
Computing Policy’s Regression Expectations in Probabilistic Domains

Noah Reifsnyder, Hector Munoz-Avila
Lehigh University

Abstract

In this paper we investigate the problem of computing regres-
sion expectations, needed for execution monitoring, when the
course of action being monitored is represented as a policy.
Until now, the notion of expectation has focused on plans,
defined as sequences of actions. This paper presents a for-
malization to the notion of expectations when the agent is ex-
ecuting policies instead of plans. Policies are used when act-
ing in probabilistic domains, where executing actions might
have multiple outcomes with known probability distributions.

Introduction
There has been an increasing interest in AI Safety, the cre-
ation of reliable AI agents that don’t step out of their bound-
aries. Part of the interest on AI Safety is the realization that
as systems increase in sophistication they may behave in
ways that are inconsistent towards the agent’s own specifi-
cations as encoded in its plan formulation knowledge. Plan-
ning knowledge can be formulated as a collection of ac-
tions, A, indicating how states change when the actions are
applied. Actions may have deterministic outcomes indicat-
ing a pre-determined outcome or non-deterministic indicat-
ing multiple possible outcomes; the latter requires planning
paradigms that plan ahead for each possible outcome.

A central theme in research on planning research are plan-
ning paradigms providing provable guarantees that a gener-
ated solution π solves a given problem P . Such guarantees
can be seeing as providing a component of AI’s answer to
the problem of AI Safety; namely, as long as the solution
π is followed, and no unaccounted contingency occurs, we
guarantee that the problem will be solved as specified in P .

Another component of the answer from AI to the prob-
lem of AI Safety is the monitoring of π’s execution. There
are two problems that must be addressed for this com-
ponent: (1) Detection: determining if the agent is deviat-
ing from the course of action plotted in π; (2) Correc-
tion: taking corrective action when such a deviation is de-
tected. There are multiple approaches to address the cor-
rection problem including replanning, namely, generating
a new solution from the current state s reached where
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the failure was detected (Fox et al. 2006; Warfield et al.
2007); goal reasoning, where the agent performs a meta-
reasoning process and formulates a new goal (Aha 2018;
Cox, Dannenhauer, and Kondrakunta 2017); or simply the
agent stopping its own execution (e.g., in (Gregg-Smith and
Mayol-Cuevas 2015) a robotic arm deactivates itself when
encountering a discrepancy).

To address the detection problem, agents compute the ex-
pectation, X(π, a), as a function of the next action a ∈ π
to be executed and check if this expectation is met in the
observed environment, O(s).

The problem of computing the agent’s expectations for
π is deceivingly simple; at first glance it would seem suf-
ficient to check that the preconditions of a are satisfied in
O(s) (i.e., to define X(π, a)= ”the preconditions of a”)
but this would result in a myopic agent that is not check-
ing the plan trajectory in π; alternatively, we could project
s0 based on π to the state s right when a is to be exe-
cuted (i.e., to define X(π, a) = s). This is how expectations
are typically defined in goal reasoning systems (Aha 2018;
Muñoz-Avila et al. 2010; Molineaux, Klenk, and Aha 2010).
The problem is that any change in the expected state (i.e.,
s 6= O(s)) will trigger a correction step even if the dis-
crepancy is unrelated to π’s trajectory. Researchers have ob-
served that the notion of expectations plays a key role in
the resulting performance of goal reasoning agents (Dan-
nenhauer, Munoz-Avila, and Cox 2016; Dannenhauer and
Munoz-Avila 2015). The central question that we propose to
address in this paper is the following:

When monitoring the execution of a policy π, how to
compute the expectations, X(π, a), of the next action a
execute?

Policies are generated by underlying assumptions that the
agent knows all outcomes and their probability distribution
(e.g., ND planning) or by learning from interactions with the
environment (e.g., Reinforcement Learning). These policies
fail the moment a situation is encountered that it was not pre-
planned for in advance. This has become an issue of increas-
ing concern in reinforcement learning (and AI in general),
as the agent may take too many cycles before adapting with
potentially catastrophic consequences (Mason et al. 2017).

Expectations allows agents to detect such unexpected

events occurring in the environment. They allow the agent
to know not just what went wrong that caused the policy to
fail, but also allow the agent to ignore unexpected events that
don’t actually affect the achievement of the goals. For ex-
ample, in the Blocks World, if a new block appears, it would
cause an expectation’s failure. There will be no mappings
from a state with an added block to an action. With expecta-
tions, we will be able to determine if this block will hinder
the current policy or not and in the latter case simply con-
tinue with the policy’s execution. This allows the agent to
ignore random variations of the state that don’t impact the
achievement of the goals.

In this paper, we re-examine the notion of expectations
where solutions achieving the goals are policies, which are
mappings from states to actions. Policies are used in proba-
bilistic domains, where actions may have multiple possible
outcomes. A policy accounts for all foreseen states that the
agent might encounter based on the action definitions and
the starting state. However, agents might encounter situa-
tions it has not planned for. This can happen in particular
when the agent is operating autonomously for extended pe-
riods of time. Reasons for encountering such unforeseen sit-
uations include: (1) exogenous events, that is, conditions in
the state that were not planned for and (2) changes in the
actions. An example of the latter is a failure in a mechani-
cal motion device that causes it to operate in a different way
from what it is modeled in the action definitions. (Cox and
Ram 1999) present a taxonomy of failure reasons that is at-
tributable to factors such as discrepancies in the state, dis-
crepancies in the action model, discrepancies in the goals
and discrepancies in the environment.

The following are the main contributions of this paper: (1)
A formalization of goal regression for policies; (2) Results
demonstrating the soundness of our formalization as well as
low-polynomial running time to compute these expectations;
and (3) An empirical study of policy regression expectations
in two variants of domains from the goal reasoning litera-
ture, Arsonist (Paisner et al. 2013) and Marsworld (Molin-
eaux, Kuter, and Klenk 2012; Dannenhauer, Munoz-Avila,
and Cox 2016).

A Sample Domain
We illustrate our work with the Arsonist World (Paisner et
al. 2013). Similar to blocks world, the goal is to allocate
blocks to form a desired configuration. For instance, the
agent might want to form a single tower of n blocks. Unlike
blocks world, there is an arsonist that ignites blocks at ran-
dom. There are only two actions in this domain: stack and
unstack. unstack(?b1, ?b2) is a deterministic action that
takes a block ?b1 on top of some block ?b2 with no block
above it and places ?b1 on the table (i.e., with the assign-
ment below(?b1)← none); stack(?b1, ?b2) requires that no
blocks are on top of ?b1 and ?b2 and has three probabal-
istic outcomes; either block ?b1 is placed on top of block
?b2, block ?b1 falls to the floor (i.e., with the assignment
floor(?b1) ← True), or block ?b2 is knocked off the tower
(i.e, both block ?b2 and block ?b1 end up on the table) .
Stacking the block correctly occurs 90% of the time, while
knocking the block off the tower occurs 8% of the time and

knocking the block on the floor occurs 2% of the time. stack
and unstack are shown in Table 1, which use the state-
variable representation (Traverso and Pistore 2004) (Section
2.5): the variable onfire(?b) returns true iff ?b is on fire. The
variable above(?b) returns the block immediately above ?b
and none if no block is above ?b. The variable below(?b) re-
turns the block immediately below ?b and none if ?b is on
the table.

(:operator stack
:parameters ?b1 ?b2
:condition above(?b1)=none, above(?b2)=none,
onfire(?b1)=False
:effect(.9) above(?b2)← ?b1, below(?b1)←?b2
:effect(.08) below(?b2)← none
:effect(.02) floor(?b1)=True
(:operator unstack
:parameters ?b1 ?b2
:condition above(?b2)=?b1, above(?b1)=none
onfire(?b1)=False
:effect above(?b2)← none, below(?b1)← none)

Table 1: stack and unstack operators. Probabilities associate
with effects are listed in parenthesis at the beginning of the
effect definition

Consider an example, when the initial state starts with 5
blocks (see Table 2): 1, 2, 3, 4, 5 and 5. We have a goal to
create a tower of 5 blocks: 1 on top of 2, 2 on top of 3, 3 on
top of 4, and 4 on top of 5.

(:Initial State
{onfire : {1: False, 2: False, 3: False, 4: False, 5: False}}
{floor : {1: False, 2: False, 3: False, 4: False, 5: False}}
{above : {1: none, 2: none, 3: none, 4: none, 5: none}}
{below : {1: none, 2: none, 3: none, 4: none, 5: none}}
:Actions
stack, unstack
:Costs
c(S, a) = 1 for all a and all S
:Rewards
R(S4) = 1
R(S) = 0; if S 6= S4)

Table 2: Planning problem, where there are 5 blocks enu-
merated 1 through 5. We use a compact representation for
the state: we write ”1:False”, ”2:false” in a table for onfire,
instead of writing onfire(1) = False, onfire(2) = false, etc.

Figure 1 shows an example of a policy solving this prob-
lem. We will define policies carefully in the next section.
But briefly, for every possible state, s0, . . . s4 the agent can
find itself in, it indicates the action it should take (in this
case stack), and the possible states it will reach based on the
actions’ probabilistic outcomes.

Preliminaries
In the state-variable representation, a variable v ∈ V can
take a value fromC, a set of constants. For instance, in Table

Figure 1: A policy for given state from Table 2 and operator
definitions in Table 1. s0 is the initial state, and s4 is the
terminal state that achieves the goals. T represents a terminal
state at which the policy fails to achieve the goals. Actions
are represented by the black dots.

2, there are 20 variables: 5 for onfire, 5 for floor, 5 for above,
and 5 for below; they each are mapped to a constant. A state
s is a mapping s : V → C, instantiating each variable to a
constant. S denotes the collection of all states. Exemplified
by Table 2, we can see that onfire(1) = False in the initial
state, where the variable v is onfire(1) and the function is
the state, i.e, s(onfire(1))= False. A reward is a mapping r :
S → R that denotes how favorable a state is. A cost is a
mapping c : A→ R that denotes how much a action ”costs”
an agent to take.

We use partial functions f : V 9 C, mapping a subset
of V , denoted by Vf , such that for each v ∈ Vf , f(v) ∈
C. The function is undefined for all other variables: if v ∈
V − Vf , then f(v) is undefined. These partial functions are
used in the definitions of action’ preconditions and effects
because they only refer to a subset of the variables in the
state. For instance, the unstack(1,2) action, the preconditions
only mention variables related to the two blocks 1 and 2; the
conditions for all other functions are unspecified.

In a probabilistic domain, operators have multiple pos-
sible effects: An operator a = (namea, prea, Effa)
where prea is a partial mapping prea : V 9 C. Effa
is a finite set of possible effects and a probability dis-
tribution among these effects. Specifically, if Effa =
{(effas1 , P

a
s1) . . . (effask , P

a
sk

)}, then each effasi is a partial
mapping effasi : V 9 C and P asi is the probability that the
outcome of a is effasi . Table 1 shows an example of two
operators.

An action is a grounded instance of an operator. An action
a is applicable in a state s if for every variable v ∈ Vprea ,
prea(v) = s(v). app(s) denotes the set of all actions ap-
plicable in state s. Applying a to s will choose one of the

effects in Effa, based on their probability distribution, and
result in a state si. In this case, we say that a ND choice is
made and that si ∈ ND(a, s). The states and actions define
a transition function, Γ : S × A → 2S , where Γ(s, a) is
defined if a ∈ app(s), in which case Γ(s, a) = ND(a, s).
Applying effasi to a state s, results in a state si defined as
follows:

• if v ∈ Veffasi then si(v) = effasi(v)

• If v /∈ Veffasi then si(v) = s(v) (i.e., the variable’s value
remains unchanged).

Example: With the initial state s0 as in Table 2, then ap-
plying effstack(4,5)s1 to s0 results in s1 = {above: {1:None,
2:None, 3:None, 4:None, 5:4}, below: {1:None, 2:None,
3:None, 4:5, 5:None}, onfire: {1:False, 2:False, 3:False,
4:False, 5:False}, floor: {1:False, 2:False, 3:False, 4:False,
5:False}}

A policy π : S 9 A, a partial mapping from the possible
states in the world S to actions A, indicating for any given
state s ∈ Sπ , what action π(s) to take. States in S − Sπ are
not reachable from s0. An execution trace is any sequence
s0 π(s0) . . . π(sn) sn+1, where si ∈ ND(π(si−1), si−1).
A reachable state s is terminal if π(s) is not defined.

A planning problem Pis defined as a triple (s0,G,M),
indicating the initial state, the goals and the MDP respec-
tively. The goals G are a partial mapping G: V 9 C.
G are satisfied in a state s if for every variable v ∈ VG ,
G(v) = s(v). Any state where the G is satisfied is a termi-
nal state.

An MDPM=(S,A,P,Γ,C,R), where S,A, Γ are the states,
actions and transition function as defined before; P are the
collection of probability transitions P as , also defined before;
c : S × A → [0,∞) is a cost function and R : S → [0,∞)
is a reward function. For every state s ∈ S, the value of an
state V (s) is defined as follows:

• V (s) = R(s), when s is terminal.

• V (s) = maxa∈app(s)Q(s, a)

where (γ ∈ [0, 1] is the discount factor):

Q(s, a) = R(s)− C(s, a) + γ
∑

s′∈ND(a,s)

P as′V (s′)

A policy π is a solution to P with probability ρ ∈ (0, 1] if
when π is executed from s0 it reaches an state s satisfying
G with probability ρ. A policy π is an optimal solution to
P with probability ρ if (1) π is a solution to P with a
probability ρ, (2) for any other solution π’ to P with a prob-
ability ρ, Vπ(s0) ≥ Vπ′(s0), and (3) there exists no solution
to P with a probability in range (ρ, 1].

Figure 1 is an example of an optimal policy to the prob-
lem defined by Table 2 using the operators in Table 1. We
define G(π) = (Vπ, Eπ) as the graph form of the policy, as
visualized by Figure 1

Regression Policy Expectations
To define regression on a policy π, we perform two steps:
(1) Compute the plan tree Tπ ; and (2) Compute regression
on Tπ .

Plan Tree Tπ
We construct the Plan Tree Tπ= (VT , ET) with root s0 for
G(π) = (Vπ, Eπ), Constructing Tπ as shown in Algorithm
1. The initial call is: CONSTRUCTTREE(G(π), s0, ∅).

Algorithm 1
1: procedure CONSTRUCTTREE(G(π),α, Edges)
2: for e = (α, α′) ∈ G(π) and e /∈ Edges do
3: ET = ET + e
4: VT = VT + α+ α′

5: if e is a branching edge then
6: Edges = Edges+ e
7: ConstructTree(G(π), α′, Edges)
8: else
9: ConstructTree(G(π), α′, Edges)

The Edges parameter in ConstructTree accumu-
lates all branching edges, that is, edges of the form:
(α, v1) . . . (α, vm) (i.e., two or more edges starting from the
same source α), observed while constructing Tπ . Edges is
used so that the algorithm traverses any branch, (α, vk), at
most once on each path explored. This prevents any infinite
loops from forming while also ensuring that all paths from
the starting state to a terminal node are accounted for. Con-
structTree iterates through all edges in G(π) with source α
that are not present in Edges, adding each edge e to ET and
its source and end vertices, α and α′, into VT (Steps 3 and
4). If e is a branching edge (Step 5), it is added to Edges
(Step 6), and Tπ is recursively built from e’s end, α’ (Step
7). If e is not a branching edge, the algorithm is recursively
called from α’ (Step 9).

Figure 2 showcases a resulting plan tree for G(π) in Fig-
ure 1. An example of an expanded branching edge is the
edge e = (stack(4, 5), s0). We again expand the subtree
rooted at s0 and point the edge from stack(4, 5) to the new
subtree. Note that e is left out of the new subtree.

Three Composite Operators
We introduce three composite operators that are used to
propagate backwards conditions on Tπ .

The first operator, 	, takes the intersection of two partial
mappings, choosing one set of mappings over the other if the
mapping of a key differs between the two sets of mappings.
We define D = A	 B, for A : V 9 C and B : V 9 C as
a partial function D : V 9 C defined as follows:

1. if v ∈ VA − VB then D(v) = A(v).

2. for all other variables D is undefined: VD = VA − VB .

Informally, A 	 B takes two partial functions, and creates
a new partial function that is defined for all variables from
A which are not defined in B, and keeps the values from A.
For example, if A = {onfire : {1 : True, 2 : False}} and

B = {above : {5 : 4}, onfire : {2 : True, 3 : True}},
then A	B = {onfire : {1 : True}}.

We defineD = A�k, forA : V 9 2C×[0,1]) and k ∈ Z+

as a partial function D : V 9 2C×[0,1] defined as follows:
1. if v ∈ VA : for every (c, p) ∈ A(v), then (c, p∗k) ∈ D(v)

2. for all other variables, D is undefined (i.e., VD = VA)
Informally, A � k takes the partial function A and multi-
plies all probabilities in its probability distribution of con-
stants from variables by the probability k (which is in the
range [0,1]). For example, if A = {above : {5 : (4, 1), 4 :
(3, .2)}, onfire : {1 : (True, .5)}}, thenA�.5 = {above :
{5 : (4, .5), 4 : (3, .1)}, onfire : {1 : (True, .25)}}. � is
used to project the probabilities among the probability of the
actions’ ND effects.

We define D = A ⊗ B, for A : V 9 2C×[0,1]) and
B : V 9 2C×[0,1]) as a partial function D : V 9 2C×[0,1]

defined as follows:
1. if v ∈ VB − VA then D(v) = B(v).
2. if v ∈ VA − VB then D(v) = A(v).
3. if v ∈ VA ∩ VB :

(a) for every (c, p) ∈ A(v) where (c, p′) /∈ B(v), (c, p) ∈
D(v)

(b) for every (c, p) ∈ B(v) where (c, p′) /∈ A(v), (c, p) ∈
D(v)

(c) for every (c, p) ∈ A(v) where (c, p′) ∈ B(v), (c, p +
p′) ∈ D(v)

4. for all other variables D is undefined: VD = VA ∪ VB
Informally, A ⊗ B takes two partial functions, A and B,

and aggregates the values for all variables from both A and
B. When a value for a variable in both A and B share a
constant, we add the probabilities together. When using ⊗,
our formulas guarantee that a probability distribution will re-
main within [0,1] (by being used in conjunction with�). For
example, if A = {above : {5 : (4, 1), 4 : (3, .2)}, onfire :
{1 : (True, .5)}} and B = {above : {5 : (4, .5), 4 :
(3, .5)}, onfire : {1 : (True, .1)}}, thenA⊗B = {above :
{5 : (4, 1.5), 4 : (3, .7)}, onfire : {1 : (True, .6)}}. While
the resulting above(4) value looks to exceed the range of
probabilities, this would be fixed through the use of an �,
i.e (A⊗B) �.5)

Policy Regression Expectations
We define regression expectations formally as
NXpol

regress(π, s, ∅) = regpols , where regpols is a par-
tial mapping regpols : V 9 2C×[0,1] that maps variables to
a probability distribution of constants. We compute regpols
over Tπ as follows:

• If s is a terminal non-goal state, then regpols = (∅, 1.0).
The ∅ expectation indicates the probability the plan will
terminate in a non-goal state, thus this expectation states
we will terminate in a non-goal state with a 100% proba-
bility

Figure 2: The expanded plan tree Tπ used for calculating policy goal regression expectations. The numbers next to vertexes are
the order that vertex is visited in our search.

• If s is a terminal goal state, then regpols = ∅. This indi-
cates we don’t know the goals that are satisfied.1

• For every action π(s), we define gpreπ(s) : V 9
2C×1 that for every variable v defined in preπ(s), i.e.,
preπ(s)(v) = c, defines gpreπ(s)(v) = {(c, 1)}. This is an
auxiliary function indicating that the agent expects that
each of the preconditions of the actions to be true with
100% probability.

• If s is not a terminal state, regpols is defined recursively
as follows: For a state s, let {si...sk} be the children of
π(s). We define regpols = gpreπ(s)⊗((regpolsi 	eff

π(s)
si 	

gpreπ(s))�Pπ(s)si)⊗ ...⊗((regpolsk
	effπ(s)sk 	gpreπ(s))�

P
π(s)
sk), where, for i ≤ j ≤ k: (1) regpolsj is the regressed

expectation for the child sj of π(s); (2) effπ(s)sj are the
ND effects of π(s) that result in sj with a probabilities
P
π(s)
sj . Informally, the agent computes the expectations

for an state by regressing the (regressed) expectations of
its children, weighted by the probability of reaching each
child.

If s occurs more than once in Tπ , then we define
NXpol

regress(π, s, ∅) to be the expectations for the first time
s is listed in the topological sort of Tπ (Cormen et al. 2001)
(Section 22.4). Informally, it selects the one closest to the
initial state, which is the one that includes all possible paths
from the state to a terminal state. For instance, in Figure 2,
s0 occurs multiple times and the one selected is the root.

We show how to calculate regpols3 . In Tπ there are numer-
ous occurrences of s3 (of which Figure 2 shows three). For
sake of space we will focus on the occurrence labelled n.
π(s3) = stack(1,2) has three children, T , s2 and s4. s4 is
a terminal goal state and always has the same expectations,
regpols4 = ∅. s2 has the expectations (calculation not shown),
regpols2 = {above : {1 : (None, .9), 2 : (None, 1), 3 :

1If G= {g1, . . . , gm} is known, then we can define Policy Goal
Regression gregpolT = {(g1, 1.0), . . . , (gm, 1.0)}. This condition
is saying that in the terminal state the agent expects all goals to
be achieved with 100% probability. When s is not a terminal state,
then gregpols = regpols

(None, 1)}, onfire : {1 : (False, .9), 2 : (False, 1)},∅ :
.038}. The expectations for T are {∅ : 1} gprestack(1,2) =
{above : {1 : (None, 1), 2 : (None, 1)}, onfire : {1 :
(False, 1)}}.

Thus,
regpol3 = gprestack(1,2)

⊗((regpols2 	 eff
stack(1,2)
s2 	 gprestack(1,2))�P

stack(1,2)
s2)

⊗((regpols4 	 eff
stack(1,2)
s4 	 gprestack(1,2))�P

stack(1,2)
s4)

⊗((regpolT 	 eff
stack(1,2)
T 	 gprestack(1,2))�P

stack(1,2)
T)

and ∅ � P stack(1,2)s0 = ∅.
Therefore:

• With P
stack(1,2)
s2 = .08 probability, stack(1, 2) knocks

block 2 off the tower. Thus, (regpols2 	 eff
stack(1,2)
s2 	

gprestack(1,2)) = {onfire : {2 : (False, 1)},∅ : .038},
and {onfire : {2 : (False, 1)},∅ : .038} � .08 =
{onfire : {2 : (False, .08)},∅ : .00304}.

• With P
stack(1,2)
s4 = .9 probability, stack(1, 2) stacks

block 1 on top of block 2. (regpols4 	 eff
stack(1,2)
s4 	

gprestack(1,2) = ∅ because regpols4 = ∅. Again ∅ �
P
stack(1,2)
s4 = ∅.

• with P
stack(1,2)
T = .02 probability, stack(1, 2) knocks

block 1 to the floor. (regpolT 	 eff
stack(1,2)
T 	

gprestack(1,2) = {∅ : 1.0}. Then {∅ : 1.0} � .02 = {∅ :
.02}
Now we have regpols3 = gprestack(1,2) ⊗ {onfire : {2 :

(False, .08)},∅ : .00304}⊗ ∅⊗ {∅ : .02}. Thus regpols3 =
{above : {1 : (None, 1), 2 : (None, 1)}, onfire : {1 :
(False, 1), 2 : (False, .08)},∅ : .02304}. So when in state
s3 we would like nothing to be on top of either block 1 or
2, both blocks 1 and 2 not to be on fire (block 2 not being
on fire only matters 8% of the time), and there is a 2.304%
chance we will end in a non goal terminal state.

Properties
Theorem 1. Algorithm 1 terminates and the resulting Tπ is
unique.

Proof sketch. Termination is guaranteed because every
loop in G(π) can be attributed to a branching edge. At some
node v, we will either have to choose the loop or to continue
towards a terminal node, thus making the loop a branching
edge. Since it is a branch, it will be cut off after one iteration
thus removing the loop and allowing the algorithm to ter-
minate. To prove uniqueness, the crucial observation is that
regardless of the order in which an edge e = (u, v) is vis-
ited in Line 2 of Algorithm 1, the subtree rooted in v will
be the same. The reason for this is that the only modifier for
the loop is the set Edges, which comes directly from the
parent node, and is unaffected by the expansion of the other
children.

Theorem 2. Let G(π) = (E, V) and Tπ be its policy tree,
then the size of Tπ is bounded by |E||V |(|V |+ 1)/2.

Proof Sketch. Each branching edge can add at most
|V |(|V |+ 1)/2 vertices to Tπ . This worst case happens in a
fully connected graph, where all edges are branching edges.
The first time, an edge e = (u, v) is visited, e is added to
Edges, and in the recursive call, in the worst case, all ver-
tices are added to Tπ (since the graph is fully connected).
The second time the algorithm is expanding from u along
each path, edge e will not be expanded since it is in Edges,
which makes v no longer a child of u, thus it will add at most
|V | − 1 vertices to Tπ . This repeats recursively until only 1
edge is added to Tπ and there are no more edges that can be
expanded. This summation is equal to |V |(|V | + 1)/2 and
can occur for each edge, resulting in |E||V |(|V | + 1)/2 in
the worst case.

Theorem 1 guarantees that expectations are well defined
since they are generated from a unique plan tree Tπ . The-
orem 2 implies that the procedure constructing Tπ runs in
polynomial time on the size of G(π).

Policy Execution Monitoring
For Policy Regression we need to take into account the prob-
ability distribution of the values of a variable. To do so, we
detect discrepancies in an observed state s as follows: Let
fX = NXpol

reg(π, si, ∅). By definition, fX(v) is a probabil-
ity distribution for all values that v may take (where fX(∅)
always returns False). We add the probabilities of values
that are not equal to value of v in the observed state, s(v):
P = Σs(v)6=c′,(c′,p)∈fX(v)(p). Thus, P indicates the percent
of children vertices that are no longer reachable if s(v) = c.
A domain-specific parameter, δ, is needed to trigger a dis-
crepancy. We say that a discrepancy occurs if P > 0.5. In
our experiments, we set δ = 0.5 as a threshold as it denotes
that more than half the remaining tree is no longer reachable
and therefore the execution of the policy is more likely to
fail.

Empirical Evaluation
In our experiments, we compared 4 expectation types: Im-
mediate, Informed, policy regression without goals (regress-
ing beginning with an empty set) and regressing when the

Figure 3: (a) Accumulated costs - Arsonist Domain; (b) Fail-
ure rates - Arsonist Domain

goals re known (in the figures we call it G-Regression). Im-
mediate and Informed are defined in (Dannenhauer, Munoz-
Avila, and Cox 2016); succinctly, Immediate expectations
check the preconditions of the next action a to execute in the
current state s and their effects. Because we are dealing with
probabilistic domains, we modified them to check for the re-
sulting state s′, s′ ∈ ND(a, s) holds. Informed expectations
accumulate forward the effects of all actions executed so far.
In the case of probabilistic domains, each executed action
commits to one of its ND effects. This effect is the one we
accumulate forwards.

For planning, we implemented a probabilistic domain-
configurable planner as described in (Kuter and Nau 2005).
The policies generated were optimal for the domain. Aside
from the different expectations, the agent was the same: it
has a simple module that given a discrepancy, it always gen-
erates the goal based on a mapping from discrepancies to
goals d→ g. It will always generate the same goal g for the
same discrepancy d. The performance metric is the same as
in (Dannenhauer, Munoz-Avila, and Cox 2016): the cost of
the executed plan until a terminal state is reached (see be-
low for a description of the cost function). At that point we
check if the goals are satisfied; if they are not the execution
is considered a failure.

The first domain is a variant of the Arsonist domain (Pais-
ner et al. 2013), which is itself a modified version of Blocks

World. The goal is to make a tower of 10 blocks. There is an
arsonist that is arbitrarily setting blocks on fire (i.e., a block
on fire is an exogenous event). The cost of a problem is the
accumulated number of actions where a block that ends in
our tower is on fire (each block adds 1 point for every action
taken while it’s on fire. So if block 2 was on fire from time
t=2 to t=4, and block 2 is in the final tower, it contributes a
cost of 2 to the final cost) plus the total number of actions
taken. The possible actions for the agent in the Arsonist do-
main are the usual stack and unstack, both requiring
the block not to be on fire. When there is a discrepancy be-
cause a block is on fire, the agent triggers a goal to remove
the fire. Afterwards the agent continues achieving the goal.
In our variant, actions have probabilistic effects: stacking a
block on top of another block has has the same probabilistic
outcomes as in Table 1. A failure occurs if any block in the
tower is on fire or if the tower is not 10 blocks tall when the
agent finishes executing actions. It is possible even with an
optimal policy for the agent to finish executing with some
blocks on fire, because the agents knowledge of the state is
limited by the form of expectation that the agent is using (i.e.
the domain is partially observable with respect to the set of
expectations the agent is using). The limitation is in place
because if we identified states by comparing all state vari-
ables, we would be using state expectations. As reported in
(Dannenhauer, Munoz-Avila, and Cox 2016). State expecta-
tions force a GDA process even in situations when it is un-
necessary as they flag any observed inconsistency between
the expected and the observed states. The other forms of ex-
pectations have been developed to reduce unnecessary acti-
vation of a GDA process; this occurs when variables change
in the state that do not affect the current course of action.

Figure 3(a) compares accumulated costs between Imme-
diate, Informed, Regression and G-Regression. Informed
Expectations had the highest cost. This is because blocks
were allowed to burn until they were taken to stack onto the
tower; the agent using Informed Expectations had no way of
knowing which blocks it would eventually use. Policy Re-
gression and Immediate Expectations performed similarly
to one another. They have lower costs because their expecta-
tions have no knowledge of previously stacked blocks, and
thus do not know if the last stack action knocked a block
off the tower. Therefore they both perform the 10 /bf stack
actions necessary and then terminate, regardless of if the
tower holds 10 blocks or not. This was also not enough time
for many blocks to catch on fire therefore they could not
accumulate a large cost. Policy Regression and Immediate
Expectations had near 100% failure rates (as seen in Figure
3(b)), due to the same lack of knowledge in the expecta-
tions. (i.e. at some point the tower is knocked over and was
never rebuilt or a final block was on fire). G-Regression had
a cost well below informed Expectations, and a failure rate
of 13%. This is because it infers the knowledge of which
blocks it would eventually use in the tower (i.e., by know-
ing which blocks would be in the final tower from the goals)
and could put the fires out immediately. The 13% failure rate
is the inherent probability of ending in a non goal terminal
state based on the probabilistic outcomes of the actions (i.e.
a block was knocked to the floor and thus the tower could

never be fully built).

Related Work
Goal regression determines the minimal preconditions
needed to execute a plan (Reiter 1991) and has been used
for plan reuse (Veloso and Carbonell 1993). Goal regression
has also been used to avoid unnecessary replanning (Fritz
and McIlraith 2007), further extended for dealing with un-
expected events in (Fritz and McIlraith 2009b), and subse-
quently for domains with random variables such as the price
of the stock market (Fritz and McIlraith 2009a). All these
works assume solutions to planning problems to be a se-
quence of actions unlike policies in our work.

In this work we are concerned with the problem of com-
puting expectations for a given policy; not with its gen-
eration. The problem of finding the existence of a solu-
tion with a probability ρ to a planning problem were ac-
tions have probabilistic effects is EXPTIME-hard (Littman
1997). We are assuming episodic tasks; as opposed to con-
tinuing tasks when the agent never terminates its execu-
tion (Sutton and Barto 2018). We are also assuming that
the dynamics of the environment are given in the form
of the probability transitions P as . If these are not given,
we will need to make assumptions akin to FOND plan-
ning (Ramirez and Sardina 2014). For instance assuming an
equiprobable distribution in the actions’ effects: Effa =
{(effas1 , 1/k) . . . (effask , 1/k)}.

For FOND planning, goal regression has been used to bias
the policy generation process (Ramirez and Sardina 2014).
Goal regression plays a central role in the PRP planner
(Muise, McIlraith, and Beck 2012); it incrementally builds
a solution policy by aggregating so-called weak plans: se-
quences of actions from the start state to a goal state. Goal
regression is applied on the weak plans to generate the nec-
essary conditions needed to generate that weak plan. This
was further extended to deal with conditional effects com-
puted over the weak plans (Muise, McIlraith, and Belle
2014). Whereas in these works regression is performed over
action sequences (i.e., the weak plans), in our work we are
defining regression for on fully formed policies.

Conclusions
We introduce Policy Regression Expectations, which is de-
fined based on the possible trajectories backwards from the
terminal states. We report on a comparative study of pol-
icy regression versus immediate and informed expectations
and adapted for probabilistic domains. We performed exper-
iments on the Arsonist and the Marsworld domain. Goal Re-
gression and Informed expectations are the only ones guar-
anteeing the agent to reach a terminal state without failures
(i.e., goals are achieved). However, informed expectations
do so by having the higher costs than Goal Regression ex-
pectations.

For future work, we plan to explore situations where the
probability distributions of the ND effects are unknown and
statistical learning techniques are used to learn these distri-
butions online. The challenge in that context is that the agent
will be operating with (possibly poor) approximations of the

probability distributions. This will require the agent to also
reason with confidence levels of its own expectations.

References
Aha, D. W. 2018. Goal reasoning: foundations emerging
applications and prospects. AI Magazine.
Cormen, T.; Leirson, C.; Rivest, R.; and Stein, C. 2001.
Introduction to Algorithms. MIT Press.
Cox, M. T., and Ram, A. 1999. Introspective multistrategy
learning: On the construction of learning strategies. Artifi-
cial Intelligence 112(1-2):1–55.
Cox, M. T.; Dannenhauer, D.; and Kondrakunta, S. 2017.
Goal operations for cognitive systems. In AAAI, 4385–4391.
Dannenhauer, D., and Munoz-Avila, H. 2015. Raising ex-
pectations in gda agents acting in dynamic environments. In
IJCAI, 2241–2247.
Dannenhauer, D.; Munoz-Avila, H.; and Cox, M. T. 2016.
Informed expectations to guide gda agents in partially ob-
servable environments. In IJCAI, 2493–2499.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In ICAPS, vol-
ume 6, 212–221.
Fritz, C., and McIlraith, S. A. 2007. Monitoring plan opti-
mality during execution. In ICAPS, 144–151.
Fritz, C., and McIlraith, S. 2009a. Computing robust plans
in continuous domains. In Nineteenth International Confer-
ence on Automated Planning and Scheduling.
Fritz, C., and McIlraith, S. A. 2009b. Generating optimal
plans in highly-dynamic domains. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intel-
ligence, 177–184. AUAI Press.
Gregg-Smith, A., and Mayol-Cuevas, W. W. 2015. The
design and evaluation of a cooperative handheld robot. In
Robotics and Automation (ICRA), 2015 IEEE International
Conference on, 1968–1975. IEEE.
Kuter, U., and Nau, D. S. 2005. Using domain-configurable
search control for probabilistic planning. In National Con-
ference on Artificial Intelligence (AAAI), 1169–1174.
Littman, M. L. 1997. Probabilistic propositional planning:
Representations and complexity. In National Conference on
Artificial Intelligence (AAAI), 748–761. Providence, Rhode
Island: AAAI Press / MIT Press.
Mason, G. R.; Calinescu, R. C.; Kudenko, D.; and Banks,
A. 2017. Assured reinforcement learning for safety-critical
applications. In Doctoral Consortium at the 10th Inter-
national Conference on Agents and Artificial Intelligence.
SciTePress.
Molineaux, M.; Klenk, M.; and Aha, D. W. 2010. Goal-
Driven Autonomy in a Navy Strategy Simulation. In AAAI.
Molineaux, M.; Kuter, U.; and Klenk, M. 2012. Discover-
history: Understanding the past in planning and execution.
In Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems-Volume 2, 989–
996. International Foundation for Autonomous Agents and
Multiagent Systems.

Muise, C. J.; McIlraith, S. A.; and Beck, C. 2012. Im-
proved non-deterministic planning by exploiting state rel-
evance. In Twenty-Second International Conference on Au-
tomated Planning and Scheduling.
Muise, C.; McIlraith, S. A.; and Belle, V. 2014. Non-
deterministic planning with conditional effects. In Twenty-
Fourth International Conference on Automated Planning
and Scheduling.
Muñoz-Avila, H.; Jaidee, U.; Aha, D.; and Carter, E.
2010. Goal-Driven Autonomy with Case-Based Reason-
ing. In Case-Based Reasoning. Research and Development.
Springer. 228–241.
Paisner, M.; Maynord, M.; Cox, M. T.; and Perlis, D. 2013.
Goal-driven autonomy in dynamic environments. In Goal
Reasoning: Papers from the ACS Workshop, 79.
Ramirez, M., and Sardina, S. 2014. Directed fixed-point
regression-based planning for non-deterministic domains.
In Twenty-Fourth International Conference on Automated
Planning and Scheduling.
Reiter, R. 1991. The frame problem in the situation calculus:
A simple solution (sometimes) and a completeness result for
goal regression. In Lifschitz, V., ed., Artificial Intelligence
and Mathematical Theory of Computation: Papers in Honor
of John McCarthy, (Ed.). Academic Press.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Traverso, P., and Pistore, M. 2004. Automated composi-
tion of semantic web services into executable processes. In
ISWC-2004.
Veloso, M. M., and Carbonell, J. 1993. Derivational anal-
ogy in PRODIGY: Automating case acquisition, storage and
utilization. Machine Learning 10(3):249–278.
Warfield, I.; Hogg, C.; Lee-Urban, S.; and Munoz-Avila, H.
2007. Adaptation of hierarchical task network plans. In
FLAIRS conference, 429–434.

