leader in U.S. telecommunications

Breaking a Civil War Secret Code

The news story ...

The current software tool ...

... promising, but needs work.

... finale yet to be written.

Hint: I'm looking for help ...

Better Electronic Voting

E-voting has generated some controversy recently ...

Maryland votes "yes" for paper trail ... while Pennsylvania votes "no."

🙆 Internet

🖌 🛃 Go 🛛 Links 🎽

Better Electronic Voting

E-voting: what's the right answer?

- Take a critical look at all aspects of the problem.
- Examine both security and usability issues.
- Build a prototype of an e-voting system that includes a reliable Voter Verified Paper Audit Trail (VVPAT).
- Some critics claim it can't be done: we disagree.
- Yet another undergraduate project.
- Of fundamental importance because our demoncracy depends on fair and transparent elections.

Diebold e-voting system

Evaluating Biometric Security

- Cryptographic key broken into shares and mixed with random data.
- Features extracted from user's speech or handwriting.
- Only input from true user will select correct shares to yield proper key.

Evaluating Biometric Security

Biometrics may be vulnerable to attacks using generative models.

- Some current systems at risk.
- Results for handwriting show machine can equal performance of skilled human forger:

Use our experience to improve biometrics, increase security.

Last but not least ...

Why attend Lehigh? Because this is a great place to be a student!

Thank you!

