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This paper describes WORD2HTN, a new approach for
learning hierarchical tasks and goals from plan traces in plan-
ning domains. Our approach combines semantic text analy-
sis techniques and subgoal learning in order to produce Hier-
archical Task Networks (HTNs). Unlike existing HTN learn-
ing algorithms, our system uses semantics and similarities of
the atoms and actions in the plan traces. WORD2HTN first
learns vector representations that represent the semantics and
similarities of the atoms occurring in the plan traces. Then
the system uses those representations to group atoms occur-
ring in the traces into clusters. Clusters are grouped together
into larger clusters based on their similarity. These groupings
define a hierarchy of atom clusters. These atom clusters help
to define task and goal hierarchies, which can then be trans-
formed into HTN methods and used by an HTN planner for
automated planning. We describe our algorithm and present
our experimental evaluation.
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Introduction

Hierarchical Task Network (HTN) planning is a
problem-solving paradigm for generating plans (i.e.,
sequences of actions) that achieve specified tasks.

Tasks are symbolic representations of activities such as
achieve goal g, where g is an standard goal. Tasks
can be more abstract activities such as patrol an
area. An HTN planner recursively generates a plan by
decomposing tasks of higher level of abstraction into
simpler, more concrete tasks. The task decomposition
process terminates when a sequence of actions is gen-
erated. The theoretical underpinnings of HTN planning
are well understood [5] and this planning paradigm has
been shown to be useful in many practical applications
[13,9,2,12].

HTN planners require primarily two knowledge ar-
tifacts: planning operators (generalized definitions of
actions) and methods (descriptions of how and when to
decompose a task into sub-tasks). While operators are
generally accepted to be easily elicited in many plan-
ning domains, methods require a more involved and
time-consuming knowledge acquisition effort: crafting
methods requires reasoning about how to combine op-
erators to achieve the subgoals and tasks. Thus auto-
mated learning of HTN methods has been the subject
of frequent research over the years. Most of the work
on learning HTNs use structural assumptions and addi-
tional domain knowledge explicitly relating tasks and
goals to make goal-directed inferences to produce hi-
erarchical relationships [3,7,23].

This paper describes a new learning method, called
WORD2HTN, for learning hierarchical goal relation-
ships (to subgoals) and HTN methods in a planning
domain as well as the tasks and their decomposition
that accomplish those goals. WORD2HTN takes plan
traces as a sequence of words, where each word can
be an action or atom. The algorithm takes as input a
set of sentences that represent plan traces and uses se-
mantic text analysis to find clusters of atoms, and ac-
tions based on semantic similarities. We developed a
new hierarchical task learning approach that identifies
sub-goals in the input plan traces from the outcomes of
semantic-based clustering.

We report our implementation of the WORD2HTN
approach and experimentally demonstrate it in a logis-
tics planning domain. In our experiments, we measure
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the maximum tree depth of the task hierarchies that
generate the solutions for our test problems with the
learned HTN methods. We compare the maximum tree
depth of the HTN methods by WORD2HTN with trees
made from right-recursive combination of actions in
the optimal solutions to the test problems. HTN max-
imum tree depth is an important measure that shows
how well the learning process captures goal-subgoal
structures and hierarchies. The maximum tree depth is
a measure that would be longer (worse) if the learning
process failed to divide the goal into appropriate sub-
goals. If it was imbalanced, then many of the subgoals
or tasks would end up on one branch and the maximum
tree depth would be longer. The goal structure was de-
termined from bridge atoms (which will be formalized
in the following preliminaries section).

Our results show that after being trained on a small
(not exhaustive) set of plan traces, WORD2HTN learns
HTN methods that: (1) Solve all of our randomly-
generated test problems and (2) have a shorter maxi-
mum tree depth compared to those in right-recursive
task hierarchies. The results demonstrate not only ef-
ficient planning, but also a more effective learning of
goal structure.

1. Preliminaries

We use standard definitions from the planning liter-
ature, such as objects, atoms, actions, and state vari-
ables [6]. We will refer to these constructs as planning
words. They correspond to the words in the plan traces.
We summarize our definitions for planning words be-
low.

An action is a primitive task with arguments that
are constant (e.g., with no variables). An action can
change the state of the problem when it is applied. Each
action has preconditions and effects. We use state-
variable representations. The preconditions and effects
of an action are sets of atoms. For example, Move
Truck1 Location1 Location2 is an action that has
the precondition Truck1 in Location 1 and the ef-
fect Truck1 in Location2.

An atom is a literal, such as Truck1 in
Location2. All the literals in this work were atoms.
These atoms indicate changes in the variables such
as from Truck1 in Location2 to Truck1 in
Location3.

A state is a collection of literals, indicating the cur-
rent values for properties of the objects in the domain.
A goal is a conjunction of literals. A plan trace for

a state-goal (s,g) pair is a sequence of actions that,
when applied in s, produces a state that satisfies the
goal g. We represent a plan trace, used for training, as
a sequence of (preconditions, action, effects) triples:
p0 a0 e0 p1 a1 e1 . . . pn an en, where pi and ai are the
preconditions and effects of ai. Usually (e.g., [7,3]),
HTN learners represent plan traces as sequences of
state-action pairs: s0 a0 s1 a1 . . . an sn+1. These HTN
learners also assume the actions are given. Without loss
of generality, we are simply taken the additional step
of identifying for each ai, how its preconditions are
achieved in si and how its effects are satisfied in si+1.
We found that by trimming the conditions from the
states (i.e., those not mentioned in the preconditions or
effects of the immediately preceding or succeeding ac-
tion), WORD2HTN learns more accurate HTN mod-
els.

As an example, the plan trace to transport package1
from Location1 to Location2 could be as follows:

Preconditions package1 in Location1,
Truck1 in Location1
Action Load package1 Truck1 Location1
Effects package1 in Truck1,
Truck1 in Location1

Preconditions Truck1 in Location1,
Truck1 canReach Location2
Action Move Truck1 Location1 Location2
Effects Truck1 in Location2

Preconditions package1 in Truck1,
Truck1 in Location2
Action Unload package1 Truck1 Location2
Effects package1 in Location2,
Truck1 in Location2

In the previous example, the goal only consists of a
single atom, namely Package1 in Location2. If the
goal also requires Truck1 to be in Location2, then the
goal would be the conjunction of two atoms Package1
in Location2 and Truck1 in Location2. In the ac-
tual plan traces, that were fed into our algorithm, there
was no labeling of components as actions, precondi-
tions, and effects. These were added in the example for
readability.

An Annotated Action Sequence (AAS) is a triple
(π, p,e), where π is a sequence of actions, p is the set
of preconditions necessary at the initial state for π to
execute successfully, and e is the set of effects in the fi-
nal state that result from the actions in the plan. p and e
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must satisfy the following two conditions: (1) The first
action in π is applicable in p, the second action in π

must be applicable to the set of atoms resulting from
applying the first action in π to p, and so forth. (2) e
is the resulting set of atoms after applying the last ac-
tion in π. Our algorithm automatically infers these an-
notated sequences either directly from the input traces
or by joining previously inferred AAS.

Our algorithm uses a clustering procedure on the
atoms occurring in the traces, grouping them and iden-
tifying what we call bridge atoms. Given two collec-
tions of atoms A and B, and a similarity metric sim on
pairs of atoms, a bridge atom aAB between A and B
is an atom in either A or B that is most similar to the
atoms in the other set as per the following definition:

aAB = max(argmaxa∈AΣb∈Bsim(a,b),

argmaxb∈BΣa∈Asim(a,b))
(1)

The term bridge atom was chosen to reflect that aAB
is the nearest element approaching the two sets. If more
than one atom satisfies this condition, one is chosen
arbitrarily.

A task is a representation of an activity. Formally,
we define a task as t(pre, g) where t is a pair of the
form (name args) such that name is a symbol and
args is a list of variable or constant symbols. pre is a
conjunction of literals denoting the preconditions that
must be met to start the task and g is a conjunction of
literals denoting the goals that the task achieves when
it is accomplished.

A task can be either primitive or nonprimitive. A
primitive task corresponds to a planning operator and
a ground instance of it can be executed directly in the
world. A non-primitive task is a task that needs to be
decomposed to subtasks in order to achieve it.

In this paper, we restrict ourselves to the Ordered
Task Decomposition formalism of HTN planning [15],
adopted by HTN planners such as SHOP [15] and
SHOP2 [14]. An HTN method describes how to de-
compose non-primitive tasks into simpler ones. For-
mally, a method is a triple m = ( t, pre,subtasks),
where t, the head of the method, is a non-primitive
task; pre is a conjunction of logical literals denot-
ing the preconditions of the method; subtasks is a
totally-ordered sequence 〈t1, t2, . . . , tk〉 such that each
tk is a task. A method m is applicable to a state s, if
the method’s preconditions are satisfied in s. Each sub-
task’s goals can be the subgoals required in order to

achieve the goal literals specified in the top-level task
that the method tries to achieve by the decomposition.

An HTN planning problem is a tuple (s0,T,O,M ).
s0 is the initial state, T is the initial sequence of tasks to
be accomplished, O is a finite set of planning operators,
and M is a finite set of HTN methods. A solution to
an HTN planning problem is a plan π such that T is
an abstraction of π given s0 [15,14].This would mean
that the plan π would satisfy all the goal atoms of the
tasks in T. If there is a solution for the HTN planning
problem P, then we say that P is solvable.

We formalize activity learning, i.e., learning both se-
mantics and structures of activities, as a problem of
learning HTN methods. Formally, we define an HTN
learning problem as a tuple of the form (P ,O,R ),
where P is a finite set of plan traces, O is the set of
planning operators, and R is the set of all atoms in
the domain. A solution for an HTN learning problem
is a pair (T ,M ) where T is the set of semantic tasks
learned for the planning domain and M is a set of HTN
methods generated to solve those tasks.

2. Learning Vector Representations for Plan
Components

The WORD2HTN algorithm learns embedded vec-
tor representations of the atoms and actions in the in-
put plan traces. For this purpose, we use a technique
from Natural Language Processing (NLP), called Word
Embeddings. Word embeddings are vector representa-
tions of a word in an N-dimensional space. The words
from the input sentences (plan traces) are learned as
distributed vectors using WORD2VECTOR [11]. Their
vector representations are distributed in such a way
that words having shared contexts are more aligned,
than those that are do not share context. Here, context
means the words before and after the word.

WORD2VECTOR [11] uses a single hidden layer
neural network that is trained to generate the words’
vector representation. WORD2VECTOR takes as its in-
put a corpus of text. the resulting vector are typically
represented in N dimensions. N is a parameter, typ-
ically set in the hundreds. The actual value can be
chosen using heuristics and/or experimentally. Each
unique word in the corpus will have a corresponding
vector in the N-dimensional space.

To illustrate how atoms and actions as words embed-
dings might look, let us consider the atoms Package1
in Location1 and Package1 in Truck1. Their re-
spective vectors in a 3-dimensional space could be v1
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and v2 as shown in Table 1 (this is a simplified exam-
ple; as indicated before vectors have hundreds of di-
mensions). The dimensions can be seeing as abstract
representations of relationships. So if two vectors have
close values in one dimension, then it indicates a de-
gree of similarity or relationship. In this example, all
but the last dimension, are close in value. This could
happen when the two atoms occur frequently in sim-
ilar contexts. The WORD2VECTOR algorithm would
slowly adjust their vector representations from their
initial random values by adjusting their values closer
to one another.

When the dimensions of the vector representa-
tions of two embeddings (e.g., v1 and v2) are closely
aligned, their cosine similarity is higher. The cosine
similarity is defined as the dot product of the normal-
ized vectors as in Equation 2. In the example, v1 and
v2 have close values on two dimensions but not in the
third. This can happen, for example, when they co-
occur in many but not all of the contexts where either
one occur. As a result, their embeddings are pulled in
different directions.

The dimensions of the vector representations have
no specific meaning or interpretation. Instead, they im-
plicitly encode relationships of the problem space.

CosineSim =
~v1 · ~v2
‖v1‖‖v2‖

(2)

Using the cosine as a measure of similarity is stan-
dard in Natural Language Processing. A higher value
of similarity would result if both words (atoms or ac-
tions) are found in many similar contexts. For exam-
ple, if many traces have the Package1 in Location1
and then the load-truck action is executed to result in
Package1 in Truck1, then those two words share a
lot of context. So, their vector representations will be
closer together.

The most important parameters needed by
WORD2VECTOR are: the number of dimensions N,
the context window size C, and the learning rate α.
We describe how we set these parameters for our
experiments in the Evaluation section. For now, it is
enough to know what these are to understand how
WORD2VECTOR is used by WORD2HTN. We pass

Vector dim1 dim2 dim3

v1 0.296 0.710 -0.355

v2 0.221 0.774 0.276
Table 1

Example Vector Representations

Fig. 1. Sample Distributed Vector Representations of Components
from Logistics Domain

into WORD2VECTOR, the plan traces viewing each
atom or action as a word. WORD2VECTOR first
converts every word of the sentence to be encoded
using one-hot encoding. This means every word is
converted into a long vector whose size V is the total
number of unique words in the data set (the vocabulary
of the data). Only one dimension of the long vector
for each word in one-hot encoding is set to 1. The
vector position set to 1 is unique for every word and
represents that word. This is the input form passed
into the neural network. The edge weights of the
neural network are randomized at the start. During
each iteration of the neural network during training,
the neural network adjusts the edge weights by the
specified learning rate α. The updates are done such
that the target word and those within its context have
closer vector representations. How this is done and
represented in the neural network depends on which
architecture is used. There are two common shallow
neural network structures in WORD2VECTORḞirst is
Continuous-Bag-of-Words (CBOW) and the other is
Skip-Gram. [11]. These are two ways of relating a
word to it’s context, and that determines the network
structure We use the Skip-Gram architecture of
WORD2VECTOR in our WORD2HTN algorithm (see
Figure 2; the left is the CBOW and the right is the
Skip-gram structure).

The input for Skip-Gram is the single target word
xk, and the output of the neural network is compared to
the each of the words that makes up the current context
in which the target word was found (y1k,y2k, ....yCk).
So the single input word’s representation in the N-
dimensional model should be close to the representa-
tions of the words in it’s context. The error is back
propagated to updated the edge weights.
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Fig. 2. Comparison of CBOW and SG Neural Network Configurations for WORD2VECTOR. Figure from [19]; used with author’s permission

The working of the neural network can be inter-
preted and better understood in the following way.
First, the neural network projects each word’s one-hot
encoding onto an N-dimensional space. To understand
how this is happening, let us look at a simple and
smaller network. Let us say that the hidden layer has
N = 3 nodes, and this means the model is building vec-
tor representations of 3 dimensions. For our example,
let us set the vocabulary size V as 5. The value of each
node in the hidden layer, is the value in one of the N
dimensions. The input edge weights are of dimensions
5x3. Each column can be seen as one of the basis vec-
tors of the N-dimensional space, but in the dimensional
space of the input (one-hot encoding space). For ex-
ample, the first dimension’s basis vector representation
in the V -dimensional space of the input could be of
the form [0.1,0.02,0.5,0.3,0.7]. The input word(s) is
in one-hot encoding format, so Package1 in Truck1
could be [0,1,0,0,0]. When an input word is multiplied
with the edge weights, what we are really doing is tak-
ing the dot-product of the input word, with each of
the basis vectors of the N-dimensional semantic space.
This is the projection of the input word onto each of
the basis vectors. So the values of the nodes h1,h2,h3
in our example would be the representation of the word
Package1 in Truck1 in the 3 dimensional space.

In SG network, the hidden layer’s values would be
the projections of the input word. Then, on the out-
put side, the edge weights represent the N-dimensional
representation of each word of the vocabulary. So, col-
umn 1 of the output weights would be the vector rep-

resentation for word 1 of the vocabulary. In our sim-
plified example, the edge weights would be in a 3x5
matrix. So when the hidden layer’s values are multi-
plied by the output edge weights, we are taking the dot
product of a vector in the 3-dimensional model with
the 3-dimensional representation of each of the words
in the vocabulary. If two vectors are similar (closer to-
gether), the dot product will be greater. So in our ex-
ample, the output could be a 5-dimensional vector like
[0.2, 0.7, 0.8, 0.1, 0.1], indicating that the model pre-
dicts a higher similarity with the vocabulary word at
positions 2 and 3. Finally, we run a softmax function
on the output to get the likelihood of each output word
being semantically related (by being co-contextual). In
Skip-Gram, we compare the expected output with the
actual result which is the words in the context win-
dow. So if the context window is 3 words wide, then
we compare the output to the one-hot encoding of the
3 words. The error is the averaged difference between
the expected output and the one-hot encoding of each
of the words. The error is then back-propagated to up-
dated the edge weights.

At the end of training the WORD2VECTOR com-
ponent of our algorithm, the output is the set of vec-
tor representations of the words. We can analyze them
for relationships. As stated, the similarity between two
words is defined by cosine similarity (1). To get a vi-
sual idea of how vector alignment and similarity would
look like, see Figure 1 again, which illustrates how
similar vectors will be more closely aligned, and thus
have a greater cosine similarity (dot-product) of their
vectors.
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Fig. 3. Hierarchical Agglomerative Clustering of actions within a city for Logistics domain. Some atoms and objects are removed from the x-axis
for visibility

3. Learning Goal and Action Hierarchies

After the vector representations for the state atoms
and actions in the planning traces are learned,
WORD2HTN performs Hierarchical Agglomerative
clustering [22] of all of the atoms and actions by
their semantic similarity (cosine distance). Hierarchi-
cal Agglomerative clustering (HAC) is a bottom-up
clustering method where vectors and groups of vec-
tors (called clusters) are repeatedly grouped with other
clusters based on their similarity until a final cluster
of all elements is reached. Vectors and groups of vec-
tors that have a higher cosine similarity (lesser co-
sine distance) to each other, are grouped/clustered to-
gether. Less similar vectors and clusters of vectors are
grouped later. The result of HAC clustering is a link-
age matrix that stores the information of how the vec-
tors were clustered together and the hierarchy of clus-
ters thus formed. For example, if the first two atoms
to be grouped together are Package1 in Location1
and Package1 in Truck1, then the first row of the
linkage matrix will have the ids of these atoms, the co-
sine distance, and the id of the cluster that the atoms
were put into. The second row of the linkage matrix
will contain the pair of the second closest atoms, and
so on. The algorithm will also merge clusters of atoms
into larger clusters. The algorithm groups clusters by
using the minimum distance between any word of one
cluster with that of the other. The last entry of the link-
age matrix contains a cluster with all the atoms and
actions.

Since the linkage matrix stores the hierarchy of atom
and action clustering, it is used in identifying bridge
atoms, which in turn is used to elicit the tasks and sub-
tasks. We will describe this process in Section 4.

Figure 3 illustrates part of the hierarchy learned by
HAC in WORD2HTN for the Logistic domain. Only
the operators are shown for the sake of clarity. The hi-
erarchy learned from the plan traces, matched what we
expected from the training data based on the problem
space. For example, all the actions relating to trans-
porting the package within a city (by truck) were all
grouped together. The actions related to moving the
package between cities (by airplane) were in another
lower level cluster.

4. From Action and Atom Hierarchies to HTN
Methods for Planning

The algorithm in Figure 4 describe the steps for
learning HTN methods from vector representations. It
receives as input a collection of traces T . From these
traces, WORD2HTN learn the embeddings E of the
actions and atoms in the traces. Using the traces and
embeddings, the action annotated sequences (AAS)
are learned (Line 2). Finally from the learned AAS,
WORD2HTN can extract the methods (lines 3 and 4).

The algorithm in Figure 5 learns the AAS. Lines 1
to 6 handle the base case which we will discuss later.
The following is an overview of the steps to calculate
AAS:
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LEARNHTNS(T )

1 E← getEmbeddings(T)
2 AAS← GETALLANNOTATEDSEQUENCES(T,E)
3 for each k ∈ AAS do
4 MakeMethods(k, /0)

Fig. 4. High-level algorithm for learning the HTNs. It receives as
parameter the collection of training traces, T

GETALLANNOTATEDSEQUENCES(T,E)

1 if numberOfActions(T) = 1 then
2 a← getAction(T)
3 annSeq← (a,a.preconditions,a.effects)
4 return annSeq
5 elseif (numberOfActions(T) == 0 ) then
6 return /0

7 L← HAC(T,E)
8 B← getBridgeAtoms(L)
9 for each b ∈ B

10 currentTraces← findTraces(b)
11 if currentTraces ∈ SeenTracesSet
12 continue; \\back to for loop
13 SeenTracesSet = SeenTracesSet ∪ currentTraces
14 (Ltraces, Rtraces)←

splitTraces(currentTraces,b)
15 allLeft← getAllAnnotatedSequences(Ltraces,E)
16 allRight← getAllAnnotatedSequences(Rtraces,E)
17 allAnnSeq← /0

18 for (La,Ra) ∈ allLeft × allRight
19 if noConflict(La,Ra) then
20 n← merge(La,Ra)
21 AllAnnSeq← AllAnnSeq ∪ n
22 return allAnnSeq

Fig. 5. Procure to generate all annotated action sequences (AAS). It
receives as input the training traces T and the word embeddings E

1. Using HAC, cluster the actions and atoms using
cosine similarity; the goal and sub-goal atoms are
clustered in this step as well (line 7).

2. Select a bridge atom from the last clustering step
and divide the plan traces that contain this atom
(lines 8 and 9). This will result in two sets of
sub-traces. One set is traces before the bridge
atom occurs (i.e., ”to the left”), and the other af-
ter the bridge atom occurs (i.e., ”to the right”;
line 14). The bridge atom is always included in
the left trace. Line 10 selects all traces having

the bridge atom b. Not all traces may contain the
same bridge atom, and those traces that do not
contain the bridge atom will be covered in a sub-
sequent iteration of the algorithm (the for loop in
lines 9-21). The for loop part of the algorithm is
explained later in this section.

3. For the left and right sub-traces, The process is
repeated recursively (lines 15 and 16) until the
algorithm reaches plan traces with a single action
or no action (this is the base case in lines 1 to 6).
If there is only one action, then the AAS is con-
structed as indicated line 3. If there are no actions
in the traces, then the algorithm returns an empty
AAS (line 6)

4. When the algorithm returns from the base case,
it then goes back up the recursion hierarchy
and repeatedly compose larger AAS from lower-
level AAS (lines 18-22). This composition pro-
cess repeats until the top-level of the hierarchy is
reached.

We now describe the algorithm in Figure 5 in more
detail.

HAC clustering. HAC clustering (line 7) is done to
determine what actions are semantically related to each
other. This grouping aims at dividing the plan trace into
meaningful sections. The result of HAC clustering is
the linkage matrix L, which was previously described
in section 3.

Selecting Bridge Atoms and Division of Traces. From
the output of the first step of the HAC clustering, the
algorithm can elicit a hierarchy of bridge atoms (line 8)
to divide the plan traces into recursively smaller parts.
This results in dividing the goal of a plan trace into
sub-goals which are achieved in the divided parts of
the trace. At this step in the algorithm, it takes a top-
down approach to decomposing plan traces with bridge
atoms (lines 9 to 14). In order to select the bridge atom,
the algorithm starts with the highest/last clustering step
in the linkage matrix and look at the two smaller clus-
ters that were combined to make it. From the words in
the two smaller clusters U and V , the bridge atom is
found (which is an atom or an action in the traces) aUV
using cosine similarity as in Equation 1.

The bridge atom aUV is the state atom or action
most similar to the words in the other cluster. Such
a bridge atom would divide plan traces more evenly
(closer to the middle) if there is a clear separation or
hierarchy in the domain itself. For our running ex-
ample of transportation within a city, a bridge atom
could be package1 in Truck1. It appears in traces
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close to package1 in Location1, as well as close to
package1 in Location2 and is a bridge atom that
the trace has to go through. Another example for a
larger plan trace is transporting the package across two
cities. The package would have to go through an air-
port for transporting the package to different cities. The
bridge atom would be package in AirportCity1.
This atom would be similar to the atoms in city1 and
those of city2.

Using the bridge atom selected, WORD2HTN di-
vides all of the training plan traces into two sets of
sub-traces, those appearing before the bridge atom (”to
the left”), and those appearing after (”to the right”;
line 14). WORD2HTN always chooses the first in-
stance/appearance of the bridge atom in the traces
when dividing the traces (line 14). This was done for
simplicity and speed. This worked fine for our experi-
ments, but we think its better to select the median in-
stance of the bridge atom (if there is more than one
instance in the same trace). Some plan traces will not
have the bridge atom, and will be ignored for that it-
eration of the algorithm. However, the ignored traces
will be covered in a later iteration (iteration starting at
line 9). After a selected bridge atom divides the plan
traces into two sets of subtraces, WORD2HTN per-
form HAC clustering on the atoms and actions in each
of the two sets of subtraces (left and right) separately.
This is done when WORD2HTN recursively call the
function GetAllAnnotatedSequences from lines 15 and
16. In the recursive call, line 7 performs HAC clus-
tering only for the atoms and actions in the subtraces.
From the new linkage matrix of the HAC output, the
algorithm selects a lower-level bridge atom using the
same process as before. This bridge atom will divide
the smaller traces into two sets again.

Building Annotated Action Sequences. The recursive
trace partitioning is done until the base case is reached,
in which all of the remaining plan traces have a single
action or no action (only atoms). This is captured in
lines 1 to 6 of Figure 5. After the base case is reached,
the algorithm creates an AAS (with only one action or
none at the lowest level). The action is stored with its
preconditions and effects into the AAS data structure
(line 3). If there is no action, then nothing is stored in
the created AAS (lines 5 and 6). In either case, a pos-
sibly empty, AAS to the parent (i.e., the one making
the recursive call either in Step 15 or Step 16). When
both the left and right child cases have returned non-
empty AAS, then the AAS are merged or composed to-
gether to make a larger AAS as follows: if either side
returns more than one AAS, then the algorithm creates

AAS by merging pairs, one AAS from the left and right
branches of the decomposition (line 18 to 20). The al-
gorithm chooses one from each branch and see if they
can be composed together by first checking for con-
flicts (line 19).

The larger (composed) AAS will contain actions in
order, with the left AAS actions first, followed by the
actions from the right AAS. It will also contain the net
preconditions and net effects of the actions in it. This
would be successful and saved only if there are no con-
flicts between the preconditions and effects of both the
left and right child AAS (line 19). If there are con-
flicts, that particular composition of left and right ac-
tion sequences will be dropped, and the algorithm will
try other combinations. If no combinations are possi-
ble, an empty set will be returned to the parent level.
While the AAS are merged into larger ones, the algo-
rithm also keeps track of which specific annotated ac-
tions sequences were merged (by a unique ID) to get
the larger one. This information is tracked separately in
a map, and will help in converting the AAS into meth-
ods in the final part of the algorithm.

After merging the AAS returned by the child traces,
WORD2HTN checks if there are any other bridge atom
from the linkage matrix for the same set of traces in the
parent level. WORD2HTN looks at the bridge atoms
from the next row of the linkage matrix (not just the
top/last merge step). A new bridge atom is considered
if the traces that it is found in contain a different set of
actions and atoms than what was seen in the previous
iteration of this trace set (checked in line 11). If it is a
different set of traces, then the process will repeat with
the new bridge atom to learn a new AAS. If there are no
more bridge atoms to be considered, WORD2HTN re-
turns the AAS(s) composed at this level to the parent
making the recursive call. The composition process of
annotated task sequences is repeated up the hierarchy
of divided plan traces. It will terminate when the algo-
rithm reaches the level that contains all the plan traces,
and when there are no more bridge atoms to consider.

HTN Methods from AAS. Figure 6 shows The final
part of the algorithm is to generate methods from the
AAS. The goals of the tasks and subtasks at the parent
level can be defined by the common objects across the
child action sequences. The AAS at any level contains
all the actions, preconditions and effects of its children.
Finally the AAS are transformed into semantically-
annotated methods for HTN planning. The base case is
handled in lines 1 to 4. Lines 5 to 10 identify the com-
mon objects across the next lower level’s AAS. This
is done in lines 5 to 10. The variable k is the action
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sequence made by ordering the left child AAS actions
first, followed by the right child’s actions (line 7). Af-
ter determining k and C, the algorithm can now get the
total effects E and net preconditions P of the current
AAS (lines 11 and 12). The task of the method made
from the current AAS is defined as a string with the
prefix AchieveGoal followed by the atoms in the ef-
fects E but filtered such that only those atoms which
are predicates of the objects in C will define the task
(line 13). The precondition of the method is also in-
ferred by filtering the total set of preconditions by the
objects in C (line 14). The subtasks for the method
are the tasks of the child AAS, and are returned when
the algorithm calls MakeMethods on them (lines 18
and 19). Notice that a separate set of common objects
C2 are obtained in line 17, which is passed down to
the child AAS. These become the targetOb jects in the
recursive call. The only case when targetOb jects are
not defined (empty set), is when MakeMethods is first
called in line 4 of Figure 4. Every subsequent recursive
call to MakeMethods have the targetOb jects specified
because the tasks of the lower-level should only refer-
ence objects relevant at the parent level. This way of
defining subtasks guarantees that there is a method to
solve it.

After the subtasks are defined, all the parts of a com-
plete method are defined, and it is added to the library
of learned methods (line 20). The task associated with
the method is returned in line 21. The base case is when
an AAS has no actions or a single action. If it has no
action, then an empty task is returned (lines 1 and 2).
If there is a single action, then the method returns a
task corresponding to the effects of the action (lines 3
and 4). An encapsulating method is made for the sin-
gle action and is added to our library of methods as
well. For the methods, all ground objects are lifted and
treated as variables. Instances with the same name, be-
come the same variable. It is also possible for dupli-
cate methods to be learned. These are to be removed in
post-processing (after learning the methods).

Figure 7 shows an example method made from
AAS. In this example the task is transporting a
Package1 across locations (Loc1 to Loc3). The com-
mon objects across the two children AAS are Truck1,
Package1, and the destination location Loc3. Using the
common objects, the task and precondition atoms are
filtered and used to define the method’s task and pre-
conditions (Figure 7 right). The subtasks transport the
package to Loc3, and then unload it. Recall that the al-
gorithm defines sub-tasks by filtering the effects of the
lower level AAS by the common objects.

MAKEMETHODS(AAS, targetObjects)
1 if numberActions(AAS) = 0 then
2 return /0

3 elseif numberActions(AAS) = 1 then
4 return makeEncapsulatingMethod(getAction(AAS))
5 n← AAS.getLeftActionSequence()
6 m← AAS.getRightActionSequence()
7 k← ExtendActionSequence(n,m); \\k← nm
8 C← targetObjects
9 if targetObjects = /0 then

10 C← getCommonObject(n,m)
11 E← getEffects(k)
12 P← getPreconditions(k)
13 task← ”AchieveGoal(” + filterByObjects(E,C) + ”)”
14 pre← filterByObjects(P,C)
15 subtask← /0

16 method← (:method task pre subtask)
17 C2← getCommonObject(n,m)
18 method.subTasks← method.subTasks ∪

makeMethod(n, C2)
19 method.subTasks← method.subTasks ∪

makeMethod(m, C2)
20 AddToMethodLibrary(method)
21 return task

Fig. 6. Algorithm for constructing the methods. It receives as pa-
rameter the annotated action sequences, AAS, and the target objects,
targetOb jects

Using common atoms to define tasks and subtasks
works for the class of problems in which there is a cen-
tral agent or goal object like a package in transporta-
tion, or a single agent (actuator) in a domain. If this is
not the case, then the algorithm can still work if goal
objects are specified in line 4 of the LearnHT Ns algo-
rithm in Figure 4. In addition, the goal objects must be
passed down (along with the common objects) through
the hierarchy of AAS to define the task and precon-
ditions for all methods. This is a possible avenue for
future research, and we have not yet tested this.

5. Evaluation

5.1. Experimental Domain

We test WORD2HTN in the logistics transportation
domain [21]. In this domain, packages must be trans-
ported between locations. These locations can be ei-
ther in the same city, in which cases trucks are used,
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Fig. 7. Converting an AAS to a method based on common objects

or in a different city, in which case airplanes are used.
In our experimental setup, we used a problem config-
uration consisting of 5 cities and 3 locations within
each city. We generated plan traces for transporting the
package from a randomly-selected location in one of
3 start cities, to a destination location in the remaining
2 cities. We generated the training plan traces for the
logistics domain by using a handcrafted set of meth-
ods. These plan traces were optimal solutions, deliver-
ing the packages with the minimum number of actions.

5.2. WORD2VECTOR Setup

To train the model of vector representations, we
tune parameters of the WORD2VECTOR implementa-
tion for it to learn good vector representations. We used
the Skip-Gram model of WORD2VECTOR. The most
important parameters that were tuned were the follow-
ing:

Semantic Space Dimensions. The dimension size for
the vector representations significantly affects the per-
formance of the model. If there are too few dimensions,
the relationships cannot be distributed effectively in
the dimensional space. Fewer dimensions would also
cause the similarity between vectors to be higher than it
ought to be. It is better to have more dimensions, even
if the training time increases. As a rule of thumb, we
set the dimension size to be twice the number of ob-
jects in the domain. The intuition was that every atom
and action refers to a subset of the objects in the do-
main. Therefore, setting the dimension size as a func-
tion of the number of objects in the domain would give
enough space to distribute the vector representations

for effectively capturing the relationships. In our ex-
periments, there were 26 objects, and so we used 52
dimensions. On the other hand, it must be noted that
the entire wikipedia corpus (containing a majority of
the English vocabulary) was trained with as little as
400 dimensions, and the ensuing model showed strong,
expected semantic relationships for the English words.
Therefore the number of dimensions is a parameter that
need not be set to a high value, and it is likely that 52
dimensions would be enough space to represent rela-
tionships for a much larger vocabulary set of atoms and
actions.

Context Window Size. The number of words around
the target word defines its context. The context win-
dow size ought to be large enough to cover the relevant
atoms. For our experiments, we chose a window size
of 20. The average plan trace length was 102 words
(atoms and actions). We chose to err on the smaller
side with context size, and iterate over the training data
more often. A smaller window size ensures that the
atoms and actions that fall inside the context are actu-
ally relevant to the target word. A larger window size
may gather more noise. If the actions in the plan trace
were mixed such that they resulted in the correct fi-
nal state, but had irrelevant actions interspersed in the
plan trace, then it would hurt the learning of relation-
ships. So if the window size is large, it is more likely
to pick up noise from the training data that are not se-
mantically relevant. An extreme scenario to illustrate
this problem would come from setting the window size
is the size of the entire plan trace. In that case, every
atom’s context is every other atom in the trace and that
would be incorrect.



11

Other parameters. There were other parameters that
we adjusted as well. The learning rate was set to 0.001
in our experiments. This was adjusted experimentally.
Larger values of the learning rate such as 0.1 and 0.5
did not allow the vector representations to settle into
their vector space representations. Large learning rates
cause what is called ’overshooting’. Lastly, we iterated
over the training data 1000 times to help the vector val-
ues converge or settle.

5.3. Experimental Process

The training plan traces were generated from hand
coded methods on the logistics domain. We generated
14 different plan traces for training. All of the train-
ing traces transport the package from a location in one
city, to a location in another city. Each plan trace has a
different start and/or goal location. Diverse plan traces
help WORD2HTN detect bridge atoms better as they
have more information and atoms and actions are more
clearly separated from each others’ context. These plan
traces were optimal plan traces for transporting the
package. The problem space comprises of 5 cities, with
3 locations in each city. All the plan traces started with
the package in one location of a city, with the goal
of being transported to another location. Trucks in a
city could transport the packages to locations within
the city. There was one airport per city. Airplanes can
transport packages across cities by flying between air-
ports in those cities.

For testing we randomly generated 30 test planning
problems in this domain, by randomly selecting the ini-
tial and goal locations of the package for transporta-
tion. We ensured that the test problems were unique.
That is, no problem used for testing overlap with prob-
lems used to generate the training cases.

In our experimental problem setup, there are 225
possible combinations of initial and goal locations for
the packages. We verified that the learned methods can
cover all cases. This is because of the symmetry and
hierarchy inherent in the domain. This also shows that
the methods learned were not only capable of solv-
ing the problems they were trained from, but general
enough to solve problems whose solutions have the
same structure or sub-structure as those covered in the
training data.

Fig. 8. Comparison of the HTNs learned by WORD2HTN with those
in an optimal right-recursive knowledge based on the Maximum Tree
Depth measure.

5.4. Results

As a baseline, we used HTN-Maker [7], which is the
state-of-the-art HTN learner. HTN-Maker receives as
input a collection of traces and the tasks’ semantics.
We evaluate both approaches with the maximum tree
depth of the task hierarchies learned by WORD2HTN
and compared them with hierarchical right-recursive
task structures that HTN-Maker [7] always generates.
Although such right-recursive structures can be suit-
able for automated planning under different condi-
tions, HTN-Maker cannot capture goal-subgoals struc-
tures in the planning domain. On the other hand,
WORD2HTN uses bridge atoms to find the semanti-
cally related groups of atoms and actions in the prob-
lem space and these groups separate subgoals from
each other, as well as group together to contain larger
goals.

Maximum tree depth is one indicator to measure
how well our system captures this knowledge. We
compared the maximum tree depth of the HTN meth-
ods by WORD2HTN and that of the trees that corre-
spond to an optimal solution from a right-recursive tree
decomposition in our test problems.

Figure 8 shows the results comparing the maximum
tree depth for different plan lengths. The task decom-
position tree depth is shallower than the right recursive
tree for longer plans. It is deeper (worse) than the right
recursive tree for plan traces of length 3 actions. For 3
actions and less, the tree depth is greater because we
have to decompose an additional lower-level task that
encapsulates the operator, since every operator is en-
capsulated in a task. This is an artifact of the way the
methods were learned. There are no plan traces shorter
than 3 actions because the minimum number of ac-
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tions needed to transport a package between one loca-
tion and the nearest adjacent location is 3 actions. For
plan traces of length 5 and larger the tree depth does
not increase for WORD2HTN. We are able to achieve
a better (shallower) tree depth for larger plan traces
because the problem space lends itself to being more
evenly decomposed into a hierarchy. In fact our meth-
ods captured the structure of the domain, which is what
the expert authored methods did as well. What this
means in logistics is that transporting a package across
cities requires transporting the package to the airport
first (clear subtask), which in turn can be decomposed
neatly into loading the package into the truck and un-
loading the package at the airport.

The results thus far do show that the WORD2HTN
algorithm was able to capture the structure of the prob-
lem space if one exists. There were 37 learned meth-
ods compared to the 4 handcrafted methods. However,
inspection of the learned methods revealed that these
were instances of the more abstract handcrafted meth-
ods. The handcrafted methods had more than 3 actions
(subtasks) per method, but the learned methods were
restricted to 2 subtasks (binary decomposition). Thus
more methods were needed to represent the same struc-
ture. So indeed the learned methods captured the same
structure of the handcrafted methods for the testing do-
main, albeit represented differently (binary decompo-
sition of tasks). Currently there are a lot of duplicate
methods generated. For example the method to trans-
port a package to the airport in city1 maybe identi-
cal to the method to transport the package to the air-
port in city2. Removal of duplicate methods will make
the HTN planning faster, and will be addressed in fu-
ture work. We will also test our algorithm with other
domains and trying different settings such as window
size, training rates and others.

WORD2HTN was able to solve all of the testing
problems, which were different from the problems
used to generate the training data.

6. Related Work

The problem of learning HTN planning knowl-
edge has been a frequent research subject. For exam-
ple, X-LEARN uses inductive generalization to learn
task decomposition constructs, which relate goals, sub-
goals, and conditions for applying these d-rules [18].
ICARUS [3] learns HTN methods by using skills (i.e.,
abstract definitions of semantics of complex actions)
represented as Horn clauses. The crucial step is a tele-

oreactive process where planning is used to fill gaps
in the HTN planning knowledge. For example, if the
learned HTN knowledge is able to get a package from
an starting location to a location A and the HTN knowl-
edge is also able to get the package from a location B to
its destination, but there is no HTN knowledge on how
to get the package from A to B, then a first-principles
planner is used to generate a trace to get the package
from A to B and skills are used to learn new HTN meth-
ods from the generated trace to fill the gap in the HTN
learning methods. WORD2HTN learns across multiple
traces instead of teleoreactively such as in ICARUS.
However, it is conceivable to use teleoreactive tech-
niques assuming there are a few gaps found after the
system is deployed. If, however, multiple such gaps are
identified, it would be better to learn the domain anew
from new and previous traces. This will enable us to
take advantage of our system’s capability to find com-
mon patterns across multiple traces.

Another example is HTN-Maker [7]. HTN-Maker
uses task semantics defined as (preconditions,effects)
pairs to identify sequences of contiguous action se-
quences in the input plan trace where the preconditions
and effects are met. Task hierarchies are learned when-
ever (1) a task t’s preconditions are met before the first
action in a trace π and t’s effects are met after the last
action in π, (2) the preconditions of a task t’ are met be-
fore the first action in a trace π’ and the effects of t’ are
met after the last action in π’, and (3) π is a subtrace of
π’. In this situation, t is identified to be a subtask of t’.
When t = t ′ holds, a recursion is learned. HTN-Maker
learns incrementally after each training case is given.
In contrast, WORD2HTN learns across all traces for
common problem-solving patterns. This is part of the
reason why in our experiments we are learning more
balanced HTNs since our system can learn common or
frequently seen problem solving structures.

The only other work that we know which learns
HTN planning knowledge across multiple training
traces simultaneously to build a model is HTNLearn
[23]. HTNLearn transforms the input traces into a con-
straint satisfaction problem. Like HTN-Maker, it as-
sumes (preconditions,effects) as the task semantics to
be given as input. HTNLearn process the input traces
converting them into constraints. For example, if a lit-
eral p is observed before an action a and a is a candi-
date first sub-task for a method m, then a constraint c
is added indicating that p is a precondition of m. These
constrains are solved by a MAXSAT solver, which re-
turns the truth value for each constraint. For example,
if c is true then p is added as a precondition of m.
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WORD2HTN does not assume that the task semantics
are given. Instead the task semantics in the form of
(precondition, effect) pairs are learned from the atom
clusters elicited from the vector space representations.
Another important difference is that HTNLearn is not
able to converge to a 100% correct domain (the eval-
uation of HTNLearn computes the error rates in the
learned domain). In contrast, WORD2HTN learns cor-
rect domains and in our experiments solve each of the
testing problems (which involve relocating a package
from an starting location to an ending location).

Similar to hierarchical abstraction techniques used
in HTN planning, domain-specific knowledge has been
used to search Markov Decision Processes (MDPs) in
hierarchical reinforcement learning [17,4]. Given an
MDP, the hierarchical abstraction of the MDP is anal-
ogous to an instance of the decomposition tree that an
HTN planner might generate. Given this hierarchical
structure, these works perform value-function compo-
sition for a task based on the value functions learned
over its subtasks recursively. However, the hierarchi-
cal abstractions must be supplied in advance by the
user. WORD2HTN learns the hierarchical abstractions
based on the similarities of the atoms and actions’ vec-
tor representations.

Hierarchical goal networks (HGNs) [20] are an al-
ternative representation formalism to HTNs. In HGNs,
goals, instead of tasks, are decomposed at every level
of the hierarchy. HGN methods have the same form
as HTN methods but instead of decomposing a task,
they decompose a goal; analogously instead of sub-
tasks, HGN methods have subgoals. If the domain de-
scription is incomplete, HGNs can fall back to STRIPS
planners to fill gaps in the domain. On the other hand,
general HTN planning is strictly more expressive than
HGNs although the total-ordered variant of HTNs has
the same expressiveness as HGNs. In [1], a formalism
called Goal Task Networks (GTNs) is presented. GTN
combines both goal and task networks and it is strictly
as expressive as HTNs.

Inductive learning has been used to learn rules in-
dicating goal-subgoal relations in [8]. These rules are
used in the SOAR cognitive architecture [10]. Another
work on learning goal-subgoal relations is reported in
[16]. It uses case-based learning techniques to store
goal-subgoal relations, which are then reused by using
similarity metrics. Both of these works assume the in-
put action traces to be annotated with the subgoals as
they are accomplished in the traces. In our work, the
input action traces are not annotated and we are learn-
ing HTNs.

7. Conclusions and Future Work

We described WORD2HTN, a new approach for
learning hierarchical tasks and HTN methods from
plan traces in planning domains. WORD2HTN first
learns semantic relationships of atoms and actions
from plan traces and encodes them in distributed vec-
tor representations using WORD2VECTOR. This vec-
tor model is used to cluster the components based on
their similarity into hierarchically larger groups using
hierarchical agglomerative clustering. This hierarchi-
cal grouping is used to identify bridge atoms, and di-
vide the plan traces recursively. The actions are merged
into a hierarchy of AAS. The AAS are later converted
into methods by using the objects that were common
across the lower level AAS or actions. All grounded in-
stances of the same name are treated as the same vari-
able in the learned method.

Our work’s premise is particularly suitable for do-
mains that have an underlying hierarchical structure
that allows the problem to be decomposed into well-
defined subproblems. The logistics transportation do-
main is an example of such a domain. On the other
hand, WORD2HTN may not be suitable for domains
that do not have such clear hierarchical structure: ex-
amples include domains such as determining if a given
input number is a prime number or the puzzle-like do-
mains such as Blocksworld.

Thus far, we have experimented with a determin-
istic domain. However, we started this research be-
cause we think this method can work well with non-
deterministic domains since the bridge atoms for prob-
lems will still exist. Moving forward, we will general-
ize our approach to probabilistic actions with multiple
outcomes. We intend to generate plan traces for learn-
ing from the probabilistic actions, where each plan
trace will result from a probabilistic execution of ac-
tions. We believe that the rest of the WORD2HTN al-
gorithms will still work with minor modifications be-
cause the components with shared contexts will still
have similar vector dimensions. One difference is that
we believe the similarity of the effects of an action with
the action word itself would depend on the frequency
of occurrence of the different possible effects. For ex-
ample if the action LoadTruck Truck1 Package1 re-
sulted in the atom Package1 in Truck1 more than 80
percent of the time (over all the training plan traces),
then the two components would be more closely re-
lated. If 20 percent of the time, it resulted in Package1
is Broken then there would be a weaker similarity
with the less probable effects. We will investigate this
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hypothesis both theoretically and experimentally with
non-deterministic plan traces.

We also plan to do a more detailed investigation
on the number of dimensions necessary for different
domain sizes and types. This analysis would help in
selecting the appropriate number of dimensions for a
problem, which would make the algorithm faster.

The WORD2HTN algorithm can be parallelized at
many points. When we select a bridge atom and split
the plan traces about it, then each of the child set of
traces can be processed independently of the other be-
fore the AAS of the child cases are merged together.
Additionally, the process to make methods from AAS
can also be parallelized.
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